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Abstract

This chapter gives an overview of renewable hydrocarbon production through triglycer‐
ide's thermal‐cracking process. The influence of feedstock characteristics and availability
is discussed. It also presents issues about the reaction, the effect of operational conditions,
and catalysts. A scheme of the reaction is presented and discussed. The composition and
properties of bio‐oil is presented for both thermal and catalytic cracking. The high content
of olefins and the high acid index are drawbacks that require downstream processes. The
reactor design, kinetics, and scale‐up are opportunities for future studies. However, the
similarity of bio‐oil with oil turns this process attractive.

Keywords: waste fatty acids, triglyceride, pyrolysis, biofuels, green chemicals

1. Introduction

Nowadays, the search for processes that aims to reduce the use and the dependence of fossil
fuels is imperative. Decrease in the emission of greenhouse gases might be a global effort. In
this way, the biomass appears to be the logical choice to produce solid, liquid, and gaseous
fuels, once it is abundant and available all over the world [1]. There are many technological
processes applied to different kinds of biomass being studied and proposed by scientific
community [2]. One thing is for sure, there will not be only one technology that will solve all
the issues, but different technological routes taking into account the specific characteristics of
the source region and the feedstock.
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Besides the fact that these new technologies to produce biofuels must be environmentally
friendly, they are facing some obstacles to overcome economic and technical viability, high
scale, and stable production. Specifically on liquid biofuels, another technical barrier is the fact
that almost every machine and vehicle was designed for fossil fuels usage. These fossil fuels
have several regulations and quality parameters that must be attended for commercialization.
In this way, it is a “sine‐qua‐non” condition that the new generation on liquid biofuels shall be
compatible with actual standard of the engines. The modern electronic fuel injection systems
make possible the use of different fuels maintaining a good combustion in the engine.
However, how higher the similarity of the biofuel with fossil fuels, higher is the possibility for
its commercial application. In this way, the organic liquid product produced by thermal
cracking of vegetable oils and waste fats appears with high potential of oil substitute in the
refineries [3].

The objective of this chapter is to provide a brief overview about the thermal conversion of
triglycerides into a liquid fraction, called bio‐oil, rich in hydrocarbons, presenting its proper‐
ties.

2. Thermal cracking of triglycerides

The production of bio‐oil through thermal cracking of biomass is easily found in literature
[4–32]. The bio‐oil is defined as a dark brown viscous corrosive fuel obtained from biomass
pyrolysis [33], but it is very important to highlight that the bio‐oil has different properties
according to the feedstock. If it is produced from lignocellulosic materials, the bio‐oil has
significant amount of water and oxygen content, decreasing its gross calorific value and its
stability [34, 35]. On the other hand, if the feedstock is triglycerides, the oxygen and water
content is low and the high heating value is comparable to the fossil fuels [6, 36]. Another
important characteristic is the similar chemical composition, based on hydrocarbons [37]. So,
based on these issues, the bio‐oil produced from triglycerides appears like one of the most
promising technologies for biofuels production [38].

2.1. Feedstock

The triacylglycerol, also known as triglyceride (TAG) is an ester derived from glycerol and
three fatty acids [38]. It can be found in edible and nonedible vegetable oils, animal fats, and
used oils. The most abundant vegetable oils are soybean, palm, canola, sunflower, rapeseed,
among others. From animals, the main sources are pork lard, poultry fat, fish oil, and beef
tallow [39]. Waste greases or tap greases are found in cooking oils and sewage scum [40].

In general, they have similar physical properties and chemical structure. They differ in the
composition of the fatty acids, in the acidity and content of saturated fatty acids [39]. The acidity
of the oil is evaluated through the acid index determination (ASTM D974) which gives the free
fatty acids (FFAs) content in the oil. Waste oils are classified in yellow and brown greases
according to the content of FFA. Oils with lower than 15% (w/w) are classified as yellow
greases, while if it has more than 15% it is brown greases.
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The iodine index (pr EN 14111) provides the number of double bonds in the fatty acids. Oils
with high content of unsaturated acids are liquid in ambient conditions; however, oils with
high content of saturated acids are solid or semisolid in the same conditions.

The fatty acid composition is provided by the fatty acid methyl ester (FAME) determination
[41]. It is a chromatographic analysis, which is a well‐accepted method for its determination.
The fatty acids composition of various TAGs can be found in the literature [34, 41, 42].

One fact that must be pondered over, when one talks about biofuels production using TAGs,
is the feedstock availability [42]. In this way, we have two subjects to consider: the use of edible
oils and the logistic to join the wasted ones.

In the first case, we need to consider the food versus fuels issues. The main concern is based
on the assumption that biofuel feedstocks tend to be more profitable than food feedstocks,
which may lead to food shortages. Thus, it must be carefully pondered in order to efficiently
attend both markets [43].

In the second case, it is possible to consider the waste‐cooking oils, the animal fats, and the
sewage scum. From cooking oils, its generation varies to each country, as it depends on the
vegetable oil consumption. The estimated generation in the European Union (EU) is about
700,000–1,000,000 tons/year [44]. Only the UK generates an amount of approximately 250,000
tons per year [45]. Canada produces around 135,000 tons of yellow grease every year [46].
Mexico's generation is about 840,000 tons every year, similar to Malaysia. Japan produces
around 450,000–570,000 tons/year [47]. Hong Kong generates approximately 20,000 tons/year
[48]. The USA's generation is about 1,000,000 tons/year [47]. Even so, it is estimated that the
general worldwide generation is around 4.1 kg per habitant per year [49].

Animal fats availability is also related to the region. It is well known that China, the USA, and
Brazil are large producers of meat. Only in 2013, the US industry processed 180,000 tons of
meat and poultry [50]. The fish industry also plays an important role. In 2014, the world fish
production was about 146 million tons of fish [51]. As the amount of oil ranges from 40 to 65%
[52], it represents around 70.8 million tons of waste fish oil.

Thus, these numbers show that it is possible to use biofuels production as a final destination
to these wastes. It is important to highlight the complex logistic to use it and that these amounts
will not replace the oil, but they can be a viable alternative.

2.2. Process and reaction

The thermal‐cracking reaction is defined as thermal decomposition of the organic chains by
heat in an atmosphere free of oxygen, with or without the aid of a catalyst. Figure 1 presents
a basic scheme of the triglycerides thermal‐cracking process. As one can see in the scheme, the
reaction will generate always a solid fraction, generally called coke, a liquid product named
as bio‐oil, and a gaseous stream known as biogas.

This reaction is affected by the feedstock characteristics and the pair temperature‐residence
time [34]. The higher the temperature and the residence time, the higher the yield of the gas
product. Lower temperatures and higher residence times improve the coke formation.
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Moderate temperatures with short residence times yield the liquid product. This last opera‐
tional condition is called fast pyrolysis [5]. The fast pyrolysis process is gaining attention due
to the possibility to obtain high amounts of bio‐oil, which can be used as fuel. Figure 1 shows
that independent of the operational conditions, the solid fraction called coke will appear, and
this product will not be easily removed from the reactor. In general, this product formation is
associated with clogging [53]. One possibility to remove it is to proceed a controlled burning
in the heated reactor through feeding air instead of biomass, for a certain period of time,
promoting the combustion of the coke.

Figure 1. A general scheme of thermal‐cracking process.

The reactor design is the heart of the process [54]. Different configurations have been proposed
in the literature for several researches. It is possible to find batch [9, 10, 12, 16, 21, 22, 24, 31,
32] and continuous configurations [4–8, 11, 13, 17–20, 23, 25–27, 55]. In general, the batch
reactors are used to evaluate the reaction mechanism, kinetics, yields, and chemical charac‐
terization. As it works with lower capacities, they are not appropriated for industrial applica‐
tions. The continuous ones are in a higher sizes, bench or pilot, testing different reactor designs
and operational conditions, evaluating the kinetics, yields, characterization, energy consump‐
tion, and economic evaluation, aiming the scale‐up studies [26].

The irreversible reaction is highly endothermic and requires high heat transfer rates. The
possibility to run the process in an autothermal operation promotes an advantage over other
processes. This condition can be reached burning a fraction of the products to produce the
thermal energy required for the reaction. An energy balance of the TAGs thermal cracking was
presented by [5].

Due to the complexity of the organic reactions, there is no complete knowledge about all the
reactions involved, just proposals for the principal ones. A simplified reaction step for the
thermal cracking of triglycerides is presented in Figure 2. The reaction starts with the decom‐
position of the triglyceride molecule forming heavy oxygenated hydrocarbons. Some of the
saturated fatty acids formed may not suffer any subsequent breaking. The decarboxylation
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and decarbonylation reactions (2) are favored by unsaturations and compete with the C‐C bond
cleavage reaction (3). The CO and CO2 are formed by the deoxygenation reactions in (2) and
(4). The isomerization, polymerization, dehydrogenation, and cyclization are responsible for
dienes, acetylenes, cycloparaffins, and polyolefins (5). The Diels‐Alder addition of dienes to
olefins also produce cyclo‐olefins (8) resulting in hydrogen formation. The hydrogenation of
cyclo‐olefins to cycloparaffins and the reverse reaction occurs in steps (6) and (7). Hydrogen
also comes from steps (9) and (10). The solid product coke is produced directly from trigly‐
ceride (12), by the polycondensation of heavy hydrocarbons and saturated fatty acids (11) and
aromatics (10). The polymerization of olefins can also lead to coke (13). Considering the
reaction scheme in Figure 2, it is very important to advance the cracking at least to the point
which deoxygenation reaction occurs, eliminating the oxygen by CO and CO2. It is also
important avoid coke formation (steps 10 and 13 in the Figure 2). As a first conclusion, for
thermal cracking, the temperature‐residence time is the key factor for this process.

Figure 2. Proposed reaction scheme for the thermal cracking of vegetable oil and animal fats (triglyceride). Adapted
from [13, 26, 38, 56]. (1) Initial cracking, thermolysis of triglyceride molecule ester bond; (2) decarboxylation/decarbon‐
ylation of long‐chain oxygenated hydrocarbons; (3) C‐C bond cleavage of unsaturated oxygenated hydrocarbons; (4)
decarboxylation/decarbonylation of short‐chain oxygenated hydrocarbons; (5) isomerization, polymerization/dehydro‐
genation, cyclization to form dienes, acetylenes, cycloparaffins, and polyolefins; (6) dehydrogenations of cycloparaffins
to form cyclo‐olefins; (7) hydrogenations of cyclo‐olefins to form cycloparaffins; (8) Diels‐Alder addition of dienes to
olefins to form cyclo‐olefins; (9) aromatization of cyclo‐olefins to form aromatics and polyaromatics hydrocarbons; (10)
Coking from polyaromatics; (11) coking by polycondensation of oxygenated hydrocarbons; (12) coking by polyconden‐
sation of triglyceride molecule; (13) polymerization of olefins to form coke; (14) direct route for C1‐C5 hydrocarbon
formation from triglyceride molecule.

The use of catalysts aims to aid the reaction and increases the products’ quality [57]. As the
composition of the products may vary due to catalyst material, size, and shape [58], several
works evaluate the use of many types of catalysts. Table 1 shows the different catalysts used
for the cracking of triglycerides. One of the concerns involving catalysts use relies on their
stability and reutilization, which directly affect the cost of the process [31]. In general, the coke
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formation limits the use of heterogeneous catalysts, due to the deactivation, and this phenom‐
enon requires a regeneration process for its reuse, making the entire process for the conversion
complex. A scheme reaction for catalytic cracking was proposed by [59].

Catalyst Reference

Fe‐ZSM‐5, H‐Beta [9]

H‐ZSM‐5 [8, 9, 17, 32, 55]

K2CO3 [11, 17, 18, 31, 32]

Na2CO3 [11, 17, 18, 21, 23, 31, 32]

NaY [17, 31]

USY [17]

Si‐MCM‐41 [17, 31, 32]

Alumina [20]

ZSM‐5, Ni/ZSM‐5, Ni/h‐ZSM‐5 (12) [8]

Al2O3, MCM‐41 [11, 15]

SAPO‐5, SAPO‐11, MgAPO‐36 [7]

Silicalite, silica, y‐alumina, silica‐alumina [55]

Calcium oxide, magnesium oxide [55]

CaO [15, 18]

NaOH, Fe2O3 [18]

KOH [18, 22]

ZnO [18, 22]

CO3O4, MoO3, NiO, V2O5 [22]

Metallic oxides [25]

Zeolite REY [27]

K2O/Si‐MCM‐41, Mg‐MCM‐41 [31]

K2O/Mg‐MCM‐41 [31, 32]

Ba‐MCM‐41 [32]

Table 1. Main catalysts used.

2.3. Yields, properties and characterization

The yields of the products are strongly affected by the operational conditions. Table 2 shows
the range of temperature and residence time applied in published papers, presenting the
average product yields obtained in thermal [4–6, 9, 10, 13–15, 17, 18, 22, 24, 26, 31, 55] and
catalytic cracking [7, 9, 11, 15, 17, 18, 20, 21–23, 25, 27, 31, 55]. In thermal‐cracking processes,
the temperature range is higher than catalytic. One can also note that the yield of liquid and
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gas products tends to be a little higher in thermal cracking. On the other hand, the coke
formation is more favorable in the catalytic cracking.

Triglyceride's cracking

Temperature range (°C)

Thermal Catalytic

Max 600 550

Min 300 320

Residence time (s)

Thermal Catalytic

Max 1800 1800

Min 1 10

Yields average (%)

Liquid 63.20 ± 16.45 56.67 ± 20.55

Gas 28.77 ± 21.06 26.19 ± 15.68

Coke 8.22 ± 7.27 15.39 ± 13.01

Table 2. Average products yielding obtained with thermal and catalytic cracking of triglycerides.

The liquid fuels have fundamental importance in final energy consumption, especially due to
its energy density. So, in this way, most of the researches are being conducted in the way to
maximize the organic liquid product. No less important are the properties and the character‐
ization of this product. Table 3 presents average properties of the bio‐oil presented in the
literature for thermal [4, 5, 9, 10, 12–15, 18, 19, 22, 24, 31, 55] and catalytic cracking [7–9, 11, 15,
17, 18, 20–22, 55]. The elementary chemical composition for bio‐oil does not vary so much and
the sulfur content is low. The high heating value (HHV) is also comparable to the fossil fuels.
The acidity of the bio‐oil is higher for the thermal cracking compared to catalytic, but in both
cases, the bio‐oil requires a reduction in this property for processing and usage. The esterifi‐
cation reaction and reactive distillation were performed by [11] and [60] to reduce the acid
index.

The content of olefins in the liquid can also be problematic, once its content is associated with
poor stability, which may lead to gum or insoluble materials formation. To saturate the double
bonds, the hydrorefining process can be applied [61]. The direct hydrocracking also can be an
option [62–64].

Figure 3 presents typical chromatograms from two samples of bio‐oil produced through fast
pyrolysis of soybean oil and waste‐cooking oil. For comparison, the chromatograms of an
n‐alkane sample and an oil sample are shown together. The samples were injected at the
same conditions. The oil and bio‐oil samples are complex mixtures containing hundreds of
compounds and this turns difficult to determine the complete composition and physico‐
chemical properties.
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Properties of bio‐oil

Thermal Catalytic

Variable

Carbon (%) 75.15 ± 4.43 79.96 ± 5.58

Hydrogen (%) 11.46 ± 0.68 12.20 ± 0.85

Nitrogen (%) 0.29 ± 0.59 1.83 ± 0.50

Sulfur (%) 0.02 ± 0.03 0.24 ± 0.20

Oxygen (%) 13.07 ± 5.34 9.78 ± 4.96

Ash (%) 0.51 ± 0.70 0.02 ± 0.02

HHV (MJ/kg) 33.38 ± 15.34 40.75 ± 2.38

Density (kg/m3) 865.98 ± 22.87 858.25 ± 22.69

Water content (%) 1.39 ± 1.00 2.29 ± 1.48

Acid index (mg KOH/g) 132.08 ± 35.56 59.46 ± 26.74

Iodine index (chI2/g) 64.00 ‐

Hydrocarbon groups

Aliphatic (%) 3.70 ± 0.88 10.87 ± 6.46

Aromatic (%) 38.99 ± 15.41 36.73 ± 18.16

Oxygenated (%) 4.83 ± 0.74 14.86 ± 8.49

Unknown (%) 50.72 ± 14.96 29.54 ± 17.81

Table 3. Average properties of bio‐oil.

One way of characterizing these liquid fuels is the distillation curve, used to plot the true
boiling point (TBP) versus distilled volume fraction. In general, a simple distillation is
performed according to ASTM D86 and ASTM D1160 methods and data obtained are con‐
verted to TBP according to correlations outlined in [65]. Process simulators also can be used
for this conversion and to predict the thermophysical properties of the oil and its fractions [66].
The bio‐oil characterization using distillation curves applying the oil correlations was pre‐
sented by [34]. The authors showed that it is possible to use this method, but it requires more
studies to confirm the results.

A chemical characterization was performed by [37] in the distilled fractions of the bio‐oil
produced by [4]. The purified products, light bio‐oil and heavy bio‐oil, were obtained in the
range of the gasoline and diesel oil, respectively. The detailed hydrocarbon analysis (DHA)
performed in light fraction showed that it was composed by aromatics (16.86%), i‐paraffins
(8.31%), naphthenes (6.07%), olefins (26.56%), paraffins (4.48%), C14+ (5.3%), oxygenates
(0.06%), and unclassified (32.38%). The main composition of heavy bio‐oil was formed by
olefins, aromatics, and carboxylic acid residues. In a continuation of the study [60], samples of
the bio‐oil were submitted to a reactive distillation process to produce light and heavy bio‐oil
cuts, with lower acid index.
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Figure 3. GC‐FID chromatogram of n‐alkanes sample, an oil sample, bio‐oil from soybean oil, and a bio‐oil from waste‐
cooking oil.
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The gaseous products have great importance as liquids, once it has short hydrocarbons and a
high HHV and it can be fuel source for the thermal energy required by the endothermic
reaction. Table 4 presents the average composition of biogas from thermal [5, 10, 13, 55] and
catalytic cracking [7, 8, 17, 23, 55]. Using this average composition, the HHV is estimated in
46.6 MJ/kg (thermal cracking) and 46.3 MJ/kg (catalytic cracking). The high content of ethene
also makes this product interesting for petrochemical industries.

Biogas (v/v %)

Component Thermal Catalytic

CO 4.47 ± 3.58 6.02 ± 8.15

CO2 4.15 ± 2.74 4.42 ± 7.61

H2 1.88 ± 1.24 3.88 ± 5.68

CH4 13.40 ± 5.34 6.31 ± 4.61

C2H4 29.32 ± 3.12 12.69 ± 10.19

C2H6 9.64 ± 1.02 4.89 ± 2.91

C3H8 2.82 ± 2.53 6.89 ± 7.52

C4H10 10.16 ± 1.73 5.99 ± 11.55

Table 4. Average composition of the biogas produced from thermal and catalytic cracking.

2.4. Kinetics

One of the technical difficulties to scale up the process is the determination of the reaction
kinetics. Once the process has hundreds, maybe thousands of reactions, it is very difficult to
determine an accurate kinetic mechanism. In these cases, the first step is to use the lumping
method to propose simplified mechanisms. The lumping strategy consists in join groups of
products according to some similar property, the boiling range, for example. The works of
[67–69] presented the first kinetic lumped models for TAG's thermal cracking. Table 5 shows
the kinetic models proposed in the literature. The model proposed by [67] is simpler than the
other models once it has fewer lumps, but it can predict the solid fraction. The study of the
kinetic of cracking of TAGs is increasing and soon more models shall appear.

2.5. Challenges

The continuous availability of the feedstock is an issue that requires a complex logistic to solve
the high‐scale collection. In certain regions, staying close to animal‐rendering facilities can be
an option [70].

The industrial application of the thermal/catalytic‐cracking technology has some obstacles to
overcome [71]. The first is related to reactor design and scale‐up. With the improvement of the
kinetics, the simulation using computational fluid dynamics shall help to deal with this issue.
A short work presented by [72] deals with the simulation of TAG's thermal‐cracking reactor
aiming scale‐up studies.
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Kinetic‐lumped models

Mechanism Kinetic parameters Arrhenius parameters Refer‐

ence

Constant

rate 

(min‐1)

500°C  525°C  550°C  Activation ener‐

gy (J/mol) 

Frequency factor

(min‐1) 

k1

k2

k3

1.900E‐02 

1.900E‐02 

9.070E‐03

2.810E‐02 

2.810E‐02 

7.150E‐03

6.880E‐02

5.880E‐02 

3.380E‐03

5.84E+04 

5.14E +04 

4.47E+04

k10

k20

k30

2.20E+04

4.14E+03

4.73E+06

[67]

k1

k2

k3

1.780E‐02

5.670E‐03

1.730E‐03

3.680E‐02

5.970E‐03

2.740E‐03

4.740E‐02

7.810E‐03

3.050E‐03

4.51E+04

1.45E+04

2.62E+04

k10

k20

k30

9.79E+02

5.62E+00

1.01E+00

[67]

Constant

rate

(s‐1)

475°C 500°C 525°C Activation ener‐

gy (J/mol)

Frequency

factor (s‐1)

Reference

k1

k2

k3

k4

2.681E‐02

1.410E‐02

9.580E‐03

2.697E‐02

2.783E‐02

1.426E‐02

4.400E‐03

3.906E‐02

4.441E‐02

1.513E‐02

1.037E‐02

8.035E‐02

4.96E+04

6.97E+03

6.17E+03

1.08E+05

k10

k20

k30

k40

7.27E+01

4.29E‐02

1.98E‐02

8.76E+05

[68]

k1

k2

k3

k4

k5

k6

1.831E‐02

4.425E‐03

1.058E‐03

2.418E‐02

2.473E‐03

1.952E‐03

3.342E‐02

8.504E‐03

2.175E‐03

4.374E‐02

4.816E‐03

3.852E‐03

5.874E‐02

1.569E‐03

4.274E‐03

7.624E‐02

8.994E‐03

7.285E‐03

1.16E+05

1.26E+05

1.38E+05

1.14E+05

1.28E+05

1.31E+05

k10

k20

k30

k40

k50

k60

2.20E+06

2.63E+06

5.05E+06

2.20E+06

2.20E+06

2.63E+06

[69]

Table 5. Kinetic‐lumped models.
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The products upgrading is required also, especially to deal with the acid index and olefins
content. The acidity reductions, mainly caused by carboxylic acids, using the esterification
reaction and neutralization, are opportunities for this issue. The reduction of alkenes content
can be done through hydrotreatment reactions, widely used in oil refineries. The use of actual
sites for oil refining can be suitable for this biofuel production, once most of polishing processes
are present.

3. Conclusions

The thermal and/or catalytic‐cracking processes are a promising technique to produce
renewable source for hydrocarbon production. The product similarity with fossil fuels turns
its usage and development attractive. However, some obstacles such as feedstock availability,
reactor design, scale‐up, and products upgrading require more studies. The thermal/catalytic
cracking of triglycerides will not completely substitute the oil, but it can reduce our depend‐
ence and be a suitable environmental option.
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