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France 

1. Introduction 

Bayesian networks (BN) are a family of probabilistic graphical models representing a joint 
distribution for a set of random variables. Conditional dependencies between these 
variables are symbolized by a Directed Acyclic Graph (DAG). Two classical approaches are 
often encountered when automaticaly determining an appropriate graphical structure from 
a database of cases,. The first one consists in the detection of (in)dependencies between the 
variables (Spirtes et al., 2001; Cheng et al., 2002). The second one uses a scoring metric 
(Chickering, 2002a). But neither the first nor the second are really satisfactory. The first one 
uses statistical tests which are not reliable enough when in presence of small datasets. If 
numerous variables are required, it is the computing time that highly increases. Even if 
score-based methods require relatively less computation, their disadvantage lies in that the 
searcher is often confronted with the presence of many local optima within the search space 
of candidate DAGs. Finally, in the case of the automatic determination of the appropriate 
graphical structure of a BN, it was shown that the search space is huge (Robinson, 1976) and 
that is a NP-hard problem (Chickering et al., 1994) for a scoring approach.  
In this field of research, evolutionary methods such as Genetic Algorithms – GAs (De Jong, 
2006) have already been used in various forms (Larrañaga et al., 1996; Muruzábal & Cotta, 
2004; Wong et al., 1999; Wong et al., 2002; Van Dijk et al., 2003b; Acid & De Campos, 2003). 
Among these works, two lines of research are interesting. The first idea is to effectively 
reduce the search space using the notion of equivalence class (Pearl, 1988). In (Van Dijk et 
al., 2003b) for example the authors have tried to implement a genetic algorithm over the 
partial directed acyclic graph space in hope to benefit from the resulting non-redundancy, 
without noticeable effect. Our idea is to take advantage both from the (relative) simplicity of 
the DAG space in terms of manipulation and fitness calculation and the unicity of the 
equivalence classes’ representations.  
One major difficulty when tackling the problem of structure learning with scoring methods 
— evolutionary methods included — is to avoid the premature convergence of the 
population to a local optimum. When using a genetic algorithm, local optima avoidance is 
often ensured by preserving some genetic diversity. However, the latter often leads to slow 
convergence and difficulties in tuning the GA's parameters.  
To overcome these problems, we designed a general genetic algorithm based upon 
dedicated operators: mutation, crossover but also a mutual information-driven repair O
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operator which ensures the closeness of the previous. Various strategies were then tested in 
order to find a balance between speed of convergence and avoidance of local optima. We 
focus particularly onto two of these: a new adaptive scheme to the mutation rate on one 
hand and sequential niching techniques on the other.  
The remaining of the chapter is structured as follows: In the second section we will define 
the problem, ended by a brief state of the art. In the third section, we will show how an 
evolutionary approach is well suited to this kind of problem. After briefly recalling the 
theory of genetic algorithms, we will describe the representation of a Bayesian network 
adapted to genetic algorithms and all the needed operators necessary to take in account the 
inherent constraints to Bayesian networks. In the fourth section the various strategies will 
then be developed: Adaptive scheme to the mutation rate on one hand and niching 
techniques on the other hand. The fifth section will describe the test protocol and the results 
obtained compared to other classical algorithms. A study of the behaviour of the used 
strategies will also be given. And finally, the sixth section will present future search in this 
domain. 

2. Problem settings and related work 

2.1 Settings 

A probabilistic graphical model can represent a whole of conditional relations within a field 
X = {X1, X2,…, Xn} of random variables having each one their own field of definition. 
Bayesian networks belong to a specific branch of the family of the probabilistic graphical 
models and appear as a directed acryclic graph (DAG) symbolizing the various 
dependences existing between the variables represented. An example of such a model is 
given Fig. 1. 
 

 

Fig. 1. Example of a Bayesian network. 
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A Bayesian network is denoted B = {G, θ}. Here, G = {X, E} is a directed acyclic graph whose 
set of vertices X represents a set of random variables and its set of arcs E represents the 
dependencies between these variables. The set of parameters θ holds the conditional 
probabilities for each vertice, depending on the values taken by its parents in G. The 
probability θi = {P(Xi|Pa(Xi))}, where Pa(Xi) are the parents of variable Xi in G. If Xi has no 
parents, then Pa(Xi) = Ø. 
The main convenience of Bayesian networks is that, given the representation of conditional 
independences by its structure and the set θ of local conditional distributions, we can write 
the global joint probability distribution as:  

 ∏
=

=
n

k
kkn XPaXPXXP

1
1 ))((),...,(  (1) 

2.2. Field of applications of Bayesian networks 

Bayesian networks are encountered in various applications like filtering junk e-mail (Sahami 
et al., 1998), assistance for blind people (Lacey & MacNamara, 2000),  meteorology (Cano et 
al., 2004), traffic accident reconstruction (Davis, 2003), image analysis for tactical computer-
aided decision (Fennell & Wishner, 1998), market research (Jaronski et al., 2001), user 
assistance in sofware use (Horvitz et al. 1998), fraud detection (Ezawa & Schuermann, 1995), 
human-machine interaction enhancement (Allanach et al., 2004). 
The growing interest, since the mid-nineties, that has been shown by the industry for 
Bayesian models is growing particularly through the widespread process of interaction 
between man and machine to accelerate decisions. Moreover, it should be emphasized their 
ability, in combination with Bayesian statistical methods (i.e. taking into account prior 
probability distribution model) to combine the knowledge derived from the observed 
domain with a prior knowledge of that domain. This knowledge, subjective, is frequently 
the product of the advice of a human expert on the subject. This property is valuable when it 
is known that in the practical application, data acquisition is not only costly in resources and 
in time, but, unfortunately, often leads to a small knowledge database. 

2.3 Training the structure of a Bayesian network 

Learning Bayesian network can be broken up into two phases. As a first step, the network 
structure is determined, either by an expert, either automatically from observations made 
over the studied domain (most often). Finally, the set of parameters θ is defined here too by 
an expert or by means of an algorithm. 
The problem of learning structure can be compared to the exploration of the data, i.e. the 
extraction of knowledge (in our case, network topology) from a database (Krause, 1999). It is 
not always possible for experts to determine the structure of a Bayesian network. In some 
cases, the determination of the model can therefore be a problem to solve. Thus, in (Yu et al., 
2002) learning the structure of a Bayesian network can be used to identify the most obvious 
relationships between different genetic regulators in order to guide subsequent experiments. 
The structure is then only a part of the solution to the problem but itself a solution. 
Learning the structure of a Bayesian network may need to take into account the nature of 
the data provided for learning (or just the nature of the modelled domain): continuous 
variables— variables can take their values in a continuous space (Lauritzen & Wermuth, 
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1989; Lerner et al. 2001, Cobb & Shenoy, 2006) —, incomplete databases (Lauritzen, 1995; 
Heckerman, 1995). We assume in this work that the variables modelled take their values in a 
discrete set, they are fully observed, there is no latent variable i.e. there is no model in the 
field of non-observable variable that is the parent of two or more observed variables. 
The methods used for learning the structure of a Bayesian network can be divided into two 
main groups:  
1. Discovery of independence relationships: these methods consist in the testing 

procedures on allowing conditional independence to find a structure;  
2. Exploration and evaluation: these methods use a score to evaluate the ability of the 

graph to recreate conditional independence within the model. A search algorithm will 
build a solution based on the value of the score and will make it evolve iteratively. 

Without being exhaustive, belonging to the statistical test-based methods it should be noted 
first the algorithm PC, changing the algorithm SGS (Spirtes et al. 2001). In this approach, 
considering a graph G (X, E, θ), two vertices Xi and Xj from X and a subset of vertices SXi,Xj ∈ 
X /{Xi,Xj}, the vertices Xi and Xj are connected by an arc in G if there is no SXi,Xj such as (Xi ⊥ 
Xj|SXi,Xj) where ⊥ denotes the relation of conditional independence. Based on an undirected 
and fully connected graph, the detection of independence allows us to remove the 
corresponding arcs until the obtention the skeleton of the expected DAG. Then followed two 
distinct phases: i) detection and determination of the V-structures1 of the graph and ii) 
orientation of the remaining arcs. The algorithm returns a directed graph belonging to the 
Markov’s equivalence class of the sought model. The orientation of the arcs, except those of 
V-structures detected, does not necessarily correspond to the real causality of this model. In 
parallel to the algorithm PC, another algorithm, called IC (Inductive Causation) has been 
developed by the team of Judea Pearl (Pearl & Verma, 1991). This algorithm is similar to the 
algorithm PC, but starts with an empty structure and links couples of variables as soon as a 
conditional dependency is detected (in the sense that there is no identified subset 
conditioning SXi,Xj such as (Xi ⊥ Xj|SXi,Xj). The common disadvantage to the two algorithms 
is the numerous tests required to detect conditional independences. Finally, the algorithm 
BNPC — Bayes Net Power Constructor — (Cheng et al., 2002) uses a quantitative analysis of 
mutual information between the variables in the studied field to build a structure G. Tests of 
conditional independence are equivalent to determine a threshold for mutual information 
(conditional or not) between couples of involved variables. In the latter case, a work 
(Chickering & Meek, 2003) comes to question the reliability of BNPC. 
Many algorithms, by conducting casual research, are quite similar. These algorithms 
propose a gradual construction of the structure returned. However, we noticed some 
remaining shortcomings. In the presence of an insufficient number of cases describing the 
observed domain, the statistical tests of independence are not reliable enough. The number 
of tests to be independently carried out to cover all the variables is huge. An alternative is 
the use of a measure for evaluating the quality of a structure knowing the training database 
in combination with a heuristic exploring a space of options. 
Scoring methods use a score to evaluate the consistency of the current structure with the 
probability distribution that generated the data. Thus, in (Cooper & Herskovits, 1992) a 
formulation was proposed, under certain conditions, to compute the Bayesian score, 

                                                 
1 We call V-structure, or convergence, a triplet (x, y, z) such as y depends on x and z 
(x→y←z). 

www.intechopen.com



Evolutionary Methods for Learning Bayesian Network Structures 

 

339 

(denoted BD and corresponds in fact to the marginal likelihood we are trying to maximize 
through the determination of a structure G). In (Heckerman et al. 1995a) a variant of 
Bayesian score based on an assumption of equivalency of likelihood is presented. BDe, the 
resulting score, has the advantage of preventing a particular configuration of a variable Xi 
and of its parents Pa(Xi) from being regarded as impossible. A variant, BDeu, initializes the 
prior probability distributions of parameters according to a uniform law. In (Kayaalp & 
Cooper, 2002) authors have shown that under certain conditions, this algorithm was able to 
detect arcs corresponding to low-weighted conditional dependencies. AIC, the Akaike 
Information Criterion (Akaike, 1970) tries to avoid the learning problems related to 
likelihood alone. When penalizing the complexity of the structures evaluated, the AIC 
criterion focuses the simplest model being the most expressive of extracted knowledge from 
the base D. AIC is not consistent with the dimension of the model, with the result that other 
alternatives have emerged, for example CAIC - Consistent AIC - (Bozdogan, 1987). If the 
size of the database is very small, it is generally preferable to use AICC - Akaike Information 
Corrected Criterion - (Hurvich & Tsai, 1989). The MDL criterion (Rissanen, 1978; Suzuki, 
1996) incorporates a penalizing scheme for the structures which are too complex. It takes 
into account the complexity of the model and the complexity of encoding data related to this 
model. Finally, the BIC criterion (Bayesian Information Criterion), proposed in (Schwartz, 
1978), is similar to the AIC criterion. Properties such as equivalence, breakdown-ability of 
the score and consistency are introduced. Due to its tendency to return the simplest models 
(Bouckaert, 1994), BIC is a metric evaluation as widely used as the BDeu score. 
To efficiently go through the huge space of solutions, algorithms use heuristics. We can 
found in the literature deterministic ones like K2 (Cooper & Herskovits, 1992), GES 
(Chickering, 2002b), KES (Nielsen et al., 2003) or stochastic ones like an application of Monte 
Carlo Markov Chains methods (Madigan & York, 1995) for example. We particularly notice 
evolutionary methods applied to the training of a Bayesian network structure. Initial work is 
presented in (Larrañaga et al., 1996; Etxeberria et al., 1997). In this work, the structure is 
build using a genetic algorithm and with or without the knowledge of a topologically 
correct order on the variables of the network. In (Larrañaga et al., 1996) an evolutionary 
algorithm is used to conduct research over all topologic orders and then the K2 algorithm is 
used to train the model. Cotta and Muruzábal (Cotta & Muruzábal, 2002) emphasize the use 
of phenotypic operators instead of genotypic ones. The first one takes into account the 
expression of the individual’s allele while the latter uses a purely random selection. In 
(Wong et al., 1999), structures are learned using the MDL criterion. Their algorithm, named 
MDLEP, does not require a crossover operator but is based on a succession of mutation 
operators. An advanced version of MDLEP named HEP (Hybrid Evolutionary 
Programming) was proposed (Wong et al., 2002). Based on a hybrid technique, it limits the 
search space by determining in advance a network skeleton by conducting a series of low-
order tests of independence: if X and Y are independent variables, the arcs X→Y and X←Y 
can not be added by the mutation operator. The algorithm forbids the creation of a cycle 
during and after the mutation. In (Van Dijk et al., 2003a, Van Dijk et al., 2003b, Van Dijk & 
Thierens, 2004) a similar method was proposed. The chromosome contains all the arcs of the 
network, and three alleles are defined: none, X→Y and X←Y. The algorithm acts as Wong’s 
one (Wong et al., 2002) but only recombination and repair are used to make the individuals 
evolve. The results presented in (Van Dijk & Thierens, 2004) are slightly better than these 
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obtained by HEP. A search, directly done in the equivalence graph space, is presented in 
(Muruzábal & Cotta, 2004, Muruzábal & Cotta, 2007). Another approach, where the 
algorithm works in the limited partially directed acyclic graph is reported in (Acid & De 
Campos, 2003). These are a special form of PDAG where many of these could fit the same 
equivalence class. Finally, approaches such as Estimation of Distribution Algorithms (EDA) 
are applied in (Mühlenbein & Paab, 1996). In (Blanco et al., 2003), the authors have 
implemented two approaches (UMDA and PBIL) to search structures over the PDAG space. 
These algorithms were applied to the distribution of arcs in the adjacency matrix of the 
expected structure. The results appear to support the approach PBIL. In (Romero et al., 
2004), two approaches (UMDA and MIMIC) have been applied to the topological orders 
space. Individuals (i.e. topological orders candidates) are themselves evaluated with the 
Bayesian scoring. 

2.5 Our contribution 

For the training of the structure of a Bayesian network with a score function and without 
prior knowledge like the topology of the structure sought, one often use a greedy search 
algorithm over the space of structures or in the equivalence classes. But these methods have 
the disadvantage of being frequently trapped into a solution corresponding to a local 
optimum of the evaluation function. This is due to the presence of many local optima in 
space solutions. The smaller the training base is the numerous the optima are. The main 
reason for a premature convergence is that a greedy algorithm considers, at each moment, 
only one solution. The search stops if there is no better evaluated solution around a given 
point. The most widespread technique to avoid this is to use multiple initialization of the 
greedy algorithm, from very different initial structures and keep the best solution obtained. 
This technique has the disadvantage to dramatically increase the computing time but also 
offer no guarantee of obtaining x distinct solutions for x different initialization of the 
algorithm. 
Evolutionary algorithms have two major advantages when processing a problem with many 
local optima. On the one hand, they allow us to maintain a population of solutions, i.e. 
several points in the space of solutions. With the maintenance and development of 
alternatives it becomes possible to reduce the chances of being trapped in a single locally 
optimum. On the other hand, stochastic behaviour of these methods through the mutation 
operator can amplify the robustness to local optima attraction (conditionally on the use of 
parameters and adapted operators) by allowing an exploration of the solutions area which is 
no longer limited to the immediate neighbourhood of individuals in the population. 

3. Genetic algorithm design 

Genetic algorithms are a family of computational models inspired by Darwin’s theory of 
Evolution. Genetic algorithms encode potential solutions to a problem in a chromosome-like 
data structure, exploring and exploiting the search space using dedicated operators. Their 
actual form is mainly issued from the work of J.Holland (Holland, 1992) in which we can 
find the general scheme of a genetic algorithm (see Fig. 2) called canonical GA. Throughout 
the years, different strategies and operators have been developed in order to perform an 
efficient search over the considered space of individuals: selection, mutation and crossing 
operators, etc.  
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 /* Initialization*/  
t ← 0;  
Randomly and uniformly generate an initial population P0 of λ individuals and 
evaluate them using a fitness function ƒ  
/* Evolution */  
Select Pt individuals for the reproduction 
Build new individuals by application of the crossing operator on the 
beforehand selected individuals 
Apply a mutation operator to the new individuals: individuals obtained are 
affected to the new population Pt+1 
/* Evaluation */  
Evaluate the individuals of Pt+1 using ƒ 
t ← t + 1  
/* Stop */  
If a definite criterion is met then stop else start again the evolution phase 

Fig. 2. Holland’s canonical genetic algorithm (Holland, 1992) 

Applied to the search for Bayesian networks structures, genetic algorithm pose two 
problems:  
• The constraint on the absence of circuits in the structures creates a strong link between 

the different genes — and alleles — of a person, regardless of the chosen representation. 
Ideally, operators should reflect this property; 

• Often, a heuristic searching over the space of solutions (genetic algorithm, greedy 
algorithm and so on.) finds itself trapped in a local optimum. This makes it difficult to 
find a balance between a technique able to avoid this problem, with the risk of 
overlooking many quality solutions, and a more careful exploration with a good chance 
to compute only a locally-optimal solution. 

If the first item involves essentially the design of a thoughtful and evolutionary approach to 
the problem, the second point characterizes an issue relating to the multimodal 
optimization. For this kind of problem, there is a particular methodology: the niching. 
We now proceed to a description of a genetic algorithm adapted to find a good structure for 
a Bayesian network. 

3.1 Representation  

As our search is performed over the space of directed acyclic graphs, each invidual is 
represented by an adjacency matrix. Denoting with N the number of variables in the 
domain, an individual is thus described by an N×N binary matrix Adjij where one of its 
coefficients aij is equal to 1 if an oriented arc going from Xi to Xj in G exists.  
Whereas the traditional genetic algorithm considers chromosomes defined by a binary 
alphabet, we chose to model the Bayesian network structure by a chain of N genes (where N 
is the number of variables in the network). Each gene represents one row of the adjacency 
matrix, that’s to say each gene corresponds to the set of parents of one variable. Although 
this non-binary encoding is unusual in the domain of structure learning, it is not an 
uncommon practice among genetic algorithms. In fact, this approach turns out to be 
especially practical for the manipulation and evaluation of candidate solutions.  
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3.2 Fitness function 

We chose to use the Bayesian Information Criterion (BIC) score as the fitness function for 
our algorithm:  

 ( ) )log()(
2

1
),(log),( NBDimBDLDBS MAP

BIC ×−= θ  (2) 

where D represents the training data, θMAP the MAP-estimated parameters, and Dim() is the 
dimension function defined by Eq. 3:  
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where ri is the number of possible values for Xi. The fitness function ƒ(individual) can be 
written as in Eq. 4: 
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where ƒk is the local BIC score computed over the family of variable Xk.  
The genetic algorithm takes advantage of the breakdown of the evaluation function and 
evaluates new individuals from their inception, through crossing, mutation or repair. The 
impact of any change on local an individual's genome shall be immediately passed on to the 
phenotype of it through the computing of the local score. The direct consequence is that the 
evaluation phase of the generated population took actually place for each individual, 
depending on the changes made, as a result of changes endured by him. 

3.3 Seting up the population 

We choose to initialize the population of structures by the various trees (depending on the 
chosen root vertice) returned by the MWST algorithm. Although these n trees are Markov-
equivalent, the initialization can generate individuals with relevant characteristics. 
Moreover, since early generations, the combined action of the crossover and the mutation 
operators provides various and good quality individuals in order to significantly improve 
the convergence time. We use the undirected tree returned by the algorithm: each individual 
of the population is initialized by a tree directed from a randomly-chosen root. This 
mechanism introduces some diversity in the population. 

3.4 Selection of the individuals 

We use a rank selection where each one of the λ individuals in the population is selected 
with a probability equal to: 

 
)1(

)(1
2)(

+×
−+

×=
λλ

λ individualrank
individualPselect  (5) 

This strategy allows promote individuals which best suit the problem while leaving the 
weakest one the opportunity to participate to the evolution process. If the major drawback 
of this method is to require a systematic classification of individuals in advance, the cost is 
negligible. Other common strategies have been evaluated without success: the roulette 
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wheel (prematured convergence), the tournament (the selection pressure remained too 
strong) and the fitness scaling (Forrest, 1985; Kreinovich et al., 1993). The latter aims to allow 
in the first instance to prevent the phenomenon of predominance of "super individuals" in 
the early generations while ensuring when the population converges, that the mid-quality 
individuals did not hamper the reproduction of the best ones. 

3.5 Repair operator  

In order to preserve the closeness of our operators over the space of directed acyclic graphs, 
we need to design a repair operator to convert those invalid graphs (typically, cyclic 
directed graphs) into valid directed acyclic graphs. When one cycle is detected within a 
graph, the operator suppresses the one arc in the cycle bearing the weakest mutual 
information. The mutual information between two variables is defined as in (Chow & Liu, 
1968):  

 ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ba xx ba

abab
BA

NN

NN

N

N
XXW

,

log),(  (6) 

Where the mutual information W(XA,XB) between two variables XA and XB is calculated 
according to the number of times Nab that XA=a and XB=b, Na the number of times XA=a and 
so on. The mutual information is computed once for a given database. It may happen that an 
individual has several circuits, as a result of a mutation that generated and/or inverted 
several arcs. In this case, the repair is iteratively performed, starting with deleting the 
shortest circuit until the entire circuit has been deleted. 

3.6 Crossover operator  

A first attempt was to create a one-point crossover operator. At least, the operator used has 
been developed from the model of (Vekaria & Clack, 1998). This operator is used to generate 
two individuals with the particularity of defining the crossing point as a function of the 
quality of the individual. The form taken by the criterion (BIC and, in general, by any 
decomposable score) makes it possible to assign a local score to the set {Xi, Pa(Xi)}. Using 
these different local scores we can therefore choose to generate an individual which received 
the best elements of his ancestors. This operation is shown Fig. 3.  
This generation can be performed only if a DAG is produced (the operator is closed). In our 
experiments, Pcross, the probability that an individual is crossed with another is set to 0.8. 

3.7 Mutation operator  

Each node of one individual has a Pmute probability to either lose or gain one parent or to see 
one of its incoming arcs reverted (i.e. reversing the relationship with one parent). 

3.8 Other parameters  

The five best individuals from the previous population are automatically transferred to the 
next one. The rest of the population at t+1 is composed of the S−5 best children where S is 
the size of the population.  
Now, after describing our basic GA, we will present how it can be improved by i) a specific 
adaptive mutation scheme and ii) an exploration strategy: the niching. 
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Fig. 3. The crossover operator and the transformation it performs over two DAGs. 

4. Strategies 

The many parameters of a GA are usually fixed by the user and, unfortunately, usually lead 
to sub-optimal choices. As the amount of tests required to evaluate all the conceivable sets of 
parameters will be eventually exponential, a natural approach consists in letting the 
different parameters evolve along with the algorithm. (Eiben et al., 1999) defines a 
terminology for self-adaptiveness which can be resumed as follows: 
• Deterministic Parameter Control: the parameters are modified by a deterministic rule; 
• Adaptive Parameter Control: consists in modifying the parameters using feedback from 

the search; 
• Self-adaptive Parameter Control: parameters are encoded in the individuals and evolve 

along. 
We now present three techniques. The first one, an adaptive parameter control, aims at 
managing the mutation rate. The second one, an evolutionary method tries to avoid local 
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optima using a penalizing scheme. Finaly, the third one, another evolutionary method, 
makes many populations evolve granting sometimes a few individuals to go from one 
population to another.   

4.1 Self-adaptive scheme of the mutation rate 

As for the mutation rate, the usual approach consists in starting with a high mutation rate 
and reducing it as the population converges. Indeed, as the population clusters near one 
optimum, high mutation rates tend to be degrading. In this case, a self-adaptive strategy 
would naturally decrease the mutation rate of individuals so that they would be more likely 
to undergo the minor changes required to reach the optimum. 
However, applying this kind of policy can do more harm than good. When there are many 
local optima, as in our case, we can be confronted with the bowl effect described in (Glickman 
& Sycara, 2000). That is: when the population is clustered around a local optimum and the 
mutation rate is too low to allow at least one individual to escape this local optimum, a 
strictly decrementing adaptive policy will only trap the population around this optimum. 
Other strategies have been proposed which allow the individual mutation rates to either 
increase or decrease, such as in (Thierens, 2002). There, the mutation step of one individual 
induces three differently rated mutations: greater, equal and smaller than the individual’s 
actual rate. The issued individual and its mutation rate are chosen accordingly to the 
qualitative results of the three mutations. Unfortunately, as the mutation process is the most 
costly operation in our algorithm, we obviously cannot choose such a strategy. Therefore, 
we designed two adaptive policies.  
The first one is given Fig. 4: 
 

 At each mutation process, given one individual I, its fitness value ƒ(I) and its 
mutation rate Pm,ω < 1, γ > 1: 

1. Mutate individual I according to its mutation rate Pm: (I,Pm)→(I') 
2. If ƒ (I') > ƒ (I): allocate mutation rate ω ×Pm to individual I' and γ ×Pm 

to individual I, 
3. If ƒ (I') ≤ƒ (I): allocate mutation rate γ ×Pm to individual I' and ω×Pm to 

individual I 

 

Fig. 4. Basic adaptive mutation rate scheme. 

This principle is based on the fact that, during an evolution-based process, the less fit 
individuals have the best chances to produce new, fitter individuals. Our scheme is based on 
the idea of maximizing the mutation rate of less fit individuals while reducing the mutation 
rate of the fitter. However, in order to control the computational complexity of the algorithm 
as well as to leave to the best individuals the possibility to explore their neighbourhood, we 
define a maximum threshold Mutemax and a minimum threshold Mutemin for the mutation 
rate of all individuals. Since we also apply an elitist strategy, we added a deterministic rule 
in order to control the mutation rate of the best individuals: At the end of each iteration 
multipliy the mutation rates of the best D individuals by ω where D is the degree of our 
elitist policy. 
An improvement of this approach is now proposed. Indeed, the computed probability 
concerns all the possible mutation operations. But, perharps some could be benefits, others 
none. So we propose to conduct the search over the space of solutions by taking into account 
information on the quality of later searchs. Our goal is to define a probability distribution 
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which drives the choice of the mutation operation. This distribution should reflect the 
performance of the mutation operations being applied over the individuals during the 
previous iterations of the search. 
Let us define P(i,j,opmute) the probability that the coefficient aij of the adjacency matrix is 
modified by the mutation operation opmute. The mutation decays according to the choice of 
i, j and opmute. We can simplify the density of probability by conditionning a subset of 
{i,j,opmute} by its complementary; this latter being activated according to a static distribution 
of probability. After studying all the possible combination, we have chosen to design a 
process to control P(i|opmute,j). This one influences the choice of the source vertex knowing 
the destination vertex and for a given mutation operation. So the mutation operator can be 
rewritten such as shown by Fig. 5. 
 

 for j = 1 to n do 
     if Pa(Xj) mute with a probability Pmute then 
          choose a mutation operation among these allowed on Pa(Xj) 
          apply opmute(i, j) with the probability P(i|opmute ,j) 
     end if 
end for 

 

Fig. 5. The mutation operator scheme  

Assuming that the selection probability of Pa(Xj) is uniformly distributed and equals a given 
Pmute, Eq. 7 must be verified: 
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The diversity of the individuals lay down to compute P(i|opmute,j) for each allowed opmute 
and for each individual Xj. We introduce a set of coefficients denoted ζ(i,j,opmute(i,j)) where 
1≤i,j≤n  and i≠j to control P(i|opmute,j). So we define:  
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During the initialisation and without any prior knowledge, ζ(i,j,opmute(i,j)) follows an 
uniform distribution: 
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Finally, to avoid the predominance of a given opmute (probability set to 1) and a total lack of a 
given opmute (probability set to 0) we add a constraint given by Eq.10: 
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Now, to modify ζ(i,j,opmute(i,j)) we must take in account the quality of the mutations and 
either their frequencies. After each evolution phase, the ζ(i,j,opmute(i,j)) associated to the opmute 
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applied at least one time are reestimated. This compute is made according to a parameter γ 
which quantifies the modification range of ζ(i,j,opmute(i,j)) and depends on ω which is 
computed as the number of successful applications of opmute minus the number of 
detrimental ones in the current population. Eq.11 gives the computation. In this relation, if 
we set γ=0 the algorithm acts as the basic genetic algorithm previoulsy defined. 
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The regular update ζ(i,j,opmute(i,j)) leads to standardize the P(i|opmute,j) values and avoids a 
prematured convergence of the algorithm as seen in (Glickman & Sycara, 2000) in which the 
mutation probability is strictly decreasing. Our approach is different from an EDA one: we 
drive the evolution by influencing the mutation operator when an EDA makes the best 
individuals features probability distribution evolve until then generated. 

4.2 Niching 

Niching methods appear to be a valuable choice for learning the structure of a Bayesian 
network because they are well-adapted to multi-modal optimization problem. Two kind of 
niching techniques could be encountered: spatial ones and temporal ones. They all have in 
common the definition of a distance which is used to define the niches. In (Mahfoud, 1995), 
it seemed to be expressed a global consensus about performance: spatial approch gives 
better results than temporal one. But the latter is easier to implement because it consists in 
the addition of a penalizing scheme to a given evolutionnary method.  

4.2.1 Sequential niching 

So we propose two algorithms. The first one is apparented to a sequential niching. It makes 
a similar trend to that of a classic genetic algorithm (iterated cycles evaluation, selection, 
crossover, mutation and replacement of individuals) except for the fact that a list of optima 
is maintained. Individuals matching these optima see their fitness deteriorated to discourage 
any inspection and maintenance of these individuals in the future. 
The local optima, in the context of our method, correspond to the equivalence classes in the 
meaning of Markov. When at least one equivalence class has been labelled as corresponding 
to an optimum value of the fitness, the various individuals in the population belonging to 
this optimum saw the value of their fitness deteriorated to discourage any further use of 
these parts of the space of solutions. The determination of whether or not an individual 
belongs to a class of equivalence of the list occurs during the evaluation phase, after 
generation by crossover and mutation of the new population. The graph equivalent of each 
new individual is then calculated and compared with those contained in the list of optima. If 
a match is determined, then the individual sees his fitness penalized and set to at an 
arbitrary value (very low, lower than the score of the empty structure). 
The equivalence classes identified by the list are determined during the course of the 
algorithm: if, after a predetermined number of iterations Iteopt, there is no improvement of 
the fitness of the best individual, the algorithm retrieves the graph equivalent of the 
equivalence class of it and adds it to the list. 
It is important to note here that the local optima are not formally banned in the population. 
The registered optima may well reappear in our population due to a crossover. The 
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evaluation of these equivalence classes began, in fact until the end of a period of change; an 
optimum previously memorized may well reappear at the end of the crossover operation 
and the individual concerned undergo mutation allowing to explore the neighbourhood of 
the optimum. 
The authors of (Beasley et al., 1993) carry out an evolutionary process reset after each 
determination of an optimum. Our algorithm continues the evolution considering the 
updated list of these optima. However, by allowing the people to move in the 
neighbourhood of the detected optima, we seek to preserve the various building blocks 
hitherto found, as well as reducing the number of evaluations required by multiple launches 
of the algorithm. 
At the meeting of a stopping criterion, the genetic algorithm completes its execution thus 
returning the list of previously determined optima. The stopping criterion of the algorithm 
can also be viewed in different ways, for example: 
• After a fixed number of local optima detected; 
• After a fixed number of iterations (generations).  
We opt for the second option. Choosing a fixed number of local optima may, in fact, appear 
to be a much more arbitrary choice as the number of iterations. Depending on the problem 
under consideration and/or data learning, the number of local optima in which the 
evolutionary process may vary. The algorithm returns a directed acyclic graph 
corresponding to the instantiation of the graph equivalent attached to the highest score in 
the list of optima. 
An important parameter of the algorithm is, at first glance, the threshold beyond which an 
individual is identified as qu'optimum of the evaluation function. It is necessary to define a 
value of this parameter, which we call Iteopt that is: 
• Neither too small: take it too hasty a class of equity as a local optimum hamper space 

exploration research of the genetic algorithm, and it amalga over too many optima; 
• Nor too high: loss of the benefit of the method staying too long in the same point in 

space research: the local optima actually impede the progress of the research. 
Experience has taught us that Iteopt value of between 15 and 25 iterations can get good 
results. The value of the required parameter Iteopt seems to be fairly stable as it allows both to 
stay a short time around the same optimum while allowing solutions to converge around it. 
The value of the penalty imposed on equivalence classes is arbitrary. The only constraint is 
that the value is lowered when assessing the optimum detected is lower than the worst 
possible structure, for example: -1015. 

4.2.2 Sequential and spatial niching combined 

The second algorithm uses the same approach as for the sequential niching combined with a 
technique used in parallels GAs to split the population. We use an island model approach 
for our distributed algorithm. This model is inspired from a model used in genetic of 
populations (Wright, 1964). In this model, the population is distributed to k islands. Each 
island can exchange individuals with others avoiding the uniformization of the genome of 
the individuals. The goals of all of this is to preserve (or to introduce) genetic diversity. 
Some additional parameters are required to control this second algorithm. First, we denote 
Imig the migration interval, i.e. the number if iteration of the GA between two migration 
phases. Then, we use Rmig the migration rate: the rate of individuals selected for a migration. 
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Nisl is the number of islands and finaly Isize represents the number of individuals in each 
island.   
In order to remember the local optima encountered by the populations, we follow the next 
process: 
• The population of each island evolves during Imig iterations and then transfert Rmig × Isize 

individuals 
• Local optima detected in a given island are registered in a shared list. Then they can be 

known by all the islands. 

5. Evaluation and discussion 

From an experimental point of view, the training of the structure of a Bayesian network 
consists in: 
• to have an input database containing examples of instantiation of the variables 
• to determine the conditional relationship between the variables of the model 

• Either from statistical tests performed on several subsets of variables;  
• Either from measurements of a match between a given solution and the training 

database 
• to compare the learned structures to determine the respective qualities of the different 

algorithms used 

5.1 Tested methods 

So that we can compare with existing methods, we used some of the most-used learning 
methods: the K2 algorithm, the greedy algorithm applied to the structures space, denoted 
GS; the greedy algorithm applied to the graph equivalent space, noted GES; the MWST 
algorithm, the PC algorithm. These methods are compared to our four evolutionary 
algorithms learning: the simple genetic algorithm (GA); genetic algorithm combined with a 
strategy of sequential niching (GA-SN); the hybrid sequential-spatial genetic approach (GA-
HN); the genetic algorithm with the dynamic adaptive mutation scheme GA-AM. 

5.2 The Bayesian networks used  

We apply the various algorithms in search of some common structures like: Insurance 
(Binder et al., 1997) consisting of 27 variables and 52 arcs; ALARM (Beinlich et al. 1989) 
consisting of 37 variables and 46 arcs. We use each of these networks to summarize: 
• Four training data sets for each network, each one containing a number of databases of 

the same size (250, 500, 1000 & 2000 samples); 
• A single and large database (20000 or 30000 samples) for each network. This one is 

supposed to be sufficiently representative of the conditional dependencies of the 
network it comes from. 

All these data sets is obtained by logic probabilistic sampling (Henrion, 1988): the value of 
vertices with no predecessors is randomly set, according to the probability distributions of 
the guenine network, and then the remaining variables are sampled following the same 
principle, taking into account the values of the parent vertices. We use several training 
databases for a given network and for a given number of cases, in order to reduce any bias 
due to sampling error. Indeed, in the case of small databases, it is possible (and it is 
common) that the extracted statistics are not exactly the conditional dependencies in the 
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guenine network. After training with small databases, the BIC score of the returned 
structures by the different methods are computed from the large database mentioned 
earlier, in order to assess qualitative measures. 

5.3 Experiments 

GAs: The parameters of the evolutionary algorithms are given in Table 1. 
 

Parameter Value Remarks 

Population size 150  

Mutation probability 1/n  

Crossover probability 0.8  

Recombination scheme elitist The best solution is never lost 

Stop criterion 1000 iter.  

Initialisation  See footnote2  

Iteopt 20 For GA-SN only 

γ 0.5 For D1-GA & GA-AM 

Imig 20 For GA-HN only 

Rmig 0.1 For GA-HN only 

Nisl 30 For GA-HN only 

Isize 30 For GA-HN only 

Table 1. Parameters used for the evolutionary algorithms. 

GS: This algorihtm is initialized with a tree returned by the MWST method, where the root 
vertice is randomly chosen. 
GES: This algorithm is initialized with the empty structure. 
MWST: it is initialized with a root node randomly selected (it had no effect on the score of 
the structure obtained). 
K2: This algorithm requires a topological order on the vertices of the graph. We used for this 
purpose two types of initialization:  
• The topological order of a tree returned by the MWST algorithm (method K2-T); 
• A topological order random (method K2-R).  
For each instance of K2-R — i.e. for each training database considered — we are proceeding 
with 5 × n random initialization for choosing only those returning the best BIC score. 
Some of these values (crossover, mutation probability) are coming from some habits of the 
domain (Bäck, 1993) but especially from experiments too. The choice of the iteration number 
is therefore sufficient to monitor and interpret the performance of the method considered 
while avoiding a number of assessments distorting the comparison of results with greedy 
methods. 
We evaluate the quality of the solutions with two criteria: the BIC score from one hand, and 
a graphic distance measuring the number of differences between two graphs on the other 

                                                 
2 The populations of the evolutionary methods are all initialized like GS. We make sure, 
however, that each vertice will be selected at least once as root. 
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hand. The latter is defined from 4 terms: (D) the total number of different arcs between two 
graphs G1 and G2, (+) the number of arcs existing in G1 but not in G2, (-) the number of arcs 
existing in G2 but not in G1 and (inv) the number of arcs inverted in G1 comparing to G2. 
These terms are important because, when considering two graphs of the same equivalence 
class, some arcs could be inverted. This implies that the corresponding arcs are not oriented 
in the corresponding PDAG. The consequence is that G1 and G2 have the same BIC score but 
not the same graphic distance. To compare the results with we also give the score of the 
empty structure G0 and the score of the reference network GR. 

5.4 Results for the INSURANCE network 

Results are given Table 2 & Table 3. The evaluation is averaged over 30 databases. Table 2 
shows the means and the standard deviations of the BIC scores. For a better seeing, values 
are all divided by 10. Values labelled by † are significantly different from the best mean 
score (Mann-Whitney’s test). 
The results in Table 2 give an advantage to evolutionary methods. While it is impossible to 
distinguish clearly the performance of the different evolutionary methods, it is interesting to 
note that these latter generally outperform algorithms like GES and GS. Only the algorithm 
GS has such good results as the evolutionary methods on small databases (250 and 500). We 
can notice too, according to a Mann-Whitney’s test that, for large datasets, GA-SN & GA-
AM returns a structure close to the original one.  Standard deviations are not very large for 
the GAs, showing a relative stability of the algorithms and so, a good avoidance of local 
optima.  
 

 250 500 1000 2000 

GA −32135 ± 290 −31200 ± 333 −29584 ± 359 −28841 ± 89† 

GA-SN −31917 ± 286 −31099 ± 282 −29766 ± 492 −28681±156 

GA-HN −31958±246 −31075 ± 255 −29428 ± 290 −28715 ± 164 

GA-AM −31826±270 −31076 ± 151 −29635 ± 261 −28688 ± 165 

GS −32227 ± 397 −31217 ± 314 −29789 ± 225† −28865 ± 151† 

GES −33572 ± 247† −31952 ± 273† −30448 ± 836† −29255 ± 634† 

K2-T −32334 ± 489† −31772 ± 339† −30322 ± 337† −29248 ± 163† 

K2-R −33002 ± 489† −31858 ± 395† −29866 ± 281† −29320 ± 245† 

MWST −34045 ± 141† −33791 ± 519† −33744 ± 296† −33717 ± 254† 

GR −28353 

G0 −45614 

Table 2. Means and standard deviations of the BIC scores (INSURANCE).  

Table 3 shows the mean structural differences between the original network and these 
delivered by some learning algorithms. There, we can see that evolutionary methods, 
particularly GA-SN, return the structures which are the closest to the original one. This 
network was chosen because it contains numerous low-valued conditional probabilities. 
These are difficult to find using small databases. So even if the BIC score is rather close to 
the original one, graphical distances reveals some differences. First, we can see that D is 
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rather high (the original network GR is made with only 52 arcs, compared to D which 
minimum is 24.4) even if the BIC score is very close (resp. -28353 compared to -28681). 
Second, as expected, D decreases when the size of the learning database grows, mainly 
because of the (-) term. Third, GAs obtains the closest models to the original in 11 cases over 
16; the 5 others are provided by GES. 
 

250 500 
 

D + inv - D + inv - 

GA 39.6 4.4 7.2 28 34 3.1 7.6 23.3

GA-SN 37 3.5 7.1 26.4 35.1 3.7 7.4 24 

GA-HN 38.1 3.5 7.5 27.1 33.3 3 7.3 23 

GA-AM 37.5 4.3 6.6 26.6 33.9 3.2 7.7 23 

GS 42.1 4.6 9.4 28.1 37.7 4.5 9.4 23.8

GES 39.5 3.7 7.1 28.7 35.1 3 7.1 25 

K2-T 42.7 5.1 8.4 29.2 40.8 5.4 8.8 26.6

K2-R 42.4 4.8 7.2 30.4 41.8 6.5 8.8 26.6

MWST 41.7 4 7.7 30 41.3 3.5 8.3 29.5

1000 2000 
 

D + inv - D + inv - 

GA 39.6 4.4 7.2 28 27.8 4.7 8 15.1

GA-SN 30.8 3.8 7.4 19.6 24,4 3.4 6.7 14.3

GA-HN 29.3 3.6 6.5 19.2 26.6 3.6 8.6 14.4

GA-AM 31.4 4 8 19.4 27 4.3 8.4 14.3

GS 35.9 5.1 10 20.8 31.9 5.2 11.4 15.3

GES 32.4 4.1 8.1 20.2 27.5 4 8.4 15.1

K2-T 38.7 5.9 11 21.8 34.6 7.3 10.9 16.4

K2-R 39.6 8.3 8.3 23 36.1 8.5 8.5 9.1 

MWST 37.7 1.7 8.3 27.7 36.3 1.2 7.9 27.2

Table 3. Mean structural differences between the original INSURANCE network and the 
best solutions founded by some algorithms 

5.5 Results for the ALARM network 

The results are shown Table 4 & Table 5. This network contains more vertices than the 
INSURANCE one, but less low-valued arcs. The evaluation is averaged over 30 databases. 
Table 4 shows that evolutionary algorithms obtain the best scores. But while GES provides 
less qualitative solutions accordingly to the BIC score, these solutions are closest to the 
original one if we consider the graphical distance. Here, a strategy consisting in gradually 
building a solution seems to produce better structures than an evolutionary search. In this 
case, a GA has a huge space (3×10237 when applying the Robinson's formula) into which one 
it enumerates solutions. If we increases the size of the population the results are better than 
these provided by GES.  
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 250 500 1000 2000 

GA −36239 ± 335 −34815 ± 317 −33839 ± 159 −33722 ± 204† 

GA-SN −36094±297 −34863 ± 346 −33865 ± 203 −33640 ± 196† 

GA-HN −36144 ± 326 −34864 ± 337 −33723 ± 251 −33496 ± 170 

GA-AM −36104 ± 316 −34791±340 −33942 ± 198† −33722 ± 204† 

GS −36301 ± 309† −35049 ± 380† −33839 ± 109† −33638 ± 964† 

GES −36124 ± 315 −34834 ± 288 −33801 ± 562† −33593 ± 692† 

K2-T −36615 ± 308† −35637 ± 328† −34427 ± 200† −34045 ± 818† 

K2-R −37173 ± 435† −35756 ± 264† −34579 ± 305† −34128 ± 173† 

MWST −37531 ± 185† −37294 ± 737† −37218 ± 425† −37207 ± 366† 

GR −33097 

G0 −63113 

Table 4. Means and standard deviations of the BIC scores (ALARM).  

 

250 500 
 

D + inv - D + inv - 

GA 34.2 4.8 13.9 15.5 25.7 4.5 10.2 11 

GA-SN 33.1 4.6 13.5 15 25.6 4.2 10.6 10.8

GA-HN 33.6 4.6 13.8 15.2 25.1 3.7 10.7 10.7

GA-AM 33 4.6 13.4 15 26.2 4 11.5 10.7

GS 33.7 5 12.6 16.1 30.2 5 13.5 11.7

GES 32.5 4.5 12.7 15.3 23.3 3.8 8 11.5

K2-T 34.5 5.1 13.1 16.3 35.1 7.2 15.2 12.7

K2-R 36.5 6.6 10.2 19.6 35 8.7 11.3 11.5

MWST 38.5 6.9 14.7 16.9 36.5 4.7 17.1 14.7

1000 2000 
 

D + inv - D + inv - 

GA 19.7 3.7 9 6.9 23 5.3 11.8 5.9 

GA-SN 22 4.5 10.4 7.1 20.1 4.1 10.2 5.8 

GA-HN 18.3 3.3 10.1 4.9 18.9 3.6 9 6.3 

GA-AM 27 6.4 13.1 7.4 29 7.4 16 6.3 

GS 27.8 6.2 14.5 7.1 25.4 6.2 13.6 5.6 

GES 20.2 4.3 8.5 7.3 17.3 3.5 8.2 5.6 

K2-T 35.4 10.4 15.7 9.3 36.9 12.3 17.4 7.2 

K2-R 37.1 11.4 15.1 10.6 40.2 14.6 16.1 9.5 

MWST 35.1 4.4 16.3 14.4 34.1 14 16.1 14 

Table 5. Mean structural differences between the original ALARM network and the best 
solutions founded by some algorithms 
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5.5 Behaviour of the GAs 

Now look at some measures in order to evaluate the behaviour of our genetic algorithms.  
A repair operator was designed to avoid individuals having a cycle. Statistics computed 
during the tests show that the rate of individuals repaired does not seem to depend neither 
on the algorithm used nor and on the size of the training set. It seems to be directly related 
to the complexity of the network. Thus, this rate is about 15% for the INSURANCE network 
and about 7% for the ALARM network. 
The mean number of iterations before the GA found the best solution returned for the 
INSURANCE network is given Table 6. The data obtained for the ALARM network are the 
same order of magnitude. We note here that GA-HN quickly gets the best solution. This 
makes it competitive in terms of computing time if we could detect this event.  
 

 250 500 1000 2000 

GA 364 454 425 555 

GA-AM 704 605 694 723 

GA-SN 398 414 526 501 

GA-HN 82 106 166 116 

Table 6. Mean of the necessary number of iterations to find the best structure 
(INSURANCE). 

The averaged computing time of each algorithm is given Table 7 (for the ALARM network). 
We note here that GA-HN is only three times slower than GES. We note too that these 
computing times are rather stable when the size of the database increases.  
 

 250 500 1000 2000 

GA 3593 ± 47 3659 ± 41 3871 ± 53 4088 ± 180 

GA-AM 3843 ± 58 3877 ± 44 4051 ± 59 4332 ± 78 

GA-SN 3875 ± 32 4005 ± 43 4481 ± 46 4834 ± 52 

GA-HN 9118 ± 269 9179 ± 285 9026 ± 236 9214 ± 244 

GS 9040 ± 1866 9503 ± 1555 12283 ± 1403 16216 ± 2192 

GES 3112 ± 321 2762 ± 166 4055 ± 3.4 5759 ± 420 

K2-T 733 ± 9 855 ± 25 1011 ± 14 1184 ± 8 

K2-R 3734 ± 61 4368 ± 152 5019 ± 67 5982 ± 43 

MWST 10 ± 1 10 ± 2 11 ± 1 12 ± 1 

Table 7. Averaged computing times (in seconds) and standard deviations (ALARM). 

An example of the evolution of the fitness of the population is given Fig. 6. The curves for 
GA, GA-SN and GA-AM are very similar. The curve associated with GA-HN increases 
through levels, a consequence of spatial niching policy who promptly exchange some 
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individuals between islands. Although the average quality is progressing more slowly, it is 
revealed fairly quickly, however, better than in other genetic algorithms. Although the curve 
corresponding to the algorithm GA seems well placed, Tables 4 and 5 learn us a bit more. 
First, the score is not considered equivalent: the algorithm GA-HN have the best one. 
Second, the graphical distance of GA-HN is the lowest. Although GA-SN seems more 
remote, the results presented in Tables 4 and 5 show that the BIC score obtained by GA-SN 
is closer to the optimal, and the editing distance of GA-SN is better than the GA one. 
 

 

Fig. 6. Evolution of the individuals’ fitness (ALARM, 2000 training samples). 

6. Future search 

We will continue the development of the hybrid niching technique. The first step is the 
distribution over a cluster of computers. Then we plan to develop new strategies implying a 
global behaviour like in GA-HN and a dynamic mutation scheme like this one used in GA-
AM. The next goal will be the definition of a stopping criterion based on population’s 
statistics to make our algorithm competitive in term of computing time. 

7. Conclusion 

We have presented three methods for learning the structure of a Bayesian network. The first 
one consists in the control of the probability distribution of mutation in the genetic 
algorithm. The second one is to incorporate a scheme penalty in the genetic algorithm so 
that it avoids certain areas of space research. The third method is to search through several 
competing populations and to allow timely exchange among these populations. We have 
shown experimentally that different algorithms behaved satisfactorily, in particular that 
they were proving to be successful on large databases. We also examined the behaviour of 
proposed algorithms. Niching strategies are interesting, especially using the spatial one, 
which focuses quickly on the best solutions. 
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