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Abstract

In this chapter, a finite element formulation is proposed to study the natural frequencies
of double-walled carbon nanotubes modeled as, both, local and nonlocal Euler-Bernoulli
beams, coupled with van der Waals interaction forces. The formulation uses Galerkin-
weighted residual approach and employs Hermite cubic polynomial function to derive
the  linear  eigenvalue  problem.  Natural  frequencies  are  found  for  clamped-free,
clamped-clamped and simply supported-simply supported boundary conditions. The
results are in good agreement with the formulations found in the literature. The effect
of nonlocal factor on the natural frequencies of the system is found out by comparing
local  and nonlocal  results.  Additionally,  the universality of  the proposed model is
proven by application to a double-elastic Euler-Bernoulli beam. This formulation paves
way for Finite Element Method (FEM) analysis of multi-walled CNTs—either locally or
nonlocally.

Keywords: carbon nanotubes, Euler-Bernoulli beam, DWCNTs, finite element analy-
sis, nonlocal continuum mechanics, vibrations

1. Introduction

Carbon nanotubes are tubules of carbon, in the dimensional range of nanometre (in the order
of 10e−9 m), with atoms arranged in a way that gives them exceptional properties. The high
aspect ratio, the ratio of length to its diameter, and chirality are the factors that contribute to
the same. Carbon nanotubes are classified as single- and multi-walled depending on the
number of tubes held concentrically. A considerable amount of research has been dedicated
to the study of mechanical properties of both these types using experimental or theoretical
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methods. Theoretical methods involve the representation of C─C bonds as is, conveniently
named as atomistic modelling methods, or as continuous structures such as bar, beam and
shell. The latter is usually employed to study the vibrational properties as the use of atomistic
models require comparatively large computational time and effort, and are often accurate for
a particular time period in the loading cycle. The laws of continuum structures have been
found to be at the nanometre scale as well [1].

Continuum structures, by definition, consider the model to be continuous and ignore the inter-
atomic forces. Eringen and Edelen [2] and Eringen [3, 4] proposed a model that would connect
the lattice mechanics with the continuum mechanics, named as nonlocal continuum mechan-
ics. This is achieved by introducing nonlocal factors in the governing equations [5]. As will be
seen in the following sections, the introduction of these nonlocal factors have shown improved
description of the model. Peddieson et al. [6] extended the nonlocal continuum models to
nanotechnology and hence paved the way for these theoretical models to represent the
properties of nanomaterials with greater accuracy.

Finite element methods have been employed for analysis of continuum structures since 1950s,
as the numerical technique is very adaptable in terms of complex geometries and boundary
conditions. The method involves the division of the structure into number of ‘elements’ and
using appropriate interpolations functions to express the approximate solutions. The eigen-
value problem hence achieved is solved for system’s natural frequencies and mode shapes.

The study of vibrations of carbon nanotubes, modeled as continuum models has gained
considerable attention with beams and shells being used extensively. The elastic model has
been presented by Ru [7] to study the column buckling of multi-walled carbon nanotubes,
where the adjacent tubes were presented to be interacting through van der Waals interaction
forces. Ru [8] also studied the transverse vibrations of single- and multi-walled carbon
nanotubes by considering them as Euler-Bernoulli beams. Sufficient attention was given to the
effect of van der Waals interaction forces on the vibrational frequency. Yoon et al. [9] studied
the non-coaxial vibrational modes of multi-walled carbon nanotubes embedded in an elastic
medium and deduced that the concentric geometry of carbon nanotubes will be distorted at
ultrahigh frequencies. Nonlinear free vibrations of multi-walled carbon nanotubes embedded
in an elastic medium were studied by Fu et al. [10]. The relation between nonlinear free
vibration frequency, stiffness of the surrounding medium and van der Waals interaction forces
was discussed and amplitude curves presented. Vibrational characteristic analysis of double-
walled carbon nanotube (DWCNT) with simply supported boundary condition using multiple
Euler-Bernoulli beam model was investigated by Natsuki et al. [11]. It was seen that the
amplitudes of inner and outer tubes are non-coaxial and in opposite direction. Natsuki also
studied DWCNTs embedded in elastic medium, represented by Winkler spring model, for free
supported boundary condition [12] and DWCNTs with different lengths for inner and outer
tubes [13]. Xu et al. [14] studied the vibrations of DWCNTs with nonlinear van der Waals
interaction forces and concluded that it does not affect the coaxial free vibrations. Elishakoff
and Pentaras [15, 16] studied the natural frequencies of DWCNTs and TWCNTs using
approximate methods, like Bubnov-Galerkin and Petrov-Galerkin and exact solutions. The
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coupling between the concentric tubes is considered as van der Waals interaction forces, in
both the cases.

Nonlocal continuum mechanics approach has also been used extensively in the recent years.
Constitutive relations of nonlocal elasticity to be used in analysis of carbon nanotubes for Euler-
Bernoulli, Timoshenko beams and cylindrical shells were presented by Wang and Wang [17].
Extensive attention was given to the shear stress and strain relation for the Timoshenko beams.
Wang [18] also studied the wave propagation in carbon nanotubes using nonlocal Euler-
Bernoulli and nonlocal Timoshenko beams and concentrated on the effect of nonlocal factor
on the mechanical behaviour of carbon nanotubes. Yoon et al. [19] also performed a similar
study concluded that the rotary inertia and shear deformation play a significant role when the
measured natural frequency is much closer to the critical frequency. One more such study was
performed by Wang and Varadan [20], who developed explicit frequency solutions for both
single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotube (DWCNTs)
on the basis of nonlocal continuum mechanics and employed both the beam theories. The ratio
of local and nonlocal frequencies is used to study the effect of nonlocal factor. Arash and Wang
[21] reviewed various studies on the nonlocal continuum theory for carbon nanotubes and
graphene sheets. They also compared the nonlocal models to the local equivalents. Reddy [22]
reformulated governing equations, based on nonlocal theory, and presented analytical
solutions for bending, buckling and vibrations of Euler-Bernoulli, Timoshenko, Reddy and
Levinson beams. Further, Reddy and Pang [23] also presented the governing equations of
Euler-Bernoulli and Timoshenko beams, based on nonlocal theory, specifically for carbon
nanotubes and used these equations to study the vibrations, buckling and static bending.
Murmu and Pradhan [24] employed the differential quadrature (DQ) method to study the
thermo-mechanical vibration of SWCNT embedded in an elastic medium, represented as
Winkler-type elastic foundation, using nonlocal elasticity theory. It was found that the
difference between local and nonlocal frequencies is particularly high for low temperature
changes. Narendar et al. [25] studied the wave propagation in SWCNTs, under magnetic field,
using nonlocal Euler-Bernoulli beam theory. De Rosa and Lippiello [26] analysed the free
vibration of DWCNTs, modeled as nonlocal Euler-Bernoulli beams, using cell-discretization
method (CDM) and a semi-analytical Rayleigh-Schmidt method. A rare study of forced
vibrations of carbon nanotubes was performed by Karaoglu and Aydogyu [27] using both local
and nonlocal Euler-Bernoulli beam models, for both SWCNTs and DWCNTs. Khosrozadeh
and Hajabasi [28] studied the free vibrations of DWCNTs embedded in an elastic medium with
nonlinear interlayer van der Waals interaction forces using nonlocal Euler-Bernoulli beam
model. Fang et al. [29] performed a similar study for DWCNTs embedded in elastic medium
considering it to be Winkler model.

Timoshenko models have also been used extensively as it considers the rotational inertia and
transverse shear. Wang et al. [30] considered it and studied the free vibration of MWCNTs
using differential quadrature (DQ) method to solve the governing equations. It is seen that the
frequencies are over-predicted by Euler-Bernoulli model when the aspect ratio is small. Yang
et al. [31] studied the nonlinear free vibration of SWCNT with the von Karman geometric
nonlinearity considering them as nonlocal Timoshenko beams. Nonlinear free vibration of

On Finite Element Vibration Analysis of Carbon Nanotubes
http://dx.doi.org/10.5772/65358

71



embedded DWCNTs modeled as nonlocal Timoshenko beams was presented by Ke et al. [32]
where again differential quadrature (DQ) technique was employed, and the surrounding
elastic medium was represented by spring-based Winkler model. Pradhan [33] presented a
finite element model using nonlocal Timoshenko beams and Galerkin weighted residual
technique. The buckling of carbon nanotubes using Timoshenko model was studied by Zhang
et al. [34], and various studies on buckling were extensively reviewed by Wang et al. [35] and
Shima [36].

A theory similar to nonlocal theory was presented by Park and Gao [37] using modified couple
stress theory where internal material length parameter is considered and a variational model
is presented basing on minimum total energy potential for Euler-Bernoulli beam model. It
found a relation between deflections and beam thickness. Another nonlocal theory, for
nanobeams, was presented by Thai [38] in which the governing equations were derived using
Hamilton’s principle and analytical solutions were presented. The results were found to be
comparable to Timoshenko and Reddy beam theories even though the formulation is similar
to that of Euler-Bernoulli theory. A generalized nonlocal beam theory, to study properties of
nanobeams, was presented by Aydogdu [39]. Various beam models were studied as a special
case of this beam theory for simply supported nanobeams, and the numerical results were
found to be stand valid. Lu et al. [40] compared various nonlocal beam models that are used
for carbon nanotubes and made some interesting observations.

Various variational techniques have also been employed with nonlocal theories to study the
vibrational behaviour of carbon nanotubes. Adali [41] employed a semi-inverse method and
presented one such model. Alshorbagy et al. [42] developed a nonlocal finite element for static
analysis of nanobeams. Eltaher et al. [43] analysed the vibrations of nonlocal Euler-Bernoulli
nanobeams using finite element method. A similar study was performed by Phadikar and
Pradhan [44], where finite element analysis of nanoplates and nanobeams was presented. All
these models are found to be efficient for SWCNTs. Ansari and Hemmatnezhad [45] studied
the nonlinear vibrations of MWCNTs embedded in an elastic medium using variational
iteration method. A finite element analysis of embedded Timoshenko beam was also per-
formed by Hemmatnezhad and Ansari [46], where carbon nanotubes were modeled as
nonlocal beam using statically exact shape functions to achieve an eigenvalue problem.
Shakouri et al. [47] studied the transverse vibrations of DWCNTs modeled as nonlocal Euler-
Bernoulli beams using Galerkin method. Dinçkal [48], more recently, proposed a finite element
model that uses exact dynamic shape functions (trigonometric in nature) to form the frequency-
dependant dynamic stiffness matrix and hence study the free vibrations of carbon nanotubes,
modeled as both nonlocal Euler-Bernoulli and Timoshenko beams. Ehteshami and Hajabasi
[49] and Zhang et al. [50] performed an analytical study and presented exact solutions for
finding natural frequencies of DWCNTs modeled as nonlocal Euler-Bernoulli beams. The
results of both these studies have been considered as benchmark to verify the results obtained
in the current study. This chapter exploits the generality of the FEM technique to obtain the
natural frequencies of DWCNTs, coupled with van der Waals interaction forces. The model
has been proposed and applied to both local (classical) Euler-Bernoulli and nonlocal Euler-
Bernoulli beam cases. The results are compared with the values presented in the literature.
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2. Formulation

This section gives the formulation for the proposed models. Section 2.1 would present the
formulation for local Euler-Bernoulli beam and Section 2.2 for nonlocal Euler-Bernoulli beam.
As will be seen ahead, the formulation uses Galerkin weighted residual method and Hermite
cubic polynomial functions, in both the cases in interest of generality.

2.1. DWCNTs based on local Euler-Bernoulli beam

Euler-Bernoulli beam, also known as the classical beam, is known to efficiently represent a
carbon nanotube, in the case when the aspect ratio (�/� ratio) is sufficiently high. The governing
equation for an Euler-Bernoulli beam is given by [51]:

( )''''EIw Aw p xr+ =&& (1)

where �� is the bending rigidity, � is the displacement, � is the mass density, � is the cross-
sectional area, and the derivatives of transverse displacement with respect to beam length and
time are represented by prime (′) and a dot (.), respectively. Ru [8] used the multiple beam
model to derive the governing equations for DWCNTs. It is taken as two single-walled carbon
nanotubes coupled by an interaction force, represented by van der Waal’s coefficient, which is
estimated as:
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where � and � are the van der Waal’s radius and Lennard-Jones potential’s well depth, � = 0.142
—the C─C bond length and �1 and �2 are the inner and outer radius, respectively, whereas
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The governing equations for a DWCNT are [8]:

''''
1 1 1 1 1 1 2 1

''''
2 2 2 2 2 2 2 1

E I w Aw cw cw

E I w A w cw cw

r

r

+ = -

+ = - +

&&

&&
(5)

where the subscripts 1, 2 for �, �, �, �, � represent the inner and outer tubes, respectively. Simple
harmonic motion is assumed, i.e., �� �, � = ������ is assumed to remove time dependency
from Eq. (5) and � = 1, 2 to represent inner and outer carbon nanotube, respectively, and � and� represent the circular frequency and time. Using simple harmonic motion in governing
equations modifies them as:
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Following Galerkin weighted residual method, weight functions are introduced as ��1, 2 and
the transverse displacements continue to be represented by �1, 2. The weighted-integral form
of the governing equations is given as:
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The weak integral form of the governing equations is eliminated by performing integration by
parts, twice on Eq. (7), as given below:
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The boundary terms in Eq. (8) which vanish with the application of system boundary condi-
tions, represent the shear force and moment of the beams are given by � = ������′′′ and� = �����′′ and remain similar to those of a classical Euler-Bernoulli beam. The domain length
of the DWCNT is now discretized with four nodes and two Degrees of Freedom (DOF) per
node (one transverse displacement and one slope per node) such that:
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The present work uses Hermite type polynomial approximations to derive the finite element
formulation such that the interpolation function is given as:

( ) ( )
4

1
i i iW x N x W=å (10)

where ��(��)  is a row vector of cubic shape functions, of the beam elements given by:
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2.2. DWCNTs based on nonlocal Euler-Bernoulli beam

The concept of nonlocality, which is accounted for with the introduction of a nonlocal or a
small scale factor was extended to the field of nanotechnology by Peddieson et al. [6] where
the author applied it to Euler-Bernoulli beam model. The small scale effect or the nonlocal
parameter is given as � = �0� to consider the stress at one point of the system as the function
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of strain at all points of the system. This is achieved with �0 being the material constant (to be

determined for each material) and � being the length of C─C bond. Subsequently, researchers
like Ehteshami and Hajabasi [49], Zhang et al. [50] and Wang and Varadan [20] developed the
model for DWCNTs using nonlocal Euler-Bernoulli beam model. The derivation of governing
equations requires the classic Hooke’s law for uniaxial stress state to be modified, taking
nonlocal elasticity into consideration, as:

( )
2

2
0 2e a E

x
ss e¶

- =
¶

(12)

with � and � being axial stress and strain, respectively. The equations of motion, perpendicular
to x axis, are given by:

2

2 0; 0S w MA V
x t x

r¶ ¶ ¶
- = - =

¶ ¶ ¶
(13)

where � is the mass density of material, � is the cross-sectional area, � is deflection of the beam
and � and � denotes the bending moment and shear force, respectively. Using these in the
moment equilibrium conditions, results in the governing equation for nonlocal Euler-Bernoulli
beam, given as:

4 2 4 2
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For nonlocal DWCNTs, the governing equations are derived to be [20, 49, 50]:
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The solution of the equations is in the form �� �, � = ������, similar to the local Euler-Bernoulli
formulation. The time dependency is removed by considering the transverse displacement
with respect to time as circular frequency, �2:

'''' 2 2 2 '' 2 '' 2 ''
1 1 1 1 1 1 1 2 1 2 1

'''' 2 2 2 '' 2 '' 2 ''
2 2 2 2 2 2 2 1 2 1 2

0
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(16)

To maintain uniformity in mathematical modelling with the formulation proposed for local
Euler-Bernoulli model, Galerkin weighted residual model is used for FEM, with ��� taken as
weighted residual. The weak integral form of governing equations takes the form:
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Integration by parts is performed on the above set of equations once, and the weak form
vanishes with the application of system boundary conditions,
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The resulting internal shear forces for both the beams are given as:
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and the resultant bending moments are given as:
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Integration by parts is performed once again on the first terms in Eq. (18) and after rearranging
for clarity, the following set of equations is obtained:
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Using Hermite cubic polynomial functions, given in Eq. (11), the finite element model is
developed. The element mass and stiffness matrices for both the local and nonlocal scenarios
are explicitly presented in the Appendix A. An FEM code in MATLAB solves the linear
eigenvalue problem which is given as:

( )2det 0K Mw- = (22)

where � represents global stiffness matrix and � represents the global mass matrix, respec-
tively, and is achieved after assembly. Table 1 gives the element matrices �� and ��, which are

to be assembled to form the global matrices for both local and nonlocal cases.

Local Euler-Bernoulli beam Nonlocal Euler-Bernoulli beam�� = �1+ �3 −�4−�3 �2+ �4 �� = �1+ �3+ �5 − �4+ �6− �3+ �5 �2+ �4+ �6
�� = �1 00 �2 �� = �1+�3 00 �2+�4
Table 1. Elemental matrices for local and nonlocal DWCNTs modeled as Euler-Bernoulli beams.
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3. Results and discussion

The robustness and generality of proposed FEM model is demonstrated by its application to
a double-elastic Euler-Bernoulli beam and then to carbon nanotubes modeled as Euler-
Bernoulli beam, both locally and nonlocally. Natural frequencies are calculated for clamped-
free, clamped-clamped and simply supported-simply supported boundary conditions. The
parameters of the local double elastic Euler-Bernoulli beam are taken as:

3 2 2 2
1 2 1 2 1 2

4 4
1 2

1 1 1 m 2 m
1 m 2 m 10; 0.1 1 m
kg m E E N m A A

I I c L
r r

m
= = = = = =

= = = = =

Boundary conditions [14] Present study Error percentage
C─F 3.52 3.52 0.01
C─C 22.37 22.37 0
S─S 9.87 9.87 0

Table 2. Non-dimentionalized natural frequencies of a local double-elastic Euler-Bernoulli beam.

These parameters are so selected that the double beam replicates the geometry of carbon
nanotubes, i.e., both are concentric and are coupled with an interaction forces between the
walls. The natural frequencies of the double-elastic system, in this chapter, are normalized
using � = ��2 ��/�� where � = �1+ �2 and � = �1+ �2. The values presented by the proposed
model converge at about five elements, but the data tabulated, for all cases, are taken for 10
elements, unless mentioned otherwise. The non-dimentionalized natural frequencies for three
classic boundary conditions are given in Table 2.

Boundary conditions [50] Present study Error percentage
C─F 3.45 3.44 −0.54
C─C 20.23 21.10 4.38
S─S 9.42 9.42 0

Table 3. Non-dimentionalized natural frequencies of a nonlocal double-elastic Euler-Bernoulli beam.

The percentage error has been calculated by ((approximate−exact)/exact) × 100 in this study.
These values are compared to the first natural frequency obtained using the analytical solutions
found in Xu et al. The values are in good agreement and hence the proposed model is found
to be efficient to find the natural frequencies of local double-elastic Euler-Bernoulli beam. The
applicability of the proposed nonlocal model is demonstrated by the values in Table 3. It is to
be noted that the values are presented for a single value nonlocal factor, where � = 0.1, and it
can be confirmed that � = 0 would give the same values as presented in Table 1 as that would
reduce the nonlocal formulation to local one. The values presented in Table 1 are compared
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to the values obtained using the beam parameters in analytical solutions provided by Zhang
et al. [50]. It can be seen the error percentages are small hence validating the proposed model.

Table 4 gives the error percentage between local and nonlocal double-elastic Euler-Bernoulli
beam when �/� = 10. This error helps to measure the effect of nonlocal factor on the natural
frequencies of double-elastic Euler-Bernoulli beams. It is seen that the values obtained using
nonlocal model is less than that obtained using local double-elastic Euler-Bernoulli model. This
can be attributed to the presence of a nonlocal factor that considers the strain at one point to
be function of all the points in the body.

Boundary conditions Local Nonlocal Error percentage

C─F 3.52 3.44 2.25

C─C 22.37 21.10 5.65

S─S 9.87 9.42 4.60

Table 4. Error percentage between natural frequencies of local and nonlocal double-elastic Euler-Bernoulli beam.

It is concluded that a novel double-elastic Euler-Bernoulli beam FEM model has been pro-
posed, and its veracity established for both local and nonlocal cases, the same model will now
be applied to carbon nanotubes with the parameters used in Xu et al. [14] and Elishakoff and
Pentaras [15], given below:

3
1 2 1 2

0

1, 1,

2, 2,

2.3 g/cm 1 Tpa
71.11 GPa 0.82; 0.142 nm

(inner radius, inner tube) 0.18 nm (outer radius, inner tube) 0.52 nm
(inner radius, outer tube) 0.53 nm (outer radius, outer tube) 0.87 nm
i o

i o

E E
c e a

r r
r r

r r= = = =
= » =

= =
= =

Boundary conditions [14] Present study Error percentage
C─F 0.16 0.16 0.01

C─C 1.06 1.06 0

S─S 4.67 4.67 0

Table 5. Natural frequencies of a local DWCNTs modeled as Euler-Bernoulli beam (1012 rads/s).

The natural frequencies of a local DWCNT, modeled as Euler-Bernoulli beams, are presented
in Table 5. The nonlocal factor � is introduced as a product of material constant and charac-
teristic length. Zhang et al. calculated the material constant as the ratio of local result to nonlocal
result for axial buckling strain of SWCNT and arrived at a value �0 ≈ 0.82, and the characteristic

length is taken to be the length of C─C bond i.e., � = 0.142 nm. The natural frequencies
calculated using the proposed model are compared to the values obtained using the analytical
formulation presented in Xu et al. [14]. The error percentages in Table 5 confirm that the

Perusal of the Finite Element Method80



proposed formulation holds valid even at nanoscale level. Further, negative error percentage
denotes that the values obtained using the present FEM model are a little higher than those
presented by Ehteshami and Hajabasi [49] (see Table 6).

Boundary conditions [49] [50] Present study Error percentage 1 Error percentage 2

C─F 0.166 0.16 0.16 0 0.01

C─C 1.06 1.06 1.06 −0.04 0.04

S─S 0.467 0.46 0.46 −0.03 0

Table 6. Natural frequencies of a nonlocal DWCNT modeled as Euler-Bernoulli beam (1012 rads/s).

Boundary conditions Local Nonlocal Error percentage

C─F 0.16 0.16 0.02

C─C 1.06 1.06 0.04

S─S 0.46 0.46 0.03

Table 7. Error percentage between natural frequencies of local and nonlocal DWCNTs modeled as Euler-Bernoulli
beam (1012 rads/s).

1 �/� Local Nonlocal Error percentage

C─F 20 0.41 0.41 0

C─C 2.65 2.65 0.01

S─S 1.17 1.17 0

C─F 40 0.10 0.10 0

C─C 0.66 0.66 0

S─S 0.29 0.29 0

C─F 60 0.04 0.04 0

C─C 0.29 0.29 0

S─S 0.13 0.13 0

C─F 80 0.02 0.02 0

C─C 0.16 0.16 0

S─S 0.07 0.07 0

Table 8. Error percentage between natural frequencies of local and nonlocal DWCNTs modeled as Euler-Bernoulli
beam with different �/� ratios (1012 rads/s).

Employing the FEM model proposed in Section 1.2, the natural frequencies of nonlocal
DWCNTs modeled as Euler-Bernoulli beam are given in Table 6. The natural frequencies thus
obtained are compared to the values obtained using the analytical formulations given by
Ehteshami and Hajabasi [49] Zhang et al. [50]. The error percentages, between present study
and these two studies, are presented as error percentage 1 and 2, respectively. The effect of
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nonlocal factor on the natural frequencies is best understood when the error percentage
between local results and nonlocal results are compared, presented in Table 7. It will be noted
that the error percentage is very small compared to the error percentage reported in Table 4.
This difference is attributed to the value of nonlocal factor—the double-elastic beam model
considers it to be between 1 and 2 and DWCNTs have it in the order of e−10, to be exact1.1644e − 10. It is also seen (Table 8) that as �/� ratio is increased, the natural frequency and
the error percentage, between local and nonlocal results, decrease, i.e., as the aspect ratio
increases, the effect of nonlocal factor decreases.

It is noted that though many tables in this chapter may have identical values in the columns
that are being compared, the indicated percentage error is a nonzero number, or on the
contrary, the columns being compared might not have identical values, but the indicated error
percentage is zero. A justification for these values stems from the large magnitude of the
numbers reported. For the sake of uniformity, we have rounded off the numbers to 2 decimal
points.

4. Conclusion

This chapter proposed FEM formulations to find the natural frequencies of DWCNTs modeled
as, both, local and nonlocal Euler-Bernoulli beams, coupled with van der Waals interaction
forces. It uses Galerkin weighted residual approach and Hermite cubic polynomial functions
to form the stiffness and mass matrices. The formulation is applied to double-elastic Euler-
Bernoulli beam and to DWCNTs, to check its generality. The natural frequencies thus obtained
are in agreement with those of the formulations found in the literature. It is seen that as the�/� ratio of the system increases, the difference between local and nonlocal formulations
reduces. It has also been observed that difference between local and nonlocal system is
dependent on the magnitude of the nonlocal factor considered. These formulations would let
researchers apply FEM to multi-walled CNTs in order to better understand their behaviour.

Nomenclature

�, length of the C─C bond�, cross-sectional area�, van der Waal’s interaction coefficient�, Young’s Modulus�, second area moment of inertia�, bending moment�, shape functions
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�, time�, shear force�, lateral displacement�, amplitude�, length of the beam��, weighting function�, nonlocal factor�, mass density�, circular frequency�0, material constant

Appendix A. Element matrices

�1 =
12�1�1�3 6�1�1�2 −12�1�1�3 6�1�1�24�1�1� −6�1�1�2 2�1�1�

��� 12�1�1�3 −6�1�1�24�1�1�

�11�11�12�12
�3 =

156�420 22��420 54�420 −13��4204�2�420 13��420 −3�2�420��� 156�420 −22��4204�2�420

�11�11�12�12

�2 =
12�2�2�3 6�2�2�2 −12�2�2�3 6�2�2�24�2�2� −6�2�2�2 2�2�2�

��� 12�2�2�3 −6�2�2�24�2�2�

�21�21�22�22
�4 =

156�420 22��420 54�420 −13��4204�2�420 13��420 −3�2�420��� 156�420 −22��4204�2�420

�21�21�22�22
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�5 =
6�2�5� �2�10 −6�2�5� �2�102��2�15 −�2�10 −�2��30��� 6�2�5� −�2�102��2�15

�11�11�12�12
�6 =

6�2�5� �2�10 −6�2�5� �2�102��2�15 −�2�10 −�2��30��� 6�2�5� −�2�102��2�15

�21�21�22�22

�1 =
156�1�420 22�2�1420 54�1�420 −13�2�14204�3�1420 13�2�1420 −3�3�1420

��� 156�1�420 −22�2�14204�3�1420

�11�11�12�12
�3 =

6�2�15� �2�110 −6�2�15� �2�1102��2�115 −�2�110 −�2�1�30
��� 6�2�15� −�2�1102��2�115

�11�11�12�12

�2 =
156�2�420 22�2�2420 54�2�420 −13�2�24204�3�2420 13�2�2420 −3�3�2420

��� 156�2�420 −22�2�24204�3�2420

�21�21�22�22
�4 =

6�2�25� �2�210 −6�2�25� �2�2102��2�215 −�2�210 −�2�2�30
��� 6�2�25� −�2�2102��2�215

�21�21�22�22
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