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Abstract

Perceptual coding is a subdiscipline of image and video coding that uses models of
human visual perception to achieve improved compression efficiency. Nearly, all image
and video coders have included some perceptual coding strategies, most notably visual
masking. Today, modern coders capitalize on various basic forms of masking such as
the fact that distortion is harder to see in very dark and very bright regions, in regions
with higher frequency content, and in temporal regions with abrupt changes. However,
beyond these obvious forms of masking, there are many other masking phenomena that
occur (and co-occur) when viewing natural imagery. In this chapter, we present our
latest research in perceptual image coding using natural-scene masking models. We
specifically discuss: (1) how to predict local distortion visibility using improved natural-
scene masking models and (2) how to apply the models to high efficiency video coding
(HEVC). As we will demonstrate, these techniques can offer 10–20% fewer bits than
baseline HEVC in the ultra-high-quality regime.

Keywords: HEVC, visual masking, contrast gain control, adaptive quantization

1. Introduction

Recent advancements in digital signal processing technologies have made available a wide
variety of digital media for end use by consumers and practitioners. It is estimated that more
than 100 billion digital photos and videos are recorded, transmitted, and viewed annually just
in the United States. Today, the tremendous popularity of ubiquitously connected digital
imaging devices has made the Internet the standard means by which to share imagery. Of
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course,  digital  images/videos  have  many  uses  beyond  entertainment,  including  online
education, video conferencing, remote medical diagnoses, and many others. Such widespread
use of digital images and videos places a great demand on compression algorithms which are
absolutely crucial for reducing the bandwidth requirements of storing and transmitting these
images and videos.

To this end, state-of-the-art image/video compression algorithms exploit the fact that the
human visual system (HVS) is an imperfect sensor. When a digital image/video is to be viewed
by a human, an exact bit-for-bit reconstruction is unnecessary; rather, the data can be coded
in a non-invertible or lossy fashion. Lossy compression is useful for applications where lower
information fidelity can be tolerated, such as in consumer photography, computer vision, and
machine vision applications. If the compression distortions are invisible, the compression is
said to be visually lossless. Visually lossless compression techniques generally take advantage
of a low-level psychophysical phenomenon such as visual masking. If, on the other hand, the
compression distortions are visible, the compression is called visually lossy. Visually lossy
compression techniques aim to generate the best-looking reconstructed version under the
given bit-rate constraints. Both of these paradigms fall under the more general category of the
so-called perceptual coding, owing to the need to model the human visual system (HVS), and
in particular, how the HVS detects and perceives compression-induced distortions.

With the release of each new coding standard, the emphasis in perceptual coding research has
largely shifted from the mid-quality regime toward the ultra-high-quality regime, with the aim
of producing compressed images and videos which are visually equivalent to the originals.
Thus, research in visually lossless compression has seen a recent resurgence in importance. In
this chapter, we focus exclusively on visually lossless image compression. The key challenge
in visually lossless compression is to automatically determine, on a per image basis, the
maximum amount of compression that can be applied before the resulting image appears
distorted. However, to tackle this challenge requires the ability to accurately and efficiently
predict the visibility of local distortions in an image, a task which still remains elusive in the
current research.

Perceptual coding strategies have long relied on well-known properties of the HVS largely
derived from the visual psychophysics literature (e.g., see [1, 2]). Perhaps, the most well-known
and widely used property is the contrast sensitivity function (CSF), which specifies the visibility
of a narrowband spatial pattern (the target of detection) as a function of the pattern’s spatial or
temporal frequency. Previous psychophysical studies have shown that the minimum contrast
needed to detect a visual target (e.g., distortions) varies with both the spatial frequency and
the temporal frequency of the target. This minimum contrast is called the contrast threshold,
and the inverse of this threshold is called contrast sensitivity. For targets consisting of spatial
sine waves, the CSF is band-pass, indicating that we are least sensitive to very low-frequency
and very high-frequency targets. The temporal CSF is an extension of the spatial CSF which
takes into account sensitivity to time-varying targets, typically demonstrating a peak in
sensitivity around 4–8 Hz.

The CSF can be thought of as a baseline visual sensitivity measure because the CSF is tradi-
tionally measured for targets shown against a blank background. However, for targets
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consisting of compression distortions, this blank-background scenario occurs only when the
distortions happen to appear in very smooth regions such as in the sky. In other image regions,
such as in structures, textures, and hybrids regions, the distortions are generally more difficult
to detect (i.e., they exhibit higher contrast detection thresholds), and therefore, visual sensi-
tivity to the distortions is said to be reduced in these regions. This concept of visual masking
has served as the cornerstone of modern perceptual coding.

At the most general level, visual masking refers to a reduction or elimination in the visibility
of one signal (called the “target”) caused by the presence of another signal (called the “mask”).
For image compression, the image serves as the mask, and the compression distortions serve
as the targets of detection. There are various forms of visual masking which can occur and co-
occur in images and video. For example, it is well-known that humans have a harder time
seeing distortions in very bright regions of an image, an HVS property called luminance
masking. To capitalize on this fact, modern coding schemes more coarsely quantize the
coefficients corresponding to (devote fewer bits to) locations of higher luminance. A similar
strategy can be used for very busy regions of an image (contrast masking) or during scene
changes in video (temporal masking).

These low-level aspects of the HVS are so commonly used in image/video coding for two
simple reasons: (1) they are easy to incorporate and (2) such low-level aspects have been well-
documented in the visual psychology literature with accompanying computational models.
However, most existing models of masking (and thus, existing perceptual coding techniques)
are largely based on findings using artificial stimuli rather than on a true database of natural
scenes. The advantage of these artificial masks is that they have well-defined features and
parameters, which allows one to investigate the effects of specific mask properties on the
detection thresholds. However, in image compression, the mask is necessarily an image, and
thus, it remains unclear whether the results obtained using artificial masks can be used to
predict the results obtained using natural scene masks. There are some studies using natural
scenes as masks, but these studies either employed only a limited number of tested images, or
the thresholds were limited to select spatial locations within images (e.g., [3–5]).

In this chapter, we present our latest research in visually lossless image compression which
operates based on the concept of masking maps predicted from a natural-scene masking model
built upon a large local masking database [6]. Specifically, we recently published the results of
a large-scale psychophysical study designed to obtain local contrast detection thresholds
(masking maps) for a database of natural images [6]. This database can serve as crucial ground-
truth data for investigating on how local image content affects the visual masking thresholds.
Using this database, we present an high efficiency video coding (HEVC)-based quantization
scheme which uses the contrast gain control (CGC) with structure facilitation model trained
on the database of local masking thresholds to predict a masking map for the to-be-compressed
image. The masking map is then used to guide a spatially adaptive quantization scheme, which
more coarsely quantizes the blocks that can induce greater masking, and vice-versa. Using this
approach, our technique can generate compressed images in which the contrasts of the local
compression artifacts are much closer to their masked visibility thresholds than when using
standard HEVC.
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This chapter is organized as follows: Section 2 provides a brief review of current visually
lossless perceptual image compression algorithms. In Section 3, we describe the computational
models used to predict the masking map for any given input image. In Section 4, we describe
how to incorporate the masking map to perform spatially adaptive compression using HEVC.
In Section 5, we analyze and discuss the performance of the proposed visually lossless
compression method. General conclusions are presented in Section 6.

2. Previous work on perceptual image compression

As we mentioned, the goal of visually lossless image compression is to generate images
containing distortions at or just below the visual detection threshold. To this end, previous
work in this area has exploited properties of the HVS (most notably the CSF and visual
masking) and has taken a variety of approaches toward incorporating these visual properties
into the transform, quantization, and/or encoding stages. In this section, we briefly review
previous work on perceptual (HVS-based) image compression.

Perceptual image compression techniques can be dated back as early as 1990s when Safranek
et al. [7] published one of earliest attempts at incorporating HVS properties into compression
through a system called perceptually tuned subband image coder (PIC). Three properties of
low-level vision were modeled in PIC: (1) contrast sensitivity, (2) luminance masking, and (3)
contrast masking. These properties were used to guide the selection of per-subband quanti-
zation step sizes designed to yield visually lossless results. Although PIC was initially designed
for visually lossless compression, Pappas et al. [8] reported that this system can also be used
for visually lossy compression, and high performance can be achieved when the perceptual
thresholds are properly scaled. Also, Hontsch et al. [9] extended PIC by exploiting visual
masking; they proposed a locally adaptive perceptual coder, which discriminates between
image components based on their perceptual relevance.

Later research on compression has exploited the properties of the HVS and employed the CSF
to regulate the quantization step size in order to minimize the visibility of compression
artifacts. For example, Nadenau et al. [10] incorporated HVS properties into a wavelet-based
coding algorithm via a noise-shaping filtering stage which preceded quantization. Albanesi
[11] proposed a method for incorporating HVS characteristics directly into the transform stage
of a wavelet-based coder via the design of analysis and synthesis filters based on the CSF.
Antonini et al. [12] introduced a wavelet coder which employed a CSF-weighted distortion
criterion during bit allocation. O’Rourke et al. [13] proposed a wavelet-based image compres-
sion technique based on two properties of the HVS: orientation sensitivity and contrast
sensitivity. Specifically, the diamond-shaped frequency passband of the HVS was exploited for
the design of the compression scheme, and the logarithm of the contrast sensitivity was
employed for bit allocation. Lai et al. [14] presented an image compression scheme in which
contrast-sensitivity and visual masking adjustments were performed within a wavelet-based
coder using a low-pass model of the CSF and a local measure of visual distortion. In two similar
approaches, Beegan et al. [15] used a “CSF mask” to adjust transform coefficients prior to the
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quantization, and Wei et al. [16] used a “visual compander.” Also, in [17], Zhang et al. proposed
luminance and chrominance CSF-based weighting in the discrete-wavelet-packet-transform
domain to reduce perceptible information of the high-dynamic-range images.

There are also some researchers who conducted psychophysical experiment to measure
visibility thresholds for compression artifacts in unnatural images and/or on natural scenes.
For example, Watson et al. [18] measured visual detection thresholds for both individual
wavelet basis functions and simulated wavelet subband quantization distortions presented
against a gray background. The thresholds were modeled as a function of the spatial frequency
of the distortions, and the model was then used to compute quantizer step sizes for each
wavelet subband. In [19], Watson’s approach was extended to lower rate coding via models of
visual masking and summation. Nadenau et al. [5] measured the visibility thresholds of
quantization noise in natural scenes and compared five visual masking models to predict the
visibility thresholds. They concluded that a masking model considering local activity of the
wavelet subbands performed better than point-wise contrast masking models.

In a recent study, Chandler et al. [3] proposed a new kind of masking called the structural
masking by psychophysically measuring the visibility thresholds of wavelet distortions placed
on small patches categorized in three groups: texture, structure, and edges. The authors have
also proposed different set of values of parameters of contrast-gain control model [20] for three
different categories and have shown that the category-specific masking model showed better
compression results for wavelet-type compression schemes. Similarly, in [21], Chandler et al.
proposed a visually lossless compression algorithm based on psychophysical detection
experiments of wavelet distortion on radiograph images.

Several other studies have specifically focused on the visually lossless compression of JPEG
and JPEG2000 compression schemes. For example, Oh et al. [22] developed a visually lossless
compression model which allocates the code streams of the JPEG2000 encoder by measuring
visibility thresholds via a wavelet statistics-based quantization distortion model and a visual
masking model. In [23], Ponomarenko et al. pointed out that the visual quality of input (to-be-
compressed) image has a large effect on the compression performance. Thus, they adaptively
adjusted the scaling factor of the JPEG quantization matrix based on the estimated blur and
noise content of the input image and showed that such a compression scheme gives larger
compression ratio compared to super-high quality mode of consumer digital cameras. Leung
et al. [24] proposed a JPEG2000-based visually lossless compression scheme for CT images in
which the visibility thresholds varied according to the viewing window/display size of the CT
image.

3. Computational models of local masking

This section describes the computational masking models that we developed to predict the
masking map for the given input (to-be-compressed) image. First, we describe the ground-
truth database used to train the models. Next, we describe a modified version of the model
put forth by Watson and Solomon, which operates by simulating V1 neural responses with
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contrast gain control (CGC). Here, we have modified the model and optimized its parameters
to provide the best predictions for the aforementioned database. In addition, we describe an
extension of the model to deal with structural facilitation which we earlier reported in [3].
Structural facilitation refers to the reduction in threshold (increased distortion visibility) in
parts of the image containing highly recognizable structure.

3.1. Database of local masking in natural scenes

In [6], we performed a large-scale psychophysical experiment in which we measured thresh-
olds for detecting simulated distortions placed within each 85 × 85 block of every image from
the CSIQ database [25]. The simulated distortion was a narrowband log-Gabor noise target
whose center frequency was chosen to be near the peak of visual sensitivity (3.6 cycles/degree
of visual angle). The thresholds were obtained using a three-alternative forced-choice proce-
dure [26]; we employed at least three subjects per image, with at least two trials per subject.
The end result of the experiment was a masking map for each of the 30 CSIQ images; each
entry in each map denotes the minimum contrast required for a human subject to detect
distortions at that location in the image.

Figure 1. Masking maps and the corresponding standard deviation maps for all 30 images in the CSIQ database. See
text for details.
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Figure 1 shows the masking maps from the database. Each map consists of 36 values corre-
sponding to the 36 blocks of the associated image. Brighter map values denote higher thresh-
olds (i.e., more masking); darker maps values denote lower thresholds (less masking). The first
and seventh rows of Figure 1 show the 30 mask images. Below the mask images, the first,
second, and third images show the average maps of the two trials of Subject 1, Subject 2, and
Subject 3. The remaining rows show the average maps (taken across all six trials; 2 × 3 subjects),
and the corresponding maps of the standard deviations of each average. Note that the averages
and standard deviations are on different scales; please refer to the respective color bars
shown in Figure 1. Overall, the subjects were in high agreement with each other and with
themselves across separate trials.

In the following subsection, we describe the contrast gain control with structure facilitation
model which operates by simulating V1 neural responses to predict these masking maps.

3.2. Contrast gain control with structure facilitation (CGC+SF) model

Contrast masking [27] has been widely used for predicting distortion visibility in images and
videos [28, 42–44]. Among the many existing models of contrast masking, those which simulate
the contrast gain-control response properties of V1 neurons are most widely used. Although
several contrast gain control (CGC) models have been proposed in previous studies (e.g., Refs.
[20, 27, 30, 31, 41]), in most cases, the model parameters are selected based on results obtained
using either unnatural masks [20] or only a very limited number of natural images. Thus, in
this chapter, we describe two approaches to improve the current CGC model: (1) the CGC
model parameters are optimized by training on the large dataset of local masking in natural
scenes; and (2) the CGC model is incorporated by a structural facilitation (SF) model which
better captures the reduced masking observed in structured regions.

3.2.1. Watson-Solomon contrast gain control (CGC) model

The Watson and Solomon model [20] is a model of V1 simple-cell responses that includes CGC
from neighboring neurons. Figure 2 shows a block diagram of the model. The model takes two
images as input: (1) the mask image (original image), and (2) the mask+target image (distorted
image). Both of these images are then subjected to the following stages:

1. A spatial filter designed to mimic the human contrast sensitivity function (CSF).

2. A local spatial-frequency decomposition designed to mimic the initially linear response
properties of individual V1 neurons.

3. Excitatory and inhibitory nonlinearities designed to mimic the nonlinear response
properties of individual V1 neurons.

4. Divisive inhibition designed to mimic the interactions among groups of V1 neurons.

Steps 1 and 2: For Step 1, we use the CSF filter specified in [32, 33]. For Step 2, we use a log-
Gabor filterbank consisting of six scales and six orientations. The center radial frequencies of
the filters are 0.3, 0.61, 1.35, 3.22, 7.83, 16.1 c/deg, each with a radial-frequency bandwidth of
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2.75 octaves. The center orientations of the filters are 0°, ± 30°, ± 60°, 90°, each with an
orientation bandwidth of 30°.
Steps 3 and 4: Let � �0,  �0,  �0,  �0  denote the output of the log-Gabor filter with a center of

radial frequency �0,   an orientation �0, and at the spatial location �0, �0 . This filter output

represents the initially linear response of the neuron. To obtain the nonlinear neural response,� �0, �0, �0, �0 , we perform Steps 3 and 4 via the following equation:

(1)

Here, � is an output gain factor (we use � = 0.1). The parameters � and � are the exhitatory and
inhibitory exponents which impose the nonlinearities (we use � = 2.4 and � = 2.35). The
parameter � is a constant designed to prevent division by zero (we use � = 0.035). The division
simulates inhibition from neighboring neurons; these neurons constitute the so-called inhibi-
tory pool, and they are neighbors in space, radial frequency, and orientation. In Eq. (1), the
inhibitory pool is represented by the set of spatial and spatial frequency coordinates ��. The

neighbors come from a 3 × 3 surround in space, a ±0.7 octave bandwidth surround in radial
frequency, and a ±60° bandwidth surround in orientation.

Figure 2. Flow of Watson and Solomon contrast gain control model.

All of the abovementioned parameters (�, �, �, �, and ��) were chosen via a brute-force search

to provide the best overall fit to the thresholds from our database, under the condition that the
parameters remain within biologically plausible ranges [3]. The radial frequency bandwidth
and center radial frequencies were chosen in this way as well. The other parameters of the
model were either set as specified in [20] or were chosen based on our prior related modeling
efforts [3].
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Comparing the responses: Step 4 results in two collections of responses: One collection of
responses to the mask, and another set of responses to the mask+target. The target is deemed
visible if these collections of responses are sufficiently different from each other; thus, indi-
cating a visible difference in the two stimuli (i.e., that the distortions are visible). To determine
whether this condition is met, the collections of responses are subtracted from each other, then
collapsed via Mikowski sum [20], and then this scalar difference (�) is compared to a pre-
defined “at-threshold” difference value (� = 1). We used a Minkowski exponent of 2.0 to
collapse across space, and an exponent of 1.5 to collapse across radial frequency and orienta-
tion. The contrast of the target is iteratively adjusted until � ≈ �. When this condition is met,
the contrast of the target is deemed to be the at-threshold contrast (i.e., the contrast detection
threshold).

We refer interested readers to [6] for more specific details of the database and model.

3.2.2. Structure facilitation (SF) model

Using the optimized parameters described in the previous subsection, our implementation of
the Watson and Solomon CGC model is quite accurate in predicting detection thresholds. On
our database, the model is able to achieve a Pearson correlation coefficient (PCC) of 0.83
between the ground-truth and predicted thresholds. Generally, the model works best on
regions containing textures and is worst on regions containing more complex structure. In
particular, the model tends to overestimate thresholds for regions containing recognizable
structure. This notion is demonstrated in Figure 3, which shows the ground-truth and
predicted thresholds for two images; observe that the model predict the thresholds to be higher
than ground-truth near the top of the gecko’s body and in the child’s face.

Figure 3. Examples of the Watson and Solomon model overestimating thresholds for distortion in some image regions
that contain recognizable structures.
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As we mentioned in [3], recognizable structures within the local regions of natural scenes
facilitate (rather than mask) the distortion visibility. Thus, to model this “structure facilitation,”
we employ an inhibition modulation factor (��) in the gain control equation:

(2)

where we adjust �� depending on the strength of structure within an image. Although the

specific amount of inhibition modulation remains an open area of research, we have found the
following sigmoidal relationship between �� and estimated structure strength to be quite

effective (shown in Figure 4):
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Figure 4. The inhibition multiplier �� varies depending on structure strength. Strong structures give rise to lower in-

hibition to facilitate the distortion visibility.

Observe that the inhibition modulation is applied in a block-based fashion. Here, λ�, � denotes

the inhibition modulation factor for the ith block of size �×�.
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The variable � in Eq. (3) is a map which denotes the local structure strength (described next),
and �� is a block of � corresponding to the ith block of the image. The inhibition modulation for

each block is further adjusted based on 80% largest values of S, denoted by the variable� �, 80 . Furthermore, if the largest value of S is small, or if the kurtosis of S is small, then there
is either no sufficient structure (e.g., the image is mostly textured or smooth), or the structure
is not locally concentrated. In this case, no inhibition modulation is applied (i.e., ��, � = 1, for

all blocks) (Figure 4).

The structure map � of an image is generated via the following equation which uses different
feature maps:

( ) ( )2 21 .1= ´ ´ ´ - ´ -n n n n nS L Sh E D Dm s (4)

Here, ��, �ℎ�, and �� denote maps of local luminance, local sharpness [29], and local first-order

Shannon entropy, respectively. The values ��� and ��� denote, respectively, maps of the

average and the standard deviation of fractal texture features [34] computed for each local
region. All features were computed for 32 × 32 blocks with 50% overlap between neighboring
blocks. Each feature map was then normalized to the range [0, 1] and then resized to match
the input image’s dimensions. Figure 5 shows some examples.

Figure 5. Structure maps of two example images. The color bar at right denotes the structure strength at each spatial
location of the structure map.

The prediction performance of the Watson and Solomon CGC model can be greatly improved
when the structure facilitation is taken into account [as specified in Eq. (2)]. As demonstrated
in Figure 6, the proposed SF model was able to improve the CGC model’s prediction perform-
ance in local image regions that contain recognizable structures, while not adversely affecting
the prediction results of the others. For example, near the top of the gecko’s body and in the
child’s face, the contrast detection thresholds predicted using the combined CGC+SF model
match the ground-truth thresholds better than using the CGC model. Furthermore, the Pearson
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correlation coefficients between the CGC+SF model predictions and ground-truth thresholds
also improved as compared to using the CGC model alone.

Figure 6. Structural facilitation improves the distortion visibility predictions in local regions of images containing rec-
ognizable structures. Pearson correlation coefficient (PCC) of each map with the experiment map is shown below the
map.

4. Application of the masking model to compression

The masking model described in the previous section provides a way of predicting a masking
map for any given input image. In this section, we show how to use this masking map to achieve
visually lossless compression. In particular, we describe two different ways of incorporating
the masking maps into an HEVC image coder: (1) by adjusting the �� values in HEVC on a
per-block basis; and (2) by pre-adjusting the image’s pixel values prior to the HEVC compres-
sion, and post-adjusting the pixel values of the decompressed image following HEVC decom-
pression.
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Similar to H.264/AVC, HEVC employs a uniform reconstruction quantizer for the transform
coefficients. It is the quantization stage that introduces distortions; thus, to generate visually
lossless results requires direct or indirect modification of the quantization step sizes (�����
values) or quantization parameters (�� values). Previous efforts toward improved quantiza-
tion have aimed at achieving higher PSNR values (e.g., [35, 36]) or other visual quality
measures (e.g., [37, 38]). However, for visually lossless compression, we argue that the use of
masking maps is a much better and logical alternative.

Our approach assumes that each local area within an image should have its own �� based on
the amount of masking induced in that region. Note that the larger �� value is, the greater the
contrast of the distortions. Therefore, the first step of our method is to predict a QP map
consisting of block-based �� values, such that the resulting distortions in each corresponding
block exhibit a contrast at the contrast threshold ��. Furthermore, as we mention later in Section

5, because the predicted �� values are underestimates of thresholds for normal viewing

conditions (as opposed to the highly controlled viewing conditions used in the psychophysical
experiment), we aim for �� values required to generate slightly greater than �� (greater by at

most 10 dB).

4.1. Local QP estimation from the masking map

Let ��� denotes the �� value for the ith block, and let �� denotes the contrast of the resulting

distortions. Our objective is to employ a ��� for the ith block such that the �� for that block is

given by �� = ��, �, where ��, � denotes the contrast threshold for the ith block. That is, we seek

the ��� value for each block required to make the block’s distortions at the threshold of

visibility.

The primary difficulty in determining the relationship between � and �� is that the relationship
changes depending the patch. In our previous work [39], we used a regression model to predict
the relationship between �� and � on a per-block basis using statistical properties of each block
as regressors. Although that approach was extremely fast, it suffered from a significant number
of mispredicted �� values and thus induced distortions with incorrect contrasts. Here, we
present a much more accurate solution based on the use of a pre-compression lookup table.

Specifically, prior to using HEVC, we perform the following steps:

STEP 1. Divide the image into 32 × 32 blocks (the maximum block size for HEVC).

STEP 2. Compute the 2D DCT of each block.

STEP 3. Iterate over a �� range from 1 to 51…

a. Quantize the block using a corresponding Qstep value given by Qstep = (21/6)QP - 4 as specified
in [40].

b. Perform an inverse 2D DCT of each block.
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c. Measure and record the contrast of the resulting distortions.

In this way, for each block, we record a table that can be used to look up the closest ��� value

required to achieve �� = ��, �. Figure 7 shows the lookup table values in the forms of plots (��
vs. �) for eight different image blocks. Generating the lookup table requires only a small
fraction of the total time required to encode the image because only a series of inverse 2D DCTs
and contrast measurements in required. Most importantly, this technique provides extremely
accurate selection of the �� values.

Figure 7. The relationship between distortion contrast � (in dB) and the �� used to generate that distortion for eight
blocks from an image. Observe that the �� vs. � relationships are patch-specific; thus, we generate these curves (in the
form of lookup tables) for all blocks prior to the compression.

4.2. Spatially adaptive quantization using the QP map

Given the QP map, we present two approaches to implement the compression. The first
approach, which is the more direct approach, assigns different �� values for each 64 × 64 block.
This approach was implemented by modifying the reference HEVC profile to explicitly use a
separate �� value for each 64 × 64 coding unit. This approach is straightforward to implement,
but it lacks some flexibility.

The other approach, which can be used with any lossy compression algorithm, effects the
spatially adaptive quantization using pre-processing and post-processing stages. Let �1 and�2 denote the two image pixels and their corresponding quantization step sizes are denoted

by ��1 and ��2, respectively. The quantized values of the two pixels (denoted by �1 and �2)

are then given by
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(5)

(6)

where � = ��1/��2 is a scaling factor; � is a factor that normalizes the scaled pixel value (e.g.,�2 ⋅ �) into [0, 255]. Eqs. (5) and (6) indicate that different local image areas can have different

quantization parameters even though the whole image is quantized using one uniform ��, as
long as different image pixels are scaled properly.

For standard HEVC, the quantization step sizes relate to the �� values via����� = 21/6 �� − 4. However, in our second approach, because pixel values are quantized,

we relate the quantization step to �� value through

( ) ,= = × +tstepQ f QP A QP B (7)

where t is a nonlinear coefficient which aims at increasing/decreasing the �� value range
within a QP map; � and � are the ratio and offset parameters which adjust the quantization
step size after the nonlinear transform. The block diagram of the second approach is shown
in Figure 8. Specifically, in the pre-processing stage, the luma channel of an image is first
multiplied by a scaling map (dented by �) and then divided by � to have a range of [0, 255].
The scaling map is given by

Figure 8. Block diagram of the second approach to achieve spatially adaptive quantization. Although in this chapter,
we show results using HEVC as the encoder and decoder, this second approach can be used with any image compres-
sion algorithm.
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where �1,   �2, …, �� denote the �� values for � different local image areas; �� denotes the

average value of �1� ,   �2� ,   ⋯,   ���  [i.e., �� = �1� + �2� +   ⋯ + ��� /�];� is given by
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In this chapter, we set � = 2/3, � = 0. Thus, � and � can be written as
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In the post-processing stage, an inverse scaling map (dented by �) is applied to convert the
scaled luminance to the original value:

1 2,  ,  ,  .
é ù×× ×

= ê ú
ê úë û

K
tt t
N

m m m

QQ QV
Q Q Q

bb b
(12)

In standard HEVC stage, the global �� is computed by

1

1 2 ,
é ù
æ öê ú

= +ç ÷ê ú
è øê ú
ë û

tmQQP round l l
b

(13)

where �1 and �2 are the linear coefficients which adjust the RMS contrast of the distortions in

the compressed image to be near or below the threshold. We estimated their values by fitting
the model to the 30 images in the CSIQ database, and thus, we set �1 = 0.8, �2 = 2.4.

Recent Advances in Image and Video Coding18



Two problems can occur with this approach. First, the QP map may possibly contain zero
values, in which case the above equations are not valid. Second, the predicted block-based QP
maps often contain abrupt changes of �� values on the patch edges, which may possibly
deteriorate the qualities of the compressed images by producing the ringing or blocking
artifacts especially at lower bit compression. To solve these two problems, we first set the
local zero �� values to be the minimum value among all the extra �� values within the image
and then applied a Gaussian filter to the modified QP maps. As we have observed, for most
natural images, the image contrast should change smoothly, not abruptly, and consequently,
the resulting QP maps should also be smooth. Figure 9 shows the 1600 image compressed
using the QP map with and without the Gaussian filtering. Observe that the blocking artifacts
occur in the compressed image (Figure 9a) if the original QP map was used; these blocking
artifacts disappear when the QP map is smoothed by a Gaussian filter (Figure 9b).

Figure 9. Gaussian filtering of the QP map improves the perceived quality of the compressed image.

In the following section, we show qualitative and quantitative results of using these two
schemes with HEVC.

5. Results and discussion

In this section, we analyze the performance of the proposed visually lossless image coding
algorithm. For this task, all 30 reference images in the CSIQ database were compressed at
visually lossless rates using the proposed method and compared against standard HEVC. The
main difference is that standard HEVC employs a uniform �� for coding the whole image,
whereas our approach uses spatially adaptive �� values based on masking.
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Furthermore, we have found that it is possible to induce distortions at up to 10 dB above the
predicted �� values while still yielding images which are visually lossless under normal

viewing conditions. The contrast thresholds measured in the aforementioned experiment and
thus the contrast thresholds predicted by the CGC+SF model are accurate for the highly
controlled viewing conditions; yet, they are quite conservative for normal, everyday viewing.

5.1. QP maps

The CGC+SF model takes the 64 × 64-pixels image patch as input and predicts the distortion
contrast threshold (��) and the corresponding threshold QP map. Figure 10 shows the QP maps

generated from the CGC+SF model for eight images in the CSIQ database.

Figure 10. Eight sample reference images in CSIQ and their corresponding QP maps estimated based on CGC+SF
model.

Observe that the QP maps are indeed image-adaptive; that is, the pattern of how quantization
step sizes are varied across space adapts based on the image content (which is itself based on
the masking model and the relationships between �� and �). In general, the QP maps specify
larger quantization step sizes for regions that can mask the resulting distortions, and small
quantization step sizes for regions with less masking. For example, in the cactus image, the
bodies of the cacti impose great masking, the bird and boundaries of the cacti impose much
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less masking, and sky has almost no masking. Accordingly, the �� values are smallest for the
sky, larger for the bird and cacti boundaries, and largest for the bodies of the cacti.

Again, we remind the reader that the QP maps alone can provide only a rough gauge of how
the distortions will be distributed across space. Recall from Figure 7 that the relationship
between �� and the contrast of the resulting distortion C is very much patch-specific. The same�� applied to two different blocks can give rise to vastly different distortion contrasts.

5.2. Distortion contrast maps

The proposed coding approach assumes that to compress an image in a visually lossless
manner, the RMS contrast of the distortion in any compressed image region should be near or
below the ground truth RMS contrast threshold. Thus, to verify the effectiveness of our
proposed approach, Figure 11 shows the contrast threshold maps (masking maps) for four
sample images (as predicted by the CGC+SF model), as well as the resulting distortion contrast
maps of the corresponding images coded with standard HEVC and the two proposed ap-
proaches. Note that the displayed contrast threshold maps are all 10 dB greater than predicted
by the CGC+SF model due to the fact that the experimental contrast thresholds are overly
conservative for normal viewing conditions. As we have found in our research, distortions
with a contrast up to 10 dB above threshold can still remain visually undetectable under normal
viewing conditions. Observe from Figure 11 that images coded by standard HEVC have quite
different contrast patterns with the ground truth, whereas images coded by the proposed
approaches appear quite similar in pattern to the masking maps. These figures demonstrate
that it is possible to achieve better compression performance than standard HEVC if using QP
maps and the proposed adaptive coding scheme. We will quantify the compression perform-
ance of each method in the following section.

Figure 11. The ground truth RMS contrast threshold maps for four sample images, as well as the RMS contrast maps of
their corresponding compressed images coded by standard HEVC, and two proposed approaches.
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Image Standard HEVC JPEG JPEG2000 Approach 1 Approach 2

QP bpp PSNR Error bpp PSNR Error bpp PSNR Error bpp PSNR Error bpp PSNR Error

1600 24 1.98 40.21 733.48 3.31 45.83 563.06 2.21 45.88 594.24 1.88 39.21 676.20 1.49 41.94 786.39

Aerial_city 23 1.75 40.29 794.63 2.52 42.29 841.94 2.21 45.05 692.72 2.09 38.36 716.19 2.10 46.09 653.83

Boston 20 2.41 43.02 502.98 2.61 42.31 712.80 2.34 45.43 534.92 1.81 38.53 699.00 1.61 44.37 703.05

Bridge 22 1.73 41.97 706.05 1.46 38.41 1017.83 2.09 46.57 575.40 1.85 39.83 689.23 1.67 43.35 645.30

Butter_flower 23 1.13 42.10 1036.55 2.17 47.32 1153.96 0.60 41.29 890.83 0.87 35.58 1005.51 0.71 42.64 1282.70

Cactus 21 2.14 42.64 638.78 1.75 39.16 876.22 2.20 46.97 651.90 1.55 33.40 757.97 1.65 47.20 642.46

Child_swimming 25 2.17 38.35 577.45 3.32 43.14 438.94 2.49 43.83 426.37 1.74 33.67 715.74 1.67 43.80 641.40

Couple 25 1.60 39.22 460.92 2.74 45.07 323.70 1.47 42.61 431.27 1.21 34.76 618.40 1.45 42.21 375.91

Elk 29 1.02 35.60 740.88 1.94 40.37 616.10 1.23 39.80 665.91 1.38 34.09 660.53 1.47 42.92 521.01

Family 22 0.94 42.60 962.12 1.15 43.74 966.63 1.13 47.04 794.78 1.65 45.80 586.11 0.74 51.36 845.01

Fisher 21 1.27 42.25 936.04 1.41 43.27 1034.82 1.16 44.84 953.55 1.63 43.02 789.65 0.93 46.91 995.65

Foxy 26 2.43 37.42 415.59 3.00 39.33 427.49 2.48 42.08 434.99 1.62 29.47 680.18 2.14 42.65 374.69

Geckos 28 1.57 35.70 546.44 2.03 37.41 593.12 2.48 43.83 242.22 1.48 31.78 696.98 2.05 39.93 294.62

Lady_liberty 22 0.70 43.55 948.07 2.36 50.94 691.58 0.52 44.55 1027.35 1.26 39.56 767.69 0.58 50.48 932.29

Lake 23 3.14 40.59 433.81 2.26 34.64 937.05 3.99 48.82 420.27 2.24 31.84 634.87 2.42 39.93 517.14

Log_seaside 25 2.53 38.40 582.71 2.34 36.49 867.01 3.99 50.95 359.16 2.15 33.74 651.16 2.52 41.75 462.66

Monument 22 1.49 41.51 687.93 2.01 43.03 741.39 1.52 44.17 692.42 1.48 36.64 696.29 1.12 42.84 737.65

Native_american 23 1.57 40.63 801.26 1.60 41.28 911.87 1.98 46.68 633.27 1.70 38.14 713.70 1.62 43.99 676.87

Redwood 22 1.97 41.59 675.00 1.57 38.18 942.47 2.34 46.40 539.17 1.81 35.81 710.60 1.33 46.47 778.18

Roping 23 1.67 41.63 573.60 1.57 40.85 737.25 1.47 43.79 682.79 1.10 32.22 653.10 1.42 40.88 586.43

Rushmore 21 2.88 42.16 558.05 3.34 42.79 627.87 2.48 43.70 622.51 2.29 34.39 726.84 2.89 44.70 461.22

Shroom 19 2.35 43.94 410.47 1.52 42.36 630.61 1.28 43.89 549.87 1.25 36.79 610.10 0.79 43.71 683.36

Snow_leaves 28 1.08 37.26 675.15 1.58 38.92 787.26 1.47 41.99 612.13 1.31 35.25 548.25 1.35 40.54 519.24

Sunset_sparrow 23 1.56 40.27 1012.00 1.37 40.27 1142.99 1.52 45.13 907.72 2.04 40.10 721.38 0.91 44.04 1052.54

Sunsetcolor 22 0.32 44.57 1165.65 0.50 46.37 1166.02 0.26 47.32 1137.51 1.42 48.35 810.06 0.60 49.00 1061.84

Swarm 21 1.03 42.60 1001.60 1.42 44.85 1014.01 0.91 45.19 1024.93 1.59 41.05 813.39 0.67 44.27 1066.44

Trolley 22 2.57 41.14 482.71 3.17 41.55 589.34 3.31 47.75 387.67 1.95 34.47 668.14 1.94 43.13 581.13

Turtle 19 1.49 44.15 839.82 0.97 42.85 1038.58 1.16 46.64 866.72 1.46 40.26 778.86 1.06 44.96 880.51

Veggies 24 1.64 40.83 497.75 1.96 41.98 696.02 1.72 44.79 602.85 1.01 31.49 584.03 1.23 41.48 616.87

Woman 24 1.72 39.61 654.98 2.09 41.17 730.93 1.98 44.55 538.89 1.51 36.76 710.15 1.45 43.25 655.77

Average 23 1.73 40.86 701.75 2.03 41.87 793.96 1.86 45.05 649.81 1.61 36.81 703.01 1.45 44.03 701.07

Table 1. Performance comparison of standard HEVC, JPEG, JPEG2000, and the two proposed CGC+SF model based
approaches in terms of coded rate (bpp), PSNR, and the absolute RMS contrast error.
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5.3. Compression performance

Table 1 shows the compression results of 30 images using standard HEVC, JPEG, JPEG2000,
and the two proposed approaches. To compare with the standard HEVC, JPEG, and JPEG2000
coding methods, a visual quality matching experiment was performed by three experienced
subjects. The purpose of the experiment was to find at which compression rate, the three
reference coding methods (i.e., HEVC, JPEG, and JPEG2000) yielded images with just detect-
able distortions; the corresponding bit-rates of these “at-threshold” compressed images were
then recorded. Note that all these five coding methods only add near or below-threshold
distortions, and thus judging the quality of the images is quite difficult. Although the human
subjective judgment is a more reliable way for assessing the intensities of the near/below
threshold distortions, we also report the PSNRs and the absolute RMS contrast errors between
the reference images and the coded images for reference.

From Table 1, observe that the second approach of the CGC+SF model demonstrates a
reduction in coded rate (bpp) by an average factor of about 16% as compared with standard
HEVC, while still maintaining relatively higher PSNR values and equivalent RMS contrast
errors. In comparison, the first approach seems to work less effectively. This might due to the
fact that fixed local �� values are applied to the local image areas, but some local �� values
are improperly estimated because of the much complex image patches and potential model
limitations. However, this straightforward approach still performs competitively well,
considering the relatively smaller errors it produces. For the second approach, we employed
additional parameters, which indirectly adjust the coded rate to meet the visually lossless
requirement. Note that for each method, the average total error is around 700 dB, which means
that for each block there is an approximately 10 dB RMS contrast error (each image contains
64 blocks) compared with the ground truth. This is also attributed to the three-alternative
forced-choice procedure that has been used in the experiment and mentioned in Section 5.2.
Also, it should be noted that we generated the QP maps mainly from contrast masking and
structural facilitation. Thus, if an image does not contain areas that can sufficiently mask the
distortions, using the QP map yields no gain.

6. Conclusion

This chapter described a computational model which predicts masking maps for any given
input images, and two approaches which employ the predicted masking map to achieve
visually lossless compression. The proposed computational model consists of a contrast gain
control model, which was trained on a database of local masking thresholds in natural images,
and a structural facilitation model, which was incorporated to take into account the effects of
recognizable structures on distortion visibility. Compared with standard HEVC, our approach
shows an average of 16% improvement in bit-rate when testing on the CSIQ database
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