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1. Introduction     

The advent of fuzzy logic controllers has inspired the allocation of new resources for the 
possible realization of more efficient methods of control. In comparison with traditional 
controller design methods requiring mathematical models of the plants, one key advantage 
of fuzzy controller design lies in its model-free approach. Conventionally, the selection of 
fuzzy if-then rules often relies heavily upon the substantial amounts of heuristic observation 
to express the strategy's proper knowledge. It is very difficult for human experts to examine 
all the input-output data from a complex system, and then to design a number of proper 
rules for the fuzzy logic controllers. Many design approaches for automatic fuzzy rules 
generation have been developed in an effort to tackle this problem (Lin & Lee, 1996). The 
neural learning method is one of them. In (Miller et al., 1990), several neural learning 
methods including supervised and reinforcement based control configurations are studied. 
For many control problems, the training data are usually difficult and expensive, if not 
impossible, to obtain. Besides, many control problems require selecting control actions 
whose consequences emerge over uncertain periods for which training data are not readily 
available. In reinforcement learning, agents learn from signals that provide some measure of 
performance which may be delivered after a sequence of decisions being made. Hence, 
when the above mentioned control problems occur, reinforcement learning is more 
appropriate than  supervised learning. 
Genetic algorithms (GAs) are stochastic search algorithms based on the mechanics of natural 
selection and natural genetics (Goldberg, 1989). Since GAs do not require or use derivative 
information, one appropriate application for their use is the circumstance where gradient 
information is unavailable or costly to obtain. Reinforcement learning is an example of such 
domain. The link of GAs and reinforcement learning may be called genetic reinforcement 
learning (Whitley et al., 1993). In genetic reinforcement learning, the only feedback used by 
the algorithm is the information about the relative performance of different individuals and 
may be applied to reinforcement problems where the evaluative signals contain relative 
performance information. Besides GAs, another general approach for realizing 
reinforcement learning is the temporal difference (TD) based method (Sutton & Barto, 1998). 
One generally used TD-based reinforcement learning method is Adaptive Heuristic Critic 
(AHC) learning algorithm. AHC learning algorithm relies upon both the learned evaluation 
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network and the learned action network. Learning of these two networks is based on 
gradient-descent learning algorithms with errors derived from internal and external 
reinforcement signals. In comparison with the GAs, one disadvantage of AHC learning 
algorithms is that they usually suffer the local minimum problem in network learning due 
to the use of the gradient descent method. Overall performance comparisons between TD-
based reinforcement learning methods, including AHC and Q-learning, and GAs are made 
in (Whitley et al., 1993; Moriarty & Miikkulainen, 1996). The results show that GAs achieve 
better performance both in CPU time and number of control trials. In the past, some studies 
on the combination of GAs with TD-based reinforcement learning methods were proposed 
(Lin & Jou, 1999; Juang, 2005a). These studies show that the combination approach achieves 
better performance than using only GAs or the TD-based method.  
Many approaches to fuzzy system design using GAs have been proposed (Cordón et al., 
2004). If we distinguish them by individual representation in GAs, the major ones include 
Pittsburgh, Michigan, and the iterative rule learning (IRL) approach (Cordón et al., 2001). In 
the Pittsburgh approach, each individual represents an entire fuzzy rule set. A population of 
candidate rule sets is maintained by performing genetic operators to produce new 
generations of rule sets. Most GA-based fuzzy controller design methods belong to this 
approach (Karr, 1991; Homaifar & McCormick, 1995; Shi et al., 1999; Belarbi & Titel, 2000; 
Chung et al., 2000; Juang, 2004; Chou, 2006). In (Karr, 1991), Karr applied GAs to the design 
of the membership functions of a fuzzy controller, with the fuzzy rule set assigned in 
advance. Since the membership functions and rule sets are co-dependent, simultaneous 
design of these two approaches would be a more appropriate methodology. Based upon this 
concept, many researchers have applied GAs to optimize both the parameters of the 
membership functions and the rule sets. Differences between the approaches depend mainly 
on the type of coding and the way in which the membership functions are optimized. The 
disadvantage of this approach is the computational cost, since a population of rule set has to 
be evaluated in each generation. Also, the dimension of search space increases significantly, 
making it substantially difficult to find good solutions. In the Michigan approach, each 
individual of the population represents a single rule and a rule set is represented by the 
entire population. All researches in (Valenzuela-Rendon, 1991; Bonarini, 1993; Furuhashi et 
al., 1995) belong to this approach. As the evolutionary process is applied to the individual 
rule base, this approach invariably leads to consideration of both cooperation and 
competition. Obviously, it is difficult to obtain a good cooperation among the fuzzy rules 
that compete with each other. To solve this cooperation versus competition problem, a 
complex credit assignment policy is required, which is a disadvantage of this approach. This 
credit assignment task becomes more difficult especially for controller design based upon 
reinforcement learning problems, where the reinforcement signal is available after a long 
sequence of control actions. Besides, if the rule number in the designed fuzzy system is 
small, the small rule set in the population may easily converge to a local optimum and 
degrade the search speed. Like the Michigan approach, in IRL, each individual represents a 
single rule. However, in contrast to the former, only the best rule is adopted and added to 
the rule set in every GA run. The process is run several times to obtain the complete rule set. 
The IRL approach is considered to design genetic processes for off-line inductive learning 
problems and is not suitable to the controller design problem considered here.  
Recently, the adoption of coevolutionary GAs for fuzzy system design has also been 
proposed. In GAs, coevolution refers to the simultaneous evolution of two or more species 
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with coupled fitness (Zhao, 1998; Paredis, 1995). Coevolution may be performed at the 

population level (Potter et al., 1995; Pena# -Reyes & Sipper, 2001) or at the individual level 

(Juang et al., 2000). The idea of coevolutionary GA is similar to the Michigan approach. The 

cooperative coevolutionary GAs (Potter & DeJong, 2000; Pena# -Reyes & Sipper, 2001) and 

Symbiotic GAs (Moriarty & Miikkulainen, 1996; Moriarty & Miikkulainen, 1998; Juang et al., 
2000; Juang, 2005b; Lin & Xu, 2006) are of this type. In (Moriarty & Miikkulainen, 1996; 
Moriarty & Miikkulainen, 1998), Symbiotic Adaptive Neuro-Evolution (SANE) and 
hierarchical SANE were proposed for neural networks design. In (Juang et al., 2000), a 
Symbiotic-Evolution-based Fuzzy Controller (SEFC) was proposed and the performance of 
SEFC is shown to be better than SANE. In (Juang, 2005b), a coevolutionary GA with divide-
and-conquer (CGA-DC) technique was proposed. The CGA-DC not only performs a GA 
search on separate fuzzy rules, but also on a global fuzzy network simultaneously. 
Therefore, the performance of CGA-DC is better than SEFC. This chapter extends the idea of 
CGA-DC to both feedforward and recurrent fuzzy systems design, and the design method is 
called hierarchical SEFC (HSEFC). 
Besides GAs, another factor that may influence fuzzy controller performance is its structure. 

Depending on the property of a controlled plant, different types of fuzzy controller 

structures are used in this chapter. A feedforward fuzzy controller is designed for a static 

plant. For a dynamic plant, whose output depends upon either previous states or control 

inputs or both, a recurrent controller should be a better choice. To apply a feedforward 

controller to this type of plant, we need to know the exact order of the plant in advance, and 

the inclusion of the past values to the controller input increases the controller size. Several 

recurrent fuzzy systems have been proposed (Zhang & Morris, 1999; Juang & Lin, 1999; Lee 

&. Teng, 2000; Juang, 2002). The performance of these systems has been demonstrated to be 

superior to that of recurrent neural networks. Based on this observation, a recurrent fuzzy 

controller should be a better choice compared to a recurrent neural controller under genetic 

reinforcement learning. 

This Chapter introduces feedforward and recurrent fuzzy controllers design using HSEFC. 
For a static plant control problem under reinforcement learning environment, HSEFC for 
feedforward fuzzy controller design (HSEFC-F) is introduced, while for a dynamic plant, 
HSEFC for recurrent fuzzy controller (HSEFC-R) is proposed. In HSEFC-F, two populations 
are created. One of the populations is for searching the well-performed local rules, and each 
individual in the population represents only a fuzzy rule. Within the other population, each 
individual represents a whole fuzzy controller. The objective of the population is to search 
the best fuzzy system participating rules selected from the rule population, and the 
relationship between each rule is cooperative. Concurrent evolution of the local-mapping 
and global-mapping stages increases the design efficiency. With the above techniques, 
HSEFC-F performs an efficient fuzzy controller design task with a small population size. 
HSEFC-R is applied to the design of a recurrent fuzzy controller obtained by adding 
feedback structures into the feedforward fuzzy systems. In the local-mapping stage, each 
recurrent fuzzy rule is divided into two sub-rules, one representing a spatial mapping and 
the other doing a temporal mapping. These two sub-rules are considered as two distant 
species, and two populations are created for each sub-rule search, which is a technique 
based on the divide-and-conquer concept. In the global-mapping search stage, the third 
population is created to seek the best combination of spatial sub-rules, temporal sub-rules or 
both. 
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This chapter is organized as follows. Section 2 describes the types and functions of the fuzzy 

controller to be designed, including feedforward and recurrent fuzzy controllers. Section 3 

describes the concepts of symbiotic evolution for fuzzy systems. Section 4 introduces HSEFC 

for fuzzy controller design, including HSEFC-F and HSEFC-R. Section 5 presents simulation 

results, where HSEFC-F is applied to control a cart-pole balancing system and HSEFC-R is 

applied to control a dynamic system with delays. Comparisons with SEFC for the same task 

are also made in this section. The conclusions are summarized in the last section. 

2. Fuzzy controller 

Control Systems represent an important application for reinforcement learning algorithms.   

From the perspective of controller learning, since GAs only require the appropriate 

evaluation of the controller performance to yield the fitness values for evolution, they are 

suitable for fuzzy controller design under reinforcement learning problems. 

2.1 Feedforward fuzzy controller 

Several types of fuzzy systems have been proposed depending on the types of fuzzy if-then 

rules and fuzzy reasoning. In this chapter, each rule in the feedforward fuzzy controller is 

presented in the following form: 

 Rule  i  :   IF  
1
( )x t   is  

1i
A  And … And ( )

n
x t  is 

in
A   Then  ( 1)u t +  is 

i
b   (1) 

where jx  is the input variable, u is the control output variable, ijA  is a fuzzy set, and ib  is 

a fuzzy singleton. For a fuzzy set 
ijA , a Gaussian membership function with 

 
2

( ) exp{ ( ) }
j ij

ij j

ij

x m
M x

σ

−
= −   (2) 

is used, where ijm  and ijσ  denote the mean and width of a fuzzy set ijA , respectively. In 

the fuzzification process, crisp input 
j

x  is converted into a fuzzy singleton and is mapped 

to the fuzzy set 
ij

A  with degree ( )
ij jM x . In the inference engine, the fuzzy AND operation 

is implemented by the algebraic product in fuzzy theory. Given an input data set 

1
( , ..., )

n
x x=x , the firing strength ( )

i
μ x of rule i  is calculated by 

 
2

11

( ) exp{ ( ) }

n n

j ij

i ij

jj ij

x m
Mμ

σ==

−
= = −∑∏x   (3) 

The output from each rule is a crisp value. The fuzzy logic control action is the combination 

of the output of each rule using the weighted average defuzzification method. Suppose that 

a fuzzy controller consists of r  rules, and then the output of the controller is 
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1
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=
∑

∑

x

x

  (4) 

 In applying HSEFC to the feedforward fuzzy controller design, only the number of rules 
should be assigned in advance. Instead of grid type partition, the rules are flexibly 
partitioned in the input space. If the total number of rules is set to r , then the number of 
fuzzy sets in each input variable as well as the number of fuzzy singletons in the consequent 
part are also equal to r . 

2.2 Recurrent fuzzy controller 

For a dynamic plant control, a recurrent controller appears to be a better choice than a 
feedforward controller. In the previous studies (Juang & Lin, 1999; Juang, 2002), 
performance recorded by applying recurrent fuzzy systems to dynamic problems solving 
has been shown to be superior to recurrent neural networks. The recurrent fuzzy controller 
designed in this chapter is a slight modification of that used in TSK-type recurrent fuzzy 
network (TRFN) (Juang, 2002) in that the consequent part is of zero-order instead of first-
order TSK type.  Figure 1 shows structure of the recurrent fuzzy system. Suppose the system 
consists of two rules. Each recurrent fuzzy if-then rule is in the following form 
 

       Rule i :  IF 
1
( )x t  is 

1i
A  AND … AND ( )

n
x t  is 

in
A  AND ( )

i
h t  is G  

                 THEN ( 1)u t + is 
i

b  AND 
1
( 1)h t +  is 

1i
w  AND 2 ( 1)h t +  is 

2 i
w , 1, 2i =   (5) 

where 
ijA  and G  are fuzzy sets, u  is the output variable, ih  is the internal variable, 

ijw  

and ib  are the consequent parameters for inference outputs ih  and u , respectively. The 

recurrent reasoning implies that the inference output ( 1)u t +  is affected by the internal 

variable ( )
i

h t , and the current internal output ( 1)
i

h t + is a function of previous output 

value ( )
i

h t , i.e., the internal variable ( )
i

h t itself forms a recurrent reasoning. As in a 

feedforward fuzzy controller, Gaussian membership function is used for the fuzzy set ijA . 

For the fuzzy set G , a global membership function ( ) 1/(1 )
x

G x e
−= +  is used. Given an 

input set 
1

( , ..., )
n

x x=x , the inference and internal outputs of the recurrent fuzzy controller 

are calculated, respectively, by 

 
1

1

( )

( 1)

( )

r

i i

i

r

i

i

b

u t

μ

μ

=

=

+ =
∑

∑

x

x

  (6) 

and  
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1

( 1) ( )
r

i k ik

k

h t wμ
=

+ =∑ x   (7) 

where 

 
1

( ) ( ( )) ( )

n

i i ij j

j

G h t M xμ
=

= ⋅∏x   (8) 

In applying HSEFC to the recurrent fuzzy controller design, only the number of recurrent 
fuzzy rules should be assigned in advance. Suppose there are r rules in total, then the 

numbers of fuzzy sets A's on each external input variable ix  and the internal variable 
i

h ,  

are all equal to r . 

1b
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Fig. 1. Recurrent fuzzy system structure. 

3. Symbiotic Evolution-based  Fuzzy Controller (SEFC) 

The symbiotic evolution-based fuzzy controller (SEFC) was proposed in (Juang et al., 2000), 

and the idea was used in many later studies (Mahfouf et al., 2001, Jamei et al., 2004, Kuo et 

al., 2004, Juang, 2005b, Lin & Xu, 2006). Unlike general GAs' evolution algorithms which 

operate on a population of full solutions to a problem (the Pittsburgh approach), symbiotic 

evolution assumes that each individual in the population represents only a partial solution; 

complete solutions are formed by combining several individuals. Figure 2(a) and (b) show 
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codings of a fuzzy system using the general and symbiotic evolutions, respectively. Each 

individual in Fig. 2(a) represents a whole fuzzy system. On the contrary, each individual in 

Fig. 2(b) represents a single fuzzy rule. In general GAs, a single individual is responsible for 

the overall performance, with the fitness value assigned to itself according to its 

performance. In symbiotic evolution, the fitness of an individual (a partial solution) depends 

on others. Partial solutions can be characterized as specializations. The specialization 

property tries to keep search diversity which prevents convergence of the population. The 

symbiotic evolution appears to be a faster and more efficient search scheme than the general 

evolution approaches for reinforcement learning problems (Moriarty & Miikkulainen, 1996; 

Juang et al., 2000; Lin & Xu, 2006). 
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Fig. 2. Coding of a fuzzy system using (a) the general and (b) symbiotic evolutions. 

The basic idea of SEFC is on the representation of a single fuzzy rule by an  individual. A 

whole fuzzy system is formed by combining r  randomly selected rules from a population.  

With the fitness assignment performed by symbiotic evolution and the local property of a 

fuzzy rule, symbiotic evolution and the fuzzy system design can complement each other. If  

a normal GA evolution scheme is adopted for fuzzy system design, only the overall 

performance of a fuzzy system is known, not the performance of each fuzzy rule. The 

method to replace the unsuitable fuzzy rules that degrade the overall performance of a 

fuzzy system is through random crossover operations, followed by observing the 
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performance of the offspring. Only when the overall performance of the fuzzy system is 

good  do we know that the unsuitable rules have been replaced. In SEFC, the performance 

of each fuzzy rule may be implicitly evaluated. Such implicit evaluation is especially 

suitable for reinforcement learnimg problems which require only evaluation instead of 

instructive feedback information. With the local property of a fuzzy rule, the fitness 

assignment performed by the SEFC is quite representative. In this way, symbiotic evolution 

and fuzzy system design can complement each other, which result in a fast, efficient genetic 

search for reinforcement learning problems. 

4. Hierarchical SEFC (HSEFC) 

In SEFC, a GA search is performed only on the separate rules. The information about the 
participating rules in a well-performed fuzzy network is not propagated from generation to 
generation. If, besides the local rule search, we can propagate the information to the next 
generation and perform a global fuzzy network search simultaneously, then a better design 
performance could be achieved. This is the motivation of Hierarchical SEFC (HSEFC). This 
section introduces the detailed HSEFC implementation algorithm. Subsection 3.1 presents 
the HSEFC implementation algorithm for feedforward fuzzy controller design (HSEFC-F). 
In subsection 3.2, the HSEFC for recurrent fuzzy controller design (HSEFC-R) is presented. 

4.1 HSEFC for feedforward fuzzy controller design (HSEFC-F) 

Figure 3 shows the structure of the HSEFC-F design system. It consists of two populations. 
In population 1, each individual represents only a single fuzzy rule in the form described in 
(1). A whole fuzzy system constituted by r  fuzzy rules is built by randomly selecting 
r individuals from population 1. The selected rules are recorded in an individual of 
population 2. Therefore, each individual in population 2 indicates a whole fuzzy system, 
with each gene representing a rule selected from population 1. Each constituted fuzzy 
controller in population 2 is applied to the plant to be controlled with a controller 
performance evaluation returned and used as the fitness value. This fitness value is assigned 
not only to the action system in population 2, but also distributed to the rules participating 
in the system. The concurrent evolution of populations 1 and 2 leads to an efficient 
algorithm. Detailed processes of these two stages are described as follows.  

4.1.1 Local mapping stage 

This stage performs evolution of population 1. Like general GAs, the evolution consists of 
three major operations: reproduction, crossover, and mutation. Initially, this stage randomly 
generates a population of individuals, each of which represents a set of parameters for the 

fuzzy rule in (1). The population size is denoted as 
1S

P , which indicates that 
1S

P  fuzzy rules 

are generated.  Each gene is represented by a floating number and the encoded form of each 
rule (individual) is as follows, 

1 1 2 2
| | | | | ... | | | |

i i i i in in i
m m m bσ σ σ  

After creating a whole population with real-valued individuals, an interpreter takes one 
from the population and uses it to set part of the parameters in a fuzzy system. Suppose 
there are r  rules in a fuzzy system, then a whole fuzzy system is constructed by selecting r  
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individuals from population 1. The fuzzy system runs in a feedforward fashion to control 
the plant until a failure or a success occurs. Then, in the reinforcement control problem, we 
should assign a credit to the fuzzy system. From the view point of temporal credit, if the 
fuzzy system can control the plant for a longer time, then the degree of success is higher and 
a higher credit should be assigned. Based on this concept, for each individual in population 
2, the fitness value is assigned at the moment of failure. 
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Fig. 3. Structure of the HSEFC for feedforward fuzzy system design (HSEFC-F). 

To evaluate the performance of each individual in population 1, the credit assignment is not 
as direct as that used in population 2. We should apportion the credit to the participating 
rules in a fuzzy system. This credit assignment problem also occurs in the Michigan 
approach. In the Michigan approach, many different credit assignment schemes have been 
proposed (Cordón et al., 2001). The two most important ones are the bucket bridge 
algorithm (BBA) (Booker et al., 1989) and the profit sharing plan (PSP) (Grefenstette, 1988). 
The BBA adjusts the strength of an individual rule classifier by distributing the obtained 
reward across the sequence of active rule classifiers that are directly or indirectly 
contributed to the past actions by the fuzzy classifier system. It uses only the local 
interactions between rules to distribute credit. In contrast to the BBA, the PSP is a global 
learning scheme and typically achieves a better performance than the BBA. In (Ishibuchi et 
al., 1999), a simpler credit assignment algorithm is proposed. In this algorithm, there is 
always a unique winner rule to be rewarded or penalized depending on whether it correctly 
predicts the class of the training example. The fitness value of each rule is determined by the 
total reward assigned to the rule. Basically, the aforementioned schemes are based on an 
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economic analogy and consist of a bid competition between fuzzy rules. They measure only 
the goodness of an individual rule and do not consider the ability to cooperate with the 
remaining ones in the population. In fact, in the Michigan approach, since a population 
represents a whole system, each individual cooperates with the same ones in each 
generation. The quality of cooperation is difficult to obtain among these competing 
individuals. 
In HSANE-F, many fuzzy systems are formed in each generation, and each individual may 

combine with different ones in each fuzzy system construction. By taking the average 

system fitness value in which an individual participates, we can approximately measure the 

individual cooperation ability. The measure is based on the fact that the fitness of each 

individual depends on the quality of the whole system it participates in, thus measuring 

how well it cooperates to solve the problem. As to the goodness of each individual, owing to 

the local mapping property, a well-performed rule will also have certain contribution to the 

system performance. On the contrary, a wrongly-mapped rule will degrade the system 

performance. The contribution of each rule to the system depends on its firing strength. 

However, the fitness value is available only when the control fails, during which the firing 

strength of each rule varies with time. It would be complex to distribute the fitness value 

among the participating rules based on the firing strength. A simple way is to equally 

distribute the system fitness value among the participating rules to measure its goodness. 

Therefore, by taking the average system fitness values in which an individual participates, 

we can approximately measure both the cooperation and goodness of the individual. 

Effectiveness of this fitness value distribution approach will be verified in simulations. 

Detailed steps of the approach are as follows. 

Step 1. Divide the fitness value by r  and accumulate the divided value to the fitness record 
of the r  selected rules with their fitness set to zero initially. 

Step 2. The above rule selection, plant control, and fitness division process are repeated 
2S

P  

(the size of population 2) times. The process ends when each rule has been selected 
for a sufficient number of times. Record the number of times each rule has 
participated in a fuzzy system.  

Step 3. Divide the accumulated fitness value of each rule by the number of times it has been 
selected. The average fitness value represents the performance of an individual. 

When the average fitness of each individual in population 1 is obtained, the HSEFC then 
looks for a better set of individuals to form a new population in the next generation by using 
genetic operators, including reproduction, crossover, and mutation. The detailed description 
of the three operations is as follows.  
In reproduction operation, the elite strategy and tournament selection techniques are used. 
The top-half of best-performing individuals in the population are sorted according to their 
fitness value. Based on the elite strategy, these elites are advanced directly to the next 
generation. Also, to keep a non-decreasing best-so-far fitness value, the rules participating in 
the best-performing system in each generation are directly reproduced in the next 
generation. The remaining individuals are generated by performing tournament selection 
and crossover operations on the elites.  
In crossover operation, the tournament selection scheme is used to select parents. Two 

individuals in the top-half of best-performing individuals are selected at random in the 

tournament selection, and their fitness values are compared. The individual with higher 
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fitness value is selected as one parent. The other is also selected in the same way. Two 

offspring are created by performing crossover on the selected parents. Here, one point 

crossover operation is performed. The top-half of worst-performing individuals are replaced 

by the newly produced offspring. The adopted crossover may be regarded as a kind of elite 

crossover.  

In mutation operation, the gene in an individual is altered randomly by mutation. Uniform 

mutation is used, where a mutated gene is drawn randomly and uniformly from its search 

domain. In the following simulations, mutation probability pm is set to 0.1. 

The elite strategy above can improve the searching speed, but the population diversity may 

also be lost quickly at the same time. To overcome this disadvantage, a population renewal 

technique is used. In each generation, the relationship between each individual is 

monitored. Since half of the next generation population is generated by performing 

crossover on the top-half of best-performing individuals, it is only necessary to check the 

similarities between the top-half of best-performers. The cross correlation value between 

two neighbouring individuals in a performance ranked list is calculated and averaged. The 

mathematical form for this measure is as follows:  
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where Di is the i th best-performing individual in the rank list. The dimension of Di is 1×` ,  

where `  is the number of genes in the individual. With this measure, if all of the individuals 

are exactly the same, then S  is equal to 1. This similarity measure is performed for each 

generation. When the measurement similarity is higher than a pre-specified threshold Thr, it 

reflects that the elites have moved to a degree of convergence. If this phenomenon occurs, 

then most parts of the individuals are renewed. In the renewal process, only a portion of the 

top best-performing individuals are reproduced to the next generation, and the remaining 

parts are replaced by newly generated individuals. After the renewal process, the similarity 

value is again calculated on each subsequent generation, and the renewal process is 

performed when the value is higher than the threshold Thr. The renewal process can always 

keep the diversity of the population and thus helps to find the best fuzzy rules. 

4.1.2 Global mapping stage 

This stage performs evolution of population 2. The function of population 2 consists of both 

exploitation and exploration of the rule-combination in a fuzzy system. In exploitation, the 

information about which rules are combined together in a well-performed fuzzy system is 

propagated from generation to generation. On the other hand, evolutionary procedure is 

performed on population 2 to search the best-combination in exploration. Without 

population 2, in each generation, the rules participating in a fuzzy system should be 

randomly selected from population 1. Population 2 helps to concentrate the search on the 

best rule combination. Since populations 1 and 2 are evolved concurrently, if individuals in 

the former are updated frequently, the search in the latter might be meaningless. To avoid 

this phenomenon, as stated in the local-mapping-search-stage, the top-half of best-

performing individuals in population 1 are reproduced directly to the next generation. Only 
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the remaining poorly-performed individuals are updated. Owing to the local mapping 

property, the update of these rules has only local influence on its participating fuzzy system. 

In general, the newly generated rules outperform the original poorly-performing ones. So 

the evolution of population 1 is also helpful to that of population 2, that is, both are 

cooperative. This property will be verified in the simulations. 

In this stage, an integer-value encoding scheme is used, and the alleles have values in the set 

{1, 2, …,  
1S

P }. There are r genes in each individual, and it has the following form, 

| 2| 7|5|9| … |
1S

P | … |8|1| 

The population size of population 2 is set to be 
2S

P , indicating that 
2S

P  fuzzy controllers are 

applied to plant control in each generation. Due to the following two reasons, the genetic 

operation used in this stage is different from that used in the local-mapping search stage. 

First, since a flexible partition of precondition part is adopted and reinforcement learning is 

performed, the rule number r  in a fuzzy system is usually small. Population 2 converges 

quickly due to the small individual length. Second, the character of population 2 in the 

whole searching task is auxiliary and should always maintain diversity to coordinate the 

evolution of population 1 from generation to generation. If population 2 converges faster 

than population 1, then the evolution of population 1 is useless. In order to maintain 

population diversity, the following genetic operation is used. The top-half of best-

performing individuals in population 2 are sorted according to their fitness values. To select 

the parents for crossover operation, the tournament select scheme is adopted and performed 

on the top-half of best-performing individuals. By performing the one-point crossover 

operation on the selected parents, offspring can be created and half of the new population is 

produced in this way. As stated in the local-rule searching stage, it is desired to maintain a 

non-decreasing best-so-far fitness value, consequently the best-performing individual is 

directly reproduced in the next generation. As to the remaining half of the population, they 

are created by randomly generated individuals. For the mutation operation, a mutated gene 

is selected randomly and uniformly from the integer set {1, 2, …, 
1S

P }. The mutation 

probability is set to 0.1. 

After the above crossover and mutation operations, overlapping of rules might occur. If this 

occurs, then the total number of rules in a fuzzy system is less than r . For this situation, the 

overlapping of each rule is regarded as a weighting factor F of its firing strength. If the 

overlapping number of rule i  is 
i

n , then 
i i

F n= . With the weighting factor, the output 

equation of the fuzzy system in (4) can be rewritten as 

 1

1

( )

( )

r

i i i

i

r

i i

i

Fb

u

F

μ

μ

′

=
′

=

=
∑

∑

x

x

  (10) 

where r r′ ≤  is the total number of rules and 
1

r

ii
F r

′

=
=∑ .  
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4.2 HSEFC for recurrent fuzzy controller design (HSEFC-R) 

This subsection introduces the application of HSEFC to recurrent fuzzy controller design. 

The recurrent fuzzy rule to be designed is previously described in (5). By regarding each 

recurrent rule as an individual in population 1 of HSEFC-F, the recurrent fuzzy controller 

can be designed. However, this approach does not use the recurrent fuzzy system structure 

to its  full advantage. To speed up the design process, the HSEFC-R designed specifically for 

the recurrent fuzzy rule is proposed. The divide-and-conquer concept is incorporated in 

HSEFC-R (Juang, 2005b). Based on this concept, the recurrent fuzzy rule in (5) is 

decomposed into two sub-rules, the spatial sub-rule and the temporal sub-rule. The 

antecedent parts of both sub-rules are the same as that in (5). The consequent part in each 

spatial sub-rule considers only the output variable u , while the consequent part in each 

temporal sub-rule considers only the variables 
1

h , …, 
r

h . In HSEFC-R, the spatial and 

temporal sub-rules are evolved simultaneously. Figure 4 shows the HSEFC-R structure, 
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Fig. 4. Structure of the HSEFC for recurrent fuzzy system design (HSEFRC-R). 

where there are three populations. Populations 1 and 2 are responsible for spatial and 
temporal sub-rules searches, respectively. Population 3 is responsible for the whole 
recurrent fuzzy system search. Each individual in population 1 represents a spatial sub-rule, 
whereas each individual in population 2 represents a temporal sub-rule. Since the spatial 
and temporal sub-rules share the same antecedent part, the antecedent parameters are 
encoded in population 1 only. A recurrent fuzzy system consisting of r rules is constructed 
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by randomly selecting r  individuals from both populations 1 and 2. The selected 
individuals from both populations are recorded in population 3. Each individual in 
population 3 represents a whole fuzzy system. The task of creating population 3 is not only 
to search the best combinations of the r  spatial sub-rules or temporal sub-rules selected 
from each population, but also to search for the best match of both types of sub-rules. Each 
recurrent fuzzy system encoded in population 3 is applied to a dynamic plant control with 
the return of a performed evaluation. The evaluation is used as the fitness value of the 
controller. As in HSEFC-F, the fitness value for each individual in population 3 is set to the 
time steps until failure for each control trial. This fitness value is then assigned to the 
participating sub-rules selected from populations 1 and 2. With the distributed fitness value, 
evolution of populations 1 and 2 is performed in the local-mapping search stage, while 
evolution of population 3 is performed in the global-mapping search stage. These two stages 
are executed concurrently until a successful control is achieved. Detailed operations of these 
two stages are described as follows.  

4.2.1 Local mapping stage 
The objective of this stage is to explore the well-performing spatial and temporal sub-rules 
in each local input region. First, populations 1 and 2 are created by randomly generated 

individuals. The sizes of both the populations are equal to and are denoted as 
S

P . The real-

value encoding scheme is used in both populations. Each individual in population 1 encodes 
a spatial  sub-rule and has the following form: 

1 1 2 2
| | | | | ... | | | |

i i i i in in i
m m m bσ σ σ  

Each individual in population 2 encodes only the consequent part of a temporal sub-rule 
because the spatial and temporal sub-rules share the same antecedent part. Each individual 
has the following form: 

1 2
| | | ... | |

i i ir
w w w  

 The relationship between the individuals in populations 1 and 2 is cooperative. The genetic 
operation of each population is executed independently and concurrently. The fitness value 
decision method of an individual is similar to that used in HSEFC-F.  If the fitness value of 
the recurrent fuzzy system consisting of r  recurrent rules is Fit, then the distributed fitness 
value of each participating individuals from populations 1 and 2 is set to Fit/r. When the 
fitness value of each individual in both populations is given, new populations are generated 
by using genetic operations. Like HSEFC-F, the elite strategy and tournament selection 
techniques are used here. The reproduction, crossover, and mutation operations are the 
same as those used in the local-mapping search stage of HSEFC-F. The mutation probability 
is set at 0.1. To keep population diversity, the population renewal technique is applied to 
both the populations. A threshold value, Thr, is set for both populations. If the similarity 
value of the top-half of best-performing individuals is higher than Thr in each individual, 
then the renewing technique is applied to that population.  

4.2.2 Global mapping stage 
This stage performs evolution of population 3. An integer-value encoding scheme is used. 
Each individual contains 2 r genes. The first r genes represent the r spatial sub-rules 
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selected from population 1, while the remaining r  genes represent the r temporal sub-rules 
selected from population 2. Each gene representing the selected sub-rule has value in the 

integer set {1, 2, …, 
S

P }. Each individual has the following form 

|7|2|4|…|
S

P | …|11|4||2|13|7|…|
S

P |…|15|4| 

The temporal sub-rule recorded in position r k+  shares the same antecedent part with the 

spatial sub-rule in position k . The population size is set to 
3S

P , indicating that 
3S

P  recurrent 

fuzzy controllers are built and applied to a dynamic plant control in each generation. The 

fitness value of each individual is assigned according to the controller performance 

evaluation. For the genetic operation, in addition to the crossover operation, the other 

operations used are the same as those used in the global-mapping search stage of HSEFC-F. 

In the crossover operation, to exchange the spatial and temporal sub-rule combination 

information of each population, a two-point crossover operation is performed. One 

crossover site is located at the first r genes, indicating the exchange of spatial sub-rule 

combination information; the other is located at the last r  genes, indicating the exchange of 

temporal sub-rule combination information. 

5. Simulations 

This section presents simulation results of HSEFC for feedforward and recurrent fuzzy 
controller design under genetic reinforcement learning environments. All simulations in the 
following examples are written in C++ program, and run on a Pentium-1G personal 
computer. For the fuzzy rule number selection, it is somewhat heuristic and depends on the 
complexity of the plant to be controlled. In the following examples, the number of rules in 
each fuzzy system is set to five, i.e., r = 5. 

5.1 Feedforward fuzzy controller design 

Example 1. Cart-Pole Balancing System. In this example, HSEFC-F is applied to a classic 
control problem referred to as the cart-pole balancing problem. This problem is often used 
as an example of inherently unstable and dynamic systems to demonstrate both modern and 
classic control techniques, and is now used as a control benchmark (Andersonm 1989). The 
cart-pole balancing problem is the problem of learning how to balance an upright pole. 

There are four state variables in the system:θ, the angle of the pole from an upright position 

(in degrees); θ$ , the angular velocity of the pole (in degrees/second); x , the horizontal 

position of the center of the cart (in meters); and x$ , the velocity of the cart (in m/s). The 

only control action is u , which is the amount of force (Newton) applied to the cart to move 

it toward its left or right. The system fails when the pole falls past a certain angle (12 degrees 
is used here) or the cart runs into the bounds of its track (the distance is 2.4m from the center 
to both bounds of the track). Details of the control system description can be found in (Juang 
et al. 2000).  A control strategy is deemed successful if it can balance a pole for 120000 time 
steps. In designing the fuzzy controller, the four states are fed as the controller inputs, and 
the controller output is u . In HSEFC-F, the number of individuals (rules) in population 1 is 

set to 50 (i.e., 
1S

P =50). The size of population 2 is set to 50 (i.e. 
2S

P =50), indicating that fifty 
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fuzzy controllers are built and evaluated per generation. The evaluation of a fuzzy controller 
consists of a single trial to the cart-pole system. The similarity measure threshold Thr in the 
renewing process is set at 0.5. The fitness value is equal to the number of time steps in which 

the pole remains balanced. For each control trial, the initial values of ( , , , )x x θ θ$$  are random 

values in region [-2, 2]x[-1.5, 1.5]x[-5, 5]x[-40, 40]. In this example, 100 runs are simulated, 
and a run ends when a successful controller is found or a failure run occurs. The definition 
of a failure run is if no successful fuzzy controller is found after 25,000 trials. The number of 
pole-balance trials and the CPU time (the time from the first trial to the end of a successful 
trial) are measured. The average CPU time and trial number of the HSEFC-F are 4.0 (sec) 
and 179, respectively. Figure 5 (a) and (b) show the control results of position and angle in 
the first 1000 time steps of three different runs with different initial states. For SEFC, the 
average results are 5.1 (sec) and 256 trials. The results show that the performance of HSEFC-
F is better than SEFC. Since the performance of SEFC has been shown to be better than other 
compared reinforcement learning methods in (Juang et al., 2000), only SEFC is compared 
this example. 

 

Fig. 5. Control results of (a) position (b) angle in the first 1000 time steps of three different 
runs with different initial states in Example 1. 

5.2 Recurrent fuzzy controller design 

Example 2. Dynamic Plant Control. The dynamic plant to be controlled is described by the 
following equation 

 
2

( 1) 0.6 ( ) 0.03 ( 1) ( ) 0.01 ( 2) 0.2 ( 3)
p p p

y k y k y k u k u k u k+ = + − + − + −  (11) 
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The current output of the plant depends on two previous outputs and four previous inputs. 
In (Kim et al., 1998), it is shown that for this type of plant, a poor performance is achieved by 
a linear predictive control. The controller input u is in the range [-20, 20]. The initial states 

are (0)
p

y = (1)
p

y = 3. The regulation point 
ref

y  is set to 10. The performance of a controller 

is measured by the number of time steps in which the controlled state 
p

y  satisfies the 

following constraint. The constraint set starts from the initial state and after 10 times of 

control, the state of  
p

y  should be within the region [
ref

y -0.2, 
ref

y +0.2], otherwise a failure 

occurs. A recurrent fuzzy controller designed by HSEFC-R is applied to the plant. In 
HSEFC-R, the sizes of populations 1, 2, and 3 are all set to 100. The similarity measure 

threshold 
hr

T  in the renewal process is set to 0.35.  Since a recurrent fuzzy controller is used, 

only the current state ( )
p

y k  and reference state 
ref

y  are fed as the controller inputs. Since a 

recurrent fuzzy controller consists of five recurrent fuzzy rules, the number of genes in each 
individual of populations 1 or 2 is equal to 5. One hundred runs are simulated, and a run 
ends when a successful controller is found. A failure run is said to occur if no successful 
fuzzy controller is found after 100,000 trials.  The average CUP time and trial number of 
HSANE-R are 0.65 (sec) and 1853, respectively. For SEFC, the results are 1.37 (sec) and 3960 
trials. The performance of HSANE-R is much better than SEFC. Detailed comparisons of 
different design methods can be found in (Juang, 2005b). 

 

Fig. 6. Dynamic plant control results of five different runs using HSEFC-R in Example 2. 

6. Conclusion 

This chapter introduces a unified symbiotic evolution framework (the HSEFC) for 
feedforward and recurrent fuzzy controller design in reinforced learning environments. The 
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design of a fuzzy controller is divided by the HSEFC into two iterative search stages: the 
local-mapping search stage and the global-mapping search stage. In this way, the 
population in each stage is evolved independently and concurrently. Furthermore, to avoid 
the premature population phenomenon, modifications of general genetic operations are also 
incorporated in the design process. In the interests of utility and economy, the HSEFC 
operates under two formats; HSEFC-F and HSEFC-R. For feedforward fuzzy controller 
design, HSEFC-F is presented, while for recurrent fuzzy controller design, HSEFC-R, which 
uses the divide-and-conquer technique on spatial and temporal sub-rules search, is 
presented. As shown, simulation results in static and dynamic plant control problems have 
verified the effectiveness and efficiency of HSEFC-F and HSEFC-R.  Although in HSEFC 
solutions, the designed fuzzy controller structure is currently assigned in advance, further 
work on HSEFC intends to focus on its extension to automatic controller structure 
determination. A more accurate fitness assignment for each single rule in symbiotic 
evolution is another future research topic.  
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