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Abstract

Malaria is one of the most deadly parasitic infectious diseases and identifying novel
drug targets is mandatory for the development of new drugs. To find drug targets,
metabolic and signaling networks have been constructed. These networks have been
investigated by graph theoretical methods. Furthermore, mechanistic models have been
set up based on stoichiometric equations. At equilibrium, production and consumption
of internal metabolites need to be balanced leading to a large set of flux equations, and
this can be used for metabolic flux simulations to identify drug targets. Analysis of flux
variability and knockout simulations were applied to detect potential drug targets
whose absence reduces the predicted biomass production and hence viability of the
parasite in the host cell. Furthermore, not only the parasite was studied, but also the
interaction between the host and the parasite, and, based on experimental expression
data, stage-specific metabolic models of the parasite were developed, particularly dur-
ing the red-blood cell stage. In this chapter, these various network-based approaches for
drug target prediction will be explained and summarized.

Keywords: network-based analysis, drug targets, flux balance analysis, malaria

1. Introduction

Network-based analysis has become an important tool in biomedical research. It facilitates

the investigation and understanding of a system as a whole, not only its single components.

For this, first the networks need to be constructed and then investigated employing differ-

ent analysis or modeling techniques. According to the applied methodological approaches

to analyze these networks, one may distinguish cellular network models for signal trans-

duction, gene regulation and metabolism. The network constructions based on information

are compiled from databases and are assembled in an automated way often followed by

manual refinement. Network-based models have been applied to study the cellular mecha-

nisms of a large variety of diseases elucidating, for example, tumor growth, malfunctioning

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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of the differentiation of immune cells, or identifying drug targets of invasive pathogens [1,

2]. To find drug targets for the treatment of malaria, metabolic and signaling networks have

been constructed and intensively investigated. This chapter will introduce the reader into

the basic principles of constructing and applying such cellular networks. It then leads

through the application of these systems biology approaches to predict drug targets

followed by a small section exemplarily showing an experimental validation for these pre-

dictions.

2. Construction of cellular networks

Proteins are involved in all cellular functions. These cellular processes can be put up as

cellular networks, which describe associations among these proteins and other cellular com-

pounds such as metabolites and nucleic acids. These cellular networks can conceptually be

divided into three distinct parts: the cell signaling, the transcriptional regulatory network,

and the metabolic network. The best observed and modeled network is the metabolic network

while the complex system of signal transduction is rather captured statistically investigating

the experimental information about proteins and their expressed genes of network models

basing on protein-protein interactions [3]. The transcriptional regulatory network links tran-

scriptional regulators to their target genes [4]. The simplest form of a network is a network

represented by an undirected graph G = (V, E) consisting of nodes V and edges (connections,

links) E between these nodes. Each node i ∈ V represents a unique cellular entity such as

enzymes, genes, and proteins, while each edge (i, j ) ∈ E represents an observed interaction

between two nodes i and j. A metabolic network model can be constructed as a bipartite

graph consisting of two disjoint sets of nodes (reaction and metabolite nodes, see Figure 1)

[5]. The direction of edges in the metabolic networks is given by the flux from the substrate to

the product of a biochemical reaction. An edge indicates that a metabolite is either a substrate

or a product of a reaction. The distinction between substrates and products of a reaction is

only possible if the graph is directed, that is, if the set of edges E consists of ordered pairs of

vertices. This distinction is often useful when modeling metabolic fluxes but may be neglected

in simpler models [6]. As a bipartite graph, the metabolic network can be represented as an

adjacency matrix of m × n dimensions, where m is the number of metabolites and n is the

number of reactions. More specific models of metabolic networks concerning the stoichiome-

try can also be represented as an adjacency matrix using stoichiometric coefficients of chem-

ical reactions as weights for the edges between metabolites and reactions. As shown in

Figure 1, our small example network consists of three reactions (R1, R2, and R3) and six

metabolites (A, B, C, D, E, and F):

R1: A ⇔ B

R2: 2 B + C ! E + F

R3: 2 E ! B + D

R1:
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The stoichiometric matrix or the adjacency matrix containing stoichiometric coefficients of each

reaction equation is

s ¼

−1 0 0

1 −2 1

0 −1 0

0 0 1

0 1 −2

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

where the rows correspond to metabolites A, B, C, D, E, and F, and the columns correspond to

reactions R1, R2, and R3, respectively. R1 is a reversible reaction. Metabolic networks for

Plasmodium spp can be constructed using the databases PlasmoCyc [7], Malaria Parasite Meta-

bolic Pathways (MPMP) [8], The Kyoto Encyclopedia of Genes and Genomes (KEGG), http://

www.genome.jp/kegg/, and from models in the literature [9]. Unspecific compounds such as

water, ATP, ADP, etc., may be discarded for these rather general models but need to be

considered for more detailed models when, for example, employing flux balance analysis (see

below). Cellular networks can be analyzed mechanistically or statistically by their topological

features. In the following, we explain briefly some of these topological features.

3. Topological features for statistical analyses of cellular networks

Several computational techniques have been developed to identify essential genes and drug

targets in silico for a therapy against malaria. To construct an undirected graph for metabolism,

Figure 1. Graphical view of a metabolic network model as a bipartite graph consisting of two disjoint sets of nodes

(reactions and metabolites). This network consists of three reactions (R1, R2 and R3) and six metabolites (A, B, C, D, E, F).

R1 is a reversible reaction, the other reactions are irreversible.
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the network representation of a reaction-pair network can be used instead of a bipartite graph.

In this representation, enzymes are linked if there is at least one metabolite, which is produced

by one of the enzymes and which serves as a substrate for the other. For these simple networks,

the network topology can be described by characteristic properties. Similarly, protein interac-

tion networks can be analyzed to get specific characteristics for signal transduction [3, 10, 11].

These characteristics either hint directly to essential genes (serving as drug targets) or can be

used when comparing the full network with a network in which one of the nodes (enzymes or

signaling proteins) is targeted by a drug.

3.1. Diameter and density of a network

The diameter of a network is the largest distance of all shortest paths between two nodes

(reactions, signaling molecules) in the network. The density of a network is the ratio of the

edges (links, connections) between two reactions divided by all possible edges of all reactions.

These two properties can be used to determine the robustness of a network. In recent studies, a

reaction was said to be essential if the mutated or targeted network showed a larger diameter

after removing the reaction [12, 13].

3.2. Scale-freeness of networks

Networks can be distinguished by their degree distributions where the degree of a node v ∈ V is

defined as the number of edges between v and its adjacent nodes. Many degree distributions of

naturally occurring networks follow power laws [6] P(k) ∼ k−γ where γ > 0 is a constant

depending on the network and is usually in the range of 2–3. P is the probability to draw a node

with degree k. Networks with a power law distribution are also called scale-free networks [6, 14].

Basically, these scale-free networks consist of few highly connected vertices, so-called hubs, and

many less connected vertices [15]. Most real-world networks including metabolic networks are

approximately scale-free networks [6]. Figure 2 shows the degree distribution of the metabolic

network of Plasmodium falciparum, which is fitted by a power-law distribution. Scale-free net-

works generally have a small diameter [16], as in particular the highly connected nodes connect

nodes within only a few links. Additionally, these networks are highly connected [17]. The

benefit of such a highly connected and scale-free architecture is its robustness against single

“attacks,” that is, a failure of a single node in the system, as it is statistically more probable that

vertices with lower degrees are hit from which the general structure of the network is not

affected. The scale-free topology provides robustness to the network with increases flexibility to

random perturbations where the loss of individual nodes usually has no effect on the overall

network topology. Nevertheless, such a network is susceptible to targeted attacks at highly

connected critical hubs [18], and mutations affecting hubs are more likely to cause a defect [17].

3.3. Clustering coefficient

The clustering coefficient is used to estimate the local density of links (edges) in the network. It

describes the connectedness among neighbors and helps to estimate the probability of local

alternative paths of signaling or metabolic fluxes (e.g., after targeting). The clustering coeffi-

cient of a node v is defined as the ratio of the number of connecting edges among all neighbors
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of v and the total number of edges among them that could be possible. This means, if all

neighbors are connected among themselves, the clustering coefficient becomes one, if none of

the neighbors is connected with any other neighbor, it is zero [6, 19, 20]. In Figure 3, the

observed reaction in dark has three neighbors and two edges among its neighbors. Having

three neighbors, there are six possible connections among neighbors. Thus, the clustering

coefficient of the observed reaction in this example can be computed as 2
6 ¼

1
3.

3.4. Centrality

Descriptors for node centrality are quite powerful for describing the potential of essentiality of a

node. They describe not only the impact of the node to its direct vicinity but also the contribu-

tion of a node to the global structure of the network. The simplest of all centrality measures is

the connectivity, or degree k, which is just the number of links connecting the node with other

nodes. In a cellular network, the degree is commonly used to describe an important node as it

Figure 2. Degree distribution of the metabolic network of P. falciparum using the (most suitable) network of [13].
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is known that often essential genes are nodes in the network with a high degree (so-called

hubs). Another commonly used centrality measure is betweenness centrality. Betweenness

centrality is the frequency of a node to be part of the shortest paths connecting all pairs of

nodes in the network [21].

3.5. Choke points and load points

In metabolic networks, Samal et al. found out that most reactions identified as essential are

involved in the consumption or production of metabolites with low connectivity [22]. This is

because these nodes are more likely to be the limiting factor for consuming or producing these

metabolites. In the extreme case, an enzyme is the only enzyme, which consumes or produces

a certain compound. Blocking such a reaction may cause severe effects to the cell as, for

example, it may cause an assembly of toxic compounds, which cannot be degraded anymore

or a lack of substrates for important processes further downstream of the enzyme. Hence, a

choke point reaction was defined as a reaction that uniquely consumes or produces a certain

metabolite in the metabolic network [23, 24]. This concept has been successfully applied to

identify drug targets for Plasmodium spp. [24, 25]. Load scores are defined as hot spots in the

metabolic network (enzymes or metabolites) based on the ratio of the number of shortest paths

(connecting any two enzymes or metabolites in the whole network) passing through a metab-

olite or enzyme and the number of nearest neighbor links [23].

Figure 3. Illustration of the concepts of the topology features. Circles represent metabolites, rectangles reactions, arrows

directions of the metabolic flux, lines represent links between two neighboring reactions and dark rectangles represent the

investigated reactions. (a) The observed reaction is a chokepoint because it is the only reaction consuming the upstream

metabolite. (b) The metabolic network in a reaction-pair representation for computing the clustering coefficient. The

observed reaction has three neighbors (degree of 3) and there are two links among these neighbors. Therefore, the

clustering coefficient for this observed reaction is 1/3. (c) Graphical illustration of the way to compute producibility of

the observed reaction from its substrates (S) to its products (P). Possible alternative pathways to consume substrates S for

producing products P are represented by dashed arrows. The percentage of the products that can be produced from the

substrates is the producibility of the observed reaction.
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3.6. Producibility (by deviations)

A reaction is determined to be potentially essential when basically the mutated network

cannot yield the products of the reaction from upstream substrates of the reaction using other

pathways linking the substrates to the products (see Figure 3). The percentage of the products

that can be produced from the substrates, the so-called “producibility,” can be used to examine

the essentiality of the observed reaction [13].

3.7. Applying these topology-based methods to predict drug targets for Plasmodium spp.

The concept of choke points and load points was successfully applied to estimate the essenti-

ality of an enzyme in Plasmodium [23, 24, 26]. Yeh et al. initially applied a chokepoint analysis

for P. falciparum. Strikingly, they found that 87% of known drug targets with biological evi-

dence are chokepoints according to their analysis [24]. In line, they identified three targets of

clinically proven malaria drugs, dihydrofolate reductase, dihydropteroate synthase, and 1-

deoxy-D-xylulose 5-phosphate reductoisomerase as chokepoints. Rahman and Schomburg

performed a chokepoint and load score analysis for several other organisms [23, 26]. In Fatumo

et al., we performed a chokepoint analysis together with our developed producibility concept

to obtain a more reliable list of potential drug targets in P. falciparum. For example, we

identified deoxyhypusine synthase involved in spermidine metabolism, which is a known

drug target in P. falciparum, Anopheles stephensi, and Trypanosoma evansi [27]. This enzyme was

detected by intersecting the predicted targets from a chokepoint and a producibility analysis

[26].

Protein-protein interactions were inferred by a high-throughput method (yeast-2-hybrid) and

assembled for a signaling network of P. falciparum. This has been performed for the first time

by Suthram in 2005 identifying conserved proteins, pathways, and interactions [28]. The

network was then analyzed by using a network alignment approach comparing the networks

across organisms, by using various graph theoretical measures and an in silico knock-out

strategy to identify potential drug targets [11, 12, 28, 29]. With this, conserved pathways and

proteins between organisms were identified hinting for essentiality. The study showed that a

few interactions were conserved among the analyzed organisms, demonstrating that the

protein interaction network of Plasmodium is distinctively different from the others. Interest-

ingly, a conserved protein complex was found in calmodulin-mediated endocytosis. Indeed,

inhibition of calmodulin resulted in attenuated growth [30] and reduced chloroquine extrusion

in malarial parasites diminishing drug resistance to chloroquine [31]. Additionally, endocyto-

sis was found to be related to these mechanisms [32]. Thus, the proximity of calmodulin to the

formation of endocytic vacuoles in Plasmodium provides an interesting link to discover strate-

gies coping drug resistance mechanisms of Plasmodium [28].

Recently, Bhattacharyya and Chakrabarti analyzed a large-scale protein-protein interaction

network of Plasmodium and identified potential drug targets using various graph theoretical

measures such as centrality measures. They also used an in silico knock-out strategy to study

the perturbation due to a loss of a protein in the network [12]. With this, approximately 270

proteins of P. falciparum were identified as potential drug targets including proteins, which

play crucial roles in intra-pathogen network integrity, stage specificity but also interact with
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various human proteins involved in multiple metabolic pathways within the host cell. Most of

the housekeeping proteins were found to be potential targets [12].

Interactions between the human host and the parasite have been intensively studied [11–13,

33]. The comparison of several reconstructed network models has been performed to find the

best suitable reconstruction for detecting drug targets in silico. This was performed on a

metabolic network reconstruction based on automatically inferred enzymes and compared

with a reconstructed model that based only on enzymes whose coding genes were known.

These networks were analyzed with criteria for defining essential enzymes including

chokepoints, betweenness centrality, connectivity, and the diameter of the networks. Compar-

ing the modeling results with a comprehensive list of known drug targets for P. falciparum

showed that the most suitable network model was constructed using only enzymes from the

parasite alone, which coding genes were known [13].

Chen et al. developed a network-based approach to predict malaria-associated genes by a

random walk algorithm [33]. They first constructed separate gene networks of the human

genome and of the parasite genome and then connected them with known host-pathogen

protein interactions. Known malaria target genes were used as the seeds (a set of nodes at

which the search started) in a random walk algorithm to prioritize genes. The random walk

algorithm then iteratively explored the global structure of the network starting at a set of nodes

(seeds) to estimate the probability of a node being reached from the seeds. These probability

scores can be viewed as the influential impact over the network imposed by the set of seed

nodes. Finally, all the genes were ranked according to their probability scores. Manually

examining the top 50 predicted human genes, interesting proteins such as TLR4 and P53 were

found to be associated with malaria [33].

4. In silico modeling using flux balance analysis to identify drug targets

Flux balance analysis (FBA) is a computational approach to estimate the quantitative flux of

metabolites through a mechanistic model of metabolism. Thereby, it is possible to predict the

growth rate of an organism or the rate of production of an important metabolite [9, 34–36].

Biochemical stoichiometric equations are used to assemble a set of constraints to limit the

feasible search space. The idea is that, at equilibrium, production and consumption of internal

metabolites are balanced. This leads to a large set of equations in which the net production flux

equals the net consumption flux for each internal metabolite. Additionally, allowable fluxes of

any reaction are bounded at plausible maximum and minimum fluxes. Bounds may also be

taken from the literature. These balances and bounds define the space of allowable flux

distributions of a system, that is, the allowed combinations of fluxes for each reaction. To get

a phenotype or modeling prediction from these constraints, an optimization criterion is put up.

For example, in the case of predicting growth, the objective is to optimize biomass production

which is the rate at which metabolic compounds are converted into the physiological portions

of biomass constituents most importantly of nucleic acids, amino acids and lipids. Together

with the constraints, this is mathematically formulated as a system of linear equations which is

solved using linear programming based programs. Flux variability and knockout simulations
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are analyzed to detect potential drug targets whose absence reduces the biomass production

and hence viability of the parasite in the host cell. By simulating a reconstructed metabolic

network of an organism of interest, first a “wildtype” model is investigated and the growth

rate of the wildtype under specific bounds (or conditions) obtained. Performing a single gene

(or reaction) knockout/deletion under the same condition by limiting its corresponding fluxes

to zero (knockout simulation), the fluxes are calculated simulating an organism effected to a

drug (targeting the deleted enzyme) and the growth rate is compared to the wildtype. A

knocked out gene (or reaction) is predicted to be essential under the given condition if the

mutant model yields a much lower growth rate compared to the wildtype. Flux balance

analysis is a widely used and well-established technique to assess the essentiality of genes

and hence potential drug targets [9, 34–36]. The beauty of this approach is that it does not

depend on specific enzymatic parameters for each enzyme like their Michaelis Menten con-

stants, etc., but are rather basing on simple stoichiometric equations. To some extent, the only

experimental parameters are the boundary conditions. The drawback is that often several

solutions can come out which are mathematically equally good, but physiologically very

different leading to follow-up analyses of each of these solutions. Nevertheless, the approach

was used for several genome-scale metabolic network constructions, followed by flux simula-

tions of the inner metabolites of Plasmodium spp. to identify drug targets. It also enables to

embed the metabolism of Plasmodium spp. into the metabolism of its environment, for exam-

ple, human red blood cells [9]. Furthermore, experimental data on a systems view can be

embedded using microarray or sequencing based gene expression data and with this, stage-

specific metabolic models of the parasite were developed, particularly during the red-blood

cell stage [9]. To better understand flux balance analysis and its potential, we will give a brief

introduction into the mathematical secrets of it in the next section (which can be skipped

without losing the track to understand the subsequent sections).

4.1. Flux balance analysis formulation

Let sij be the stoichiometric coefficient of metabolite i in reaction j, which specifies the number

of metabolites produced or consumed by reaction j. sij > 0 indicates that reaction j produces

metabolite i, while sij < 0 indicates that reaction j consumes metabolite i. sij = 0 means that

metabolite i does not participate in reaction j. For example, considering a reaction A + 2B ! C,

the stoichiometric coefficients of A, B, and C are −1, −2, and 1, respectively. The stoichiometric

coefficients sij can be combined into the so-called stoichiometric matrix S = (sij). A rate of

concentration change of a metabolite can be formulated by the set of system equations:

dxi
dt

¼ ∑
j
sijvj (1)

where xi is the concentration of metabolite i, sij is the stoichiometric coefficient, and vj is the

consumption/production rate of reaction j. Based on the assumption of mass conservation at

steady state in the cell, internal metabolite concentrations are constant over time. Therefore, the

concentration change of each internal metabolite i is zero, which means dxi
dt ¼ 0. With this

assumption, equation (1) can be formulated as
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∑
j
Sijvj ¼ Sv ¼ 0 (2)

where S is the m × n stoichiometric matrix of mmetabolites and n reactions in the network. The

vector v represents all reaction rates (also called metabolic fluxes) in the metabolic network.

The ranges of individual metabolic fluxes are constrained by αj ≤ vj ≤ βj where αj and βj are the

minimal and maximal fluxes of reaction j, respectively. These inequality constraints allow

reversibility. If a reaction is reversible, the flux of the reaction vj can either be negative or

positive. A positive flux indicates the forward direction while a negative flux indicates a

backward direction. If we want to block a reaction (knockout simulation), we can constrain

the flux of this reaction to be equal to zero (vj = 0). In addition, the benefit of these inequality

constraints is to simulate metabolic capabilities under certain conditions such as a glucose

minimal medium condition, which we can model by constraining the flux of the glucose

uptake rate in a specific range of values and set the uptake rates of all other carbon source to

zero. Finally, the set or subspace of vector v that satisfies all constrains and the ranges of

individual metabolic fluxes is a set of feasible fluxes covering all feasible capabilities of the

metabolic network under the given specific condition. Using an optimization criterion, such as

to optimize the biomass of the cell yields then only one or a few out of these solutions. The

biomass production rate can be defined by a reaction or several reactions that produce the

metabolic building blocks of a cell (e.g., amino acids and nucleotides) or macromolecules that

form the biomass in a physiological composition. The physiological biomass composition of a

given organism comprises the relative amounts of the important molecules and can be found

in the literature [9, 36]. The flux of the biomass production is associated with the specific

growth rate of an organism. Finally, the obtained growth rate of the mutant (with a reaction

knocked out) is compared to the growth rate of the wildtype to predict a gene or an enzyme to

be essential. This section was taken from Ref. [37].

4.1.1. Applying FBA to predict drug targets

FBA has been widely used to predict essential genes of the human malaria parasite P. falciparum

[9, 36, 38]. A metabolic network reconstruction of P. falciparum was developed with 1001 reac-

tions and 616 metabolites [36]. The model allowed predicting the phenotype (growth) of exper-

imental gene knockouts. Validating the predictions with drug inhibition assays yielded

approximately 90% accuracy. Several modifications on the linear programming implementation

were studied to make the static FBA model more realistic. For example, gene expression profiles

of the malaria parasite were integrated into metabolic models [9, 36, 38]. In the study of Plata

et al. [36], the maximum flux of the associated reactions was constrained by their expression level

while Huthmacher et al. [9] used a method proposed by Shlomi et al. [39]. This method is a

modification to flux balance analysis (FBA) by adding binary variables for each reaction. These

binary variables act like an on/off switch according to the expression level. The mathematical

objective is to maximize the number of non-zero fluxes for the reactions with switched-on-state.

Dholakia et al. analyzed many available omics resources of stage-specific expression and used

pathway tools from the BioCyc database to analyze flux distributions with respect to gene

expression for identifying drug targets, and in particular in the erythrocytic stage-specific metab-

olism of the parasite. Based on the FBA approach, Plata et al. identified 40 enzymatic drug
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targets. All of these enzymes had no or very low sequence similarity to human proteins which

made them more attractive as this facilitated designing drugs targeting these enzymes and not

human host factors. This set of genes consisted of six genes associated with isoprenoid metabo-

lism, three genes involved in nucleotide metabolism, and the rest of genes related to CoA,

shikimate, and folate biosynthesis. In addition, one of predicted essential genes, nicotinate

nucleotide adenylyltransferase, was selected to be tested further in an experimental assay. This

enzyme has been known for anti-microbial development [40] but not in Plasmodium spp. yet.

Thus, in Plata et al., the experimental validation was done in P. falciparum by inhibiting this

enzyme by a small-molecule inhibitor from [41] resulting in blocking host cell escape and

reinvasion by arresting the parasites in the trophozoite growth stage [36]. Hence, FBA allowed

the construction of stage-specific metabolic networks for different stages of the parasites and

gave the opportunity to find drug targets for these stages. Additionally, also host-parasite

interactions can be studied using FBA [9]. In the study by Huthmacher et al. [9], a host-parasite

network was constructed and the metabolic fluxes for each blood life cycle stage were predicted

employing gene expression data of the different stages. Knock-out simulations identified 307

indispensable metabolic reactions for the parasite. Of 57, 35 experimentally validated essential

enzymes were recovered. Another set of 16 enzymes were predicted, if additionally assuming

that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited

enzyme are blocked. An interesting modification to flux balance analysis was developed by a

two-stage flux balance analysis to identify drug targets by comparing the differences of fluxes

between a drug treated and untreated condition [42]. This approach was applied to find drug

targets in Plasmodium, which is described in more detail in the next section.

4.2. Finding multiple drug targets to treat a drug resistant Plasmodium strain

Recently, Phaiphinit et al. reconstructed the metabolic network of P. falciparum in the human

host red blood cell using flux balance analysis [35]. This model was used to analyze two

specific metabolic models: a model for the parasite when having invaded the red blood cell

without any treatment and, in turn, the treated situation, when a drug like chloroquine acts by

inhibiting the hemozoin formation causing a high production rate of harmful heme. The

process of identifying target combinations consisted of two main steps (Figure 4):

Step 1—Developing two multi-cellular metabolic models: The model was constructed for the

situation of the parasite being inside the red blood cell of the human host. All metabolites of

the parasite in exchange with the external environment were taken from the red blood cell. To

find potential reactions which could harm P. falciparum by getting exposed to severe toxicity,

the flux distribution of the multi-cellular metabolic model was calculated for two conditions.

The first condition was the untreated situation where the parasite was able to get rid of toxins

from hemoglobin degradation after consuming hemoglobin from the red blood cell. The

second condition mimicked the treated situation in which the toxins could not be degraded.

The difference in flux distributions between the two conditions was assumed to be the effect

from the drug which disturbed the parasite.

Step 2—Finding the optimal drug target: The reactions in the parasite which were disturbed

from the drug in the treated situation may suit as drug targets for a combined treatment, or if
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the parasite gets resistant to the first drug (chloroquine). In particular, reactions for which no

flux was predicted in the treated scenario were promising targets because they may have a

similar treatment effect when targeted compared to the original drug and may suit as drug

targets against strains which are resistant to the first drug.

FBAwas used to get the flux distributions for the untreated and the treated conditions. For the

untreated condition, the objective was to maximize the production rate of biomass according

to Ref. [36], including the Na+/K+ ratio based potential at the ATPase, which plays an important

role for the homeostasis of red blood cells [43, 44]. In the treated condition, the drug usually

inhibits the detoxification process of the parasite harming the parasite due to the toxicity of

free heme. Thus, during the treated condition, the (toxic) flux of heme production should be an

additional objective to ensure that the toxic flux is not zero when identifying reactions or

enzymes to be blocked during the treatment. The flux distributions of both models were then

compared to obtain a list of candidate targets by the criteria that the reactions with zero fluxes

Figure 4. The workflow to identify drug targets by the comparison of treated and untreated conditions. First, in silico

models of Plasmodium falciparum and the human red blood cell are combined as an integrated model. This integrated

model is characterized by two specific conditions (treated and untreated). The flux rates of all reactions in both situations

are compared to identify a set of potential drug targets.
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in the treated condition but non-zero fluxes in the untreated condition could be potential

targets for inhibiting heme detoxification.

With this method, 23 enzymes were identified as candidate targets, which mostly were in

pyruvate metabolism and the citrate cycle. The optimal set of multiple targets for blocking the

detoxification was a set of a heme ligase, adenosine transporter, myo-inositol 1-phosphate

synthase, ferrodoxim reductase-like protein, and the guanine transporter. Purine transporters

have been known as the major route of purine into the parasitized red blood cell. In the

development of anti-malarial drugs, inhibitors targeting purine transport are of pharmaceutical

interest and are investigated. Likewise, adenosine transport and its inhibitor have been studied

in infected and uninfected human erythrocytes recently [45]. In summary, this shows an efficient

way to identify useful target combinations in the development of novel antimalarial drugs [35].

5. Experimental validation, a case study

Typically, after the computational network analysis, a list of potential drug targets is assem-

bled and needs to be validated experimentally. Exemplarily, in one study of a topological

network analysis, 22 potential targets were proposed [26]. Using a refined network comprising

also the host enzymes led to a refined set of the five potential drug targets (glutamyl–tRNA

(gln) amidotransferase, hydroxyethylthiazole kinase, deoxyribose–phosphate aldolase,

pseudouridylate synthase, and deoxyhypusine synthase) [46]. The next step was to find effec-

tive inhibitors to block these enzymes. Many reported inhibitors can be collected from data-

bases like the Brenda Enzyme database [47], Drugbank [48], and from companies like Sigma

(http://www.sigma.com), or by scanning the literature. In this example, a study was found, in

which Jahn and coworkers used 6-diazo-5-oxonorleucine (DON) to be an effective inhibitor of

glutamyl-tRNA(Gln) amidotransferase in Chlamydomonas reinhardtii [49]. Accordingly, an

experimental viability assay (IC50 analysis) was performed and showed that DON suits as a

valid agent against P. falciparum (laboratory strain Dd2) in Plasmodium infected blood cultures.

Strikingly, this was confirmed by an in vivo study using Plasmodium berghei infected Swiss

albino mice. All treated mice survived whereas all untreated died [45].

6. Conclusions

Even though the number of deaths caused by malaria has diminished considerably, it is still a

challenge to treat the effected patients and clear off the pathogen after infection. In particular,

there are increasingly more strains getting resistant against common treatments, and hence

there is a striking demand to find new targets for therapy.

The computational approaches introduced here show some convincing results. However, it

needs to be shown that these predictions are experimentally confirmed and finally make their

way from the bench to the bedside.

Various techniques of network-based analyses to identify potential drug targets of Plasmodium

have been described in more detail including the construction of cellular networks, the
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analysis of topological features, as well as in silico models based on flux balance analysis. To

construct a network, one needs to consider the network types which are suitable to find the

targets of interest. Moreover, the consideration of the interactions between host and pathogen

makes the network more realistic, but, however, also more complex to obtain drug targets.

Analyzing topological features seems to be a comfortable way to retrieve interesting targets;

however, the in silicomodels using flux balance may reflect much more detailed relations of the

biochemical reactions in a cell. All of the methods described in this chapter provided promis-

ing results, some with experimental evidence. It is to be noted that they have been widely used

for a large variety of other organisms as well.

Even though all these presented concepts have the very same aim to find a target, their results

are quite heterogeneous lists of different predicted drug targets, some of them validated by

experimental assays. As a future aspect, a data and method integration needs to be performed

leading to a consistent set of targets independent from the data it bases on, and, at its best,

being consistent with a larger set of experimental data sets and validations.
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