
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

16

EA-based Problem Solving
Environment over the GRID

Mohamed Wahib1, Asim Munawar1, Masaharu Munetomo2

and Kiyoshi Akama2

1 Graduate School Of Information Science and Technology
2 Division of Large Scale Computing Systems, Information Initiative Center

Hokkaido University

Sapporo, Japan

1. Introduction

EA-based problem solving environments have progressively evolved in the last two decades

from explicit one-problem serial solvers to multi-solvers platforms running on vast

distributed heterogeneous resources. Significant efforts in the literature were devoted

towards designing EA-based problem solving environments. Those research efforts were

mainly directed to innovating new EAs with a parallel implementation (Cantu-Paz, 2000),

and the counterpart for those research efforts were directed towards designing and

constructing parallel computing environments (Weise, 2007) that could host parallel and

distributed implementations of EAs. Still for the evolution of the problem solving

paradigms, problem solving environments have not fully shifted to parallel and distributed

models, and even up till today practices of serially implementing EAs problems of medium

complexity are still noticeable. These practices prevailed in part due to the continuous

increase in clock speeds, multicore processors, and problem nature.

Yet, in the past few years, the significant increase in distributed resources, high

bandwidth/ low latency networks and cheap data storage along with the wide expansion in

problem scope and addressing new problem types that were not attainable before, all

combined together strongly motivated to rethinking the strategy of designing EA-based

problem solving environments. Various distributed computing paradigms were used as

platforms for EA-based problem solving environments, (Munawar et al., 2008) gives a brief

illustration of those paradigms. In this chapter we concentrate on a modern distributed

computing paradigm, namely grid computing (Foster & Kesselman, 1999). In the recent

years, grid computing acquired widespread attention from both research and industrial

institutions, as it provides contextual establishment of open standard platforms for

distributed computing (more details in section 2.1)

 Constructing an EA-based problem solving environment requires two main streams of

working, one is the algorithm design and the other is the challenges associated with

constructing a Grid based platform. The algorithm design is significantly affected when

using distributed technologies, therefore many points should be taken into account when

designing algorithms for distributed environments: fault tolerance, support of

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Source: Advances in Evolutionary Algorithms, Book edited by: Witold Kosiński, ISBN 978-953-7619-11-4, pp. 468, November 2008,
I-Tech Education and Publishing, Vienna, Austria

www.intechopen.com

 Advances in Evolutionary Algorithms

316

interconnection for loosely coupled resources, support of late binding and dynamic

migration. The other main stream which is the challenges accompanied with the grid

computing environments both that are general (i.e. grid computing traditional problems)

and specific (i.e. challenges related to EA-based solvers deployment).

In this chapter we present MHGrid (Meta Heuristics Grid), a service-oriented grid

application that provides easy to use robust environment for meta heuristics optimization

solvers, including EAs, over a grid. The objective of MHGrid is to offer a framework, using

which a user can solve complex global optimization problems using EAs over a grid with

minimal effort. MHGrid is designed in a service-oriented fashion and offers the following

services to the user:

1. Allow the user to use any of the solvers registered with MHGrid to solve a problem

with minimal input and in a black box manner.

2. Allow solver developers to write and register a new EA-based solver with MHGrid.

3. Allow solver developers to write and register a new objective function with MHGrid.

4. Ability to control the parallelization model of the solver and objective function for high

complexity problems.

5. Provide all the preceding services at both the application layer and middleware layer.

This chapter is intended for a reader interested in the implementation of grid based problem

solving environments of EAs. The reader is expected to have the basic background about

EAs so the chapter scope will be focused on the grid computing problem solving

environment and the effect of using the grid on the algorithms (i.e. parallelization and

solver–to-objective function relation). We have tried not to overload the chapter with details

by providing a very brief summary of the most notable and significant related work. So the

chapter is focusing the discussion on the MHGrid platform and not devoted to being a

comprehensive overview or survey of the previous work done in the area.

The chapter is organized as follows, section 2 discusses grid-based EAs problem solving

environments, it briefly investigates the related work of grid-based EAs. Section 3 discusses

the design, architecture and implementation of MHGrid as a problem solving environment.

Section 4 presents a close-up, from the service orientation perspective, to the SOA (Service

Oriented Architecture) that MHGrid encompasses and also the modelling of MHGrid

solvers as services. Section 5 illustrates a full test case starting from a user registering his

service to using the registered service. Finally, section 6 concludes the whole chapter and

gives an insight for the future work.

2. Grid-based problem solving environment in EAs

This section will give a very brief introduction of grid computing and why use grid

computing with EA followed by showing the impact of the grid on algorithm design. Also a

revision of the related work is discussed.

2.1 Grid computing
The most commonly used definition to abstractly define a grid is: “Coordinated resource

sharing and problem solving in dynamic, multi-institutional virtual organization” (Foster &

Kesselman, 1999). The most common among the categories of grid are:

- Computational Grids: Grids that basically aggregate computational resource to offer

transparent computational power to the applications that use them.

www.intechopen.com

EA-based Problem Solving Environment over the GRID

317

- Data Grids: Used to manage and control access to huge distributed data stored on

heterogeneous storage devices.

- Utility Grid: A market-oriented Grid that applies utility computing concepts in

designing the grid.

EAs problem solving environments when associated with grid fall under the category of

computational grids. Yet in some problem solving environments that require extensive data

handling, techniques that are basic components in data grids such as data replication and

staging are introduced in the computational grid. Now almost every production level

computational grid has support to what is known as workflow (transfer of data and files

across the grid). Nonetheless, grid computing when addressed in EAs conventionally means

computational grids.

The grid architecture as shown in figure 2 is a revised version of the traditional grid

architecture. The traditional grid architecture is composed of three layers only, the

resources, the middleware layer and the application layer. The middleware is a software

layer that resides between an application and the underlying platform, in grids the

middleware hides the underlying low-level details and complexities from the application

layer. Yet, practically in grids, a big semantic gap lies between the middleware and the

application layer, so (Abramson, 2006) revised the traditional architecture and modified it

by splitting the middleware layer into two layers, the upper middleware layer and the lower

middleware layer. This architecture was adopted in MHGrid due to its enhanced subjective

representation and ease of modelling.

Fig.2. General revised architecture of MHGrid as a computational grid.

GT4
Deployment

Service
Directory

Index

Development

Tools Execution

Tools

Lower Middleware Layer

Application & Serviceware

High Speed

Networks

Storage
Clusters

Servers

User

Application

Service

Upper Middleware Layer

Problem Solving

Environment

Resources & Infrastructure

www.intechopen.com

 Advances in Evolutionary Algorithms

318

2.2 Why grid computing for EAs
An often repeatedly aroused question is why use grid computing for EAs, as it naturally

adds a significant overhead to the performance compared to other technologies such as

cluster computing. Also designing and implementing a problem solving environment over

the grid involves much more complexity than compared to other techniques. The answer to

that question lies in a three point checklist by Ian Foster (Foster, 2002), that is when satisfied,

classifies the distributed computing framework as a grid. The checklist is:

- Resources are not administered centrally.

- Open standard, general-purpose interfaces and protocols are used.

- Non-trivial quality of service is achieved.

From the checklist above, considering the non-trivial quality of service, grid will be a good

choice as a distributed computing paradigm. The major non trivial quality of service is the

grid application hosting environment. As the grid application can be available over the

Internet and accessed through a Web portal (this is the case in MHGrid), so the hosting

environment in this case is the Internet, and the user could be any person accessing the

portal and having a valid grid certificate. Other parallel computing paradigms on the other

hand (e.g. cluster computing and supercomputing) are available locally in the scale of a

LAN, and thus the users in this case, are users having direct access to the resources. This

feature of grid computing (i.e. availability over Internet and Intranets) is a basic advantage

that attracts developers in the case of applications that are intended to be accessed widely

with remote resources.

Other non trivial qualities of service include availability, latency and throughput. A more

detailed study on quality of service metrics and aspects in grid is at (Daniel & Emiliano,

2004). The handling and presentation of those metrics could be through defining utility

functions (Chunlin & Layuan, 2007) or by defining the provided functionalities as services

and thus have a SLA (Service Level Agreement) for each service. One more case that will be

most suitable to adopt grid technology with EAs and that is the case of using grid to

aggregate resources to provide a huge underlying computational power that enables

addressing new complex and relatively expensive problems that were not addressed before

due to resource limitation. One fine example to this case is (Chrabakh & Wolski, 2006) in

which the authors were able to solve problems that were not solved before due to resource

limitation. (Chrabakh & Wolski, 2006) is mainly designated for SAT problems but it still

gives a clear evidence of how the grid can be used to address problems of higher complexity

compared to other distributed computing paradigms.

Summarizing the need of using grid for EAs; the ability to use non-trivial quality of service

metrics rather than speedup, and the ability to use the application over the Internet rather

than direct local access is particularly the most important non trivial quality of service.

Another reason will be the ability to address new problem of high order complexity and cost

depending on the grid ability to aggregate heterogeneous geographically dispersed

resources.

2.3 Impact of grid on algorithms
A common practice of running EAs over grid is to use legacy EAs that were written to run

on another parallel computing paradigm and running it intactly on the grid. This practice

for some algorithms will not be suitable and will be error-prone (i.e. an algorithm that is

www.intechopen.com

EA-based Problem Solving Environment over the GRID

319

tightly coupled with out being able to tolerate communication delays will have very

significant performance degradation.). From the other side, if the algorithm design did not

take into account the nature of the grid it will not benefit most from using a grid and will at

best expectations run without any degradation in performance. Therefore the following

points should be taken into account when designing EAs for a grid:

- The algorithm should be designed and implemented in a manner that supports

interconnection of loosely coupled entities.

- The algorithm should be able to tolerate communication delays for up to 100’s

milliseconds without significant performance degradation.

- The algorithm should have interfaces allowing for late binding to allow a space for

dynamic scheduling and workflows.

- The algorithm should be able to rely on remote data sources as copying the data locally

before executing might not be feasible.

- The Algorithm should be fault tolerant.

2.4 Related work
Projects using EAs over grids or EAs problem solving environmets over grid are numerous.

Table 1 summarizes some of the notable efforts in this direction and also projects trageted to

optimization problem solving environments in general. The table has a comparison of

MHGrid with different projects, of different scopes and using different technologies, it gives

a close-up to the relation of optimization problems with grids.

NEOS (Czyzck, 1998): The only non-grid based project among the other projects in the table,

yet it later motivated using grids for the similar functionality. NEOS is simply a client-server

system that is dedicated to solving optimization problems by allowing the user to submit his

optimization problems as well as allowing the user to add a solver of his own through

NEOS management. The user has no control over the solver parallelization.

Folding@Home (Larson, 2003): This project is categorized as what is called desktop grids,

utilizing processor cycles of distributed non-dedicated normal PCs, it was designed to

perform computationally intensive simulations of protein folding and other molecular

dynamics, it involves GROMACS optimization, and it does not allow user interaction with

the job running, the user just installs the client and offer his resources for usage.

Folding@Home has not provided optimization solving problem solving environment, yet it

is a well known example of how aggregated resources when combined can address new

problem scope.

Nimrod/O (Abramson et al., 2000): A very significant project as the authors not only

designed the problem solving environment but they also added and modified the grid

middleware to adapt with the grid application. Nimrod/ O offers namely 4 optimization

solving packages solving non-linear optimization problems, but it doesn’t allow the user to

add his own solver and limits him/ her to the provided solvers. Further to mention,

Nimrod/ O uses an ontology based module to guide the user to the best solver considering

his/ her problem.

GEODISE (Cox et al., 2002): Specific to optimization problems in computational fluid

dynamics, it uses Application Service Provision (ASP) and offers the services through a

custom Matlab toolbox, it was designed for production and like Nimrod/ O and had a

commercial version.

www.intechopen.com

 T
a
b
le

 1
. C

o
m

p
a
riso

n
 o

f D
iffe

re
n

t p
ro

je
cts p

ro
v

id
in

g
 o

p
tim

iz
a
tio

n
 so

lv
in

g
 e

n
v

iro
n

m
e
n

ts.

Solv

eli

Pre

Inde

Wo

Pre

Pre

Pre

Fixe

M

Stru

De

Solv

defi

own

Dis

M

Security

No

Yes (2048

bit Digital

Signat-

ure)

Yes (GSI)

Yes (GSI)

Yes

Yes (GSI)

Yes (GSI)

Yes (GSI)

Adding

New

Solver By

User

Allowed(Thr-

ough

Managem-

ent)

Not

Allowed

Not

Allowed

Not

Allowed

Not

Allowed

Not

Allowed

Alowed(pa

rtially)

Allowed

(Through

Portal)

Info.

Exchange

Plain

Sockets

Client-Server

Sockets

Active

Sheets

Environment

API

AMPL/ M

PL

Environment

API

Java

Interfaces

MHML

(XML-

based)

Middleware

Non-

Standard

SMP Client

OGSA

Compliant

OGSA

Compliant

Aggregated

Components

OGSA

Compliant

OGSA

Compliant

OGSA

Compliant

Arch-

itecture

Trivial

Web

Applic-

ation

Distri-

buted

Event

Driven

ASP

ASP

Trivial

Distribut-

ed

Appli-

cation

ASP

Service

orient-

ed grid

applic-

ation

Black-

Box

Not

Supp-

orted

Not

Supp-

orted

Not

Supp-

orted

Not

Supp-

orted

Not

Supp-

orted

Supp-

orted

Not

Supp-

orted

Supp-

orted

Scope

Any Optim-

ization

GROMACS

Optim-ization

Non-linear

Optimization

Fluid Dyn-

amics

Decision Supp-ort

System

Island-model

Genetic

Algorithm

Combinator-

ial

optimization

Global

Optimization

with

metaheuristics

(GA,SA,EDA

,...)

Project

NEOS

Folding

@Home

Nimrod/O

GEODISE

OSP

GE-HPGA

MW

MHGrid
w

w
w

.intechopen.com

EA-based Problem Solving Environment over the GRID

321

OSP (Optimization Service Provider, www.osp.org): A recent EU funded project using ASP

for solving decision support systems optimization problems. It was later extended to

another project (WEBOPT, www.webopt.org) that uses the E-service model instead. Both of

them intend to offer a web-based DSS optimization solving environment.

GE-HPGA (Lim et al., 2007): It is similar to MHGrid in offering black-box optimization, the

framework is limited to only one solver and the main target was to offer speedup compared

to other distributed models. To achieve it’s target, GE-HPGA used the island model GA that

splits the population into sub-populations to minimize the program inter-communication as

much as possible and thus minimize the grid overhead as much as possible.

MW (Glankwamdee & Linderoth, 2006): A framework that is targeting to offer

combinatorial optimization solvers over the grid, MW has a very interesting feature for

solver and task definition where through MW API (Java interfaces), the user can implement

the interfaces to define his task, and also his solver. This technique solves the problem of

solver deployment but on the other hand enforces the user to use Java language which is

relatively slow, yet it eases the usage of MW by defining flexible interfaces.

MHGrid is a service oriented grid-based framework compliant with OGSA, Open Grid

Services Architecture (Foster et al., 2005). It offers various solvers to global optimization

problems. All solvers belong to the meta heuristics family of solvers (meta heuristics is a

wide category containing EAs and other solver types like search heuristics). Solvers that are

meta heuristics based support black box optimization in which the user provides the input

and receives the output without knowledge of the underlying computation, black box

optimization is a highly desirable feature in optimization solvers to relief the user from

involvement in too much details. As for the user interface, the user could use MHGrid’s web

portal or directly use the Web services of MHGrid. Information interchange between the

user and the system is maintained through MHML (Meta Heuristics Mark up Language),

Details for MHML are in section 3.4.

3. MHGrid: A grid-based global optimization problem solving environment

MHGrid is a framework dedicated for solving optimization problems over Grid. The main

target of the framework is global optimization problems (global optimization is a branch of

applied mathematics and numerical analysis that deals with the optimization of a function

or a set of functions to some criteria). The framework is intended for the solvers based on

heuristic or meta heuristic searching methods.

MHGrid targets general purpose global optimization problems, a major challenge is that

according to the No Free Lunch theorem, NFL, (Wolpert & Macready, 1995), no single

optimization algorithm will give good results will all problems. The strategy that MHGrid

uses to overcome this part is by offering diverse techniques for global optimization covering

a wide range of problem type, and also offering mediation between the problem-solver pairs

to assure that the solver used is the most adequate to the problem in hand. The strategies

enforced by MHGrid to overcome the NFL problem are discussed later in sections 4.1, 4.2.

MHGrid provides the following functions to the user:

- Allows the usage of a solver registered with MHGrid to solve a problem in hand, this is

done with a minimal input.

- Enables solver developers to write a new solver that is integrated with MHGrid sing

MHAPI, and register it.

- Enables solver developers write a new objective function and register it.

www.intechopen.com

 Advances in Evolutionary Algorithms

322

- Do all the previous either through MHGrid’s web portal or by directly consuming

MHGrid’s Web services.

The key contribution is combining the computational power offered by grid technology

along with the optimization efficiency of meta heuristics algorithms to give an easy to use

general purpose Problem Solving Environment (PSE) for global optimization problems. All

MHGrid Web services are WSRF complaint web service to enable the user to use the

services directly or through the portal. We have used a unique hybrid parallelization

technique that employs GridRPC (Symour et al., 2002) + GridMPI (Ishikawa et al., 2005)

approach to dynamically adapt to the grain size of the solver. We have also developed an

XML based mark up language, MHML, which acts as an interface between the user and

MHGrid Web services.

3.1 MHGrid architecture
Figure 3 gives an overview of MHGrid’s architecture, it shows the services that are directly

or indirectly used by MHGrid. As the figure shows, the base layer is a high performance

grid network, on the top of that runs our Web services in a globus GT4 container (Foster,

2006). All other technologies and services are either build on top of globus or they use

globus in one way or the other. Globus Toolkit Monitoring and Discovery Service (MDS) are

used by the Condor-G scheduler (Frey et al., 2001) to collect information about the current

state of the dynamically changing Grid environment. This information is used by the

Condor-G based scheduler to negotiate SLA (Service Level Agreement) with the web service

and also to manage and schedule the jobs in a better way.

Fig.3. MHGrid architecture at an abstract level.

www.intechopen.com

EA-based Problem Solving Environment over the GRID

323

GridRPC (Symour et al., 2002) - MHGrid uses Ninf-G (Tanaka et al., 2003) implementation

of GridRPC- and GridMPI (Ishikawa et al., 2005) are also built on top of the Grid

technologies, they are Grid variants of the famous Remote Procedure Call (RPC) and

Message Passing Interface (MPI) technologies respectively and their use is almost similar to

that of their non-Grid counterparts. Next is the Directory index, which is responsible for

storing the logs and maintaining the indexes for the solvers and objective functions. A

Workflow management module is needed for managing data staging in case of solvers

requiring remote datasets. Service Level Agreement (SLA) layer is used for controlling the

negotiations between the resource broker (i.e. Condor-G Central Manager) and the users

submitting jobs. On top of all these layers come the solvers that run on the Grid to solve

global optimization problems.

Fig.4. A close-up to MHGrid internals.

Figure 4 gives an insight to the internals of MHGrid and the flow of information inside
MHGrid. The arrows with short dashed show the information flow for a user submitting a
job, while the dashed-single dotted show an objective function developer registering an
objective function and the long dashed are of a solver developer registering a solver.
Different modules and functionalities provided by the framework are visible from the
figure. The modules of the framework are as follows:

Web Portal: A 2nd generation portal using Gridshpere (Novotny, 2004) as a portlet container.

Custom JSR compliant portlets are added to enable the user to use MHGrid with minimal

effort. The portal is simply a client application consuming MHGrid’s Web services on behalf

of the user.

www.intechopen.com

 Advances in Evolutionary Algorithms

324

MHGrid’s Web services: Runs in a globus container and are the core of MHGrid connecting all

components together. Three main services exist, one for retrieving the list of solvers and

objective functions registered, one for adding a new solver or objective function to MHGrid

and the last is for job submission.

Directory Index: A database that consists of all the objective functions and solvers registered

with the framework. It maintains a list of all the jobs and is also responsible for keeping a

log of all the previous runs along with the obtained results.

Condor-G based Scheduler: A simple scheduler that is responsible for scheduling jobs to

appropriate resources in the grid.

Fig. 5.Different grain size depending on parallelization combination. a) A solver running in

serial fashion and objective function computing also running in serial, simplest scenario

with no parallelization. b) The solver running serial but the objective computing is running

parallel in another cluster, Master-slave GAs are an example that will use this scenario. The

Master here is the solver process running in serial and the GridMPI objective function

processes are the slaves. c) The solver running in parallel while objective function

calculation is serial, a solver like parallel BOA will use this scenario where the objective

function calculation is not heavy while the solver involves heavy computation (candidate

selection). In this scenario one of the GridMPI solver processes is a controlling node that will

call upon objective function calculation. d) Both solver and objective function are running in

parallel on different clusters. This scenario will have one of the GridMPI solver processes

acting as a controlling node that will be acting as a master for the GridMPI objective

function processes.

3.2 Dynamic grain size in MHGrid
Parallelization in meta heuristics in general differs depending on the algorithm

communication/ computation ratio. To offer an environment that will host a variety of

solvers, there is a necessity of having a mechanism that allows the usage of different

parallelization technologies to be used within the solvers and objective functions. MHGrid

uses a hybrid of two technologies, GridMPI and GridRPC (MHGrid uses Ninf-G, a wrapper

for GridRPC). Figure 5 shows how the mixed use of GridMPI and GridRPC can offer

GridRPC GridRPC GridRPC GridRPC

Serial

Serial Serial

Serial

GridMPI

a b c d

Solver Objective

Function

Cluster or node

GridMPI

GridMPI GridMPI

www.intechopen.com

EA-based Problem Solving Environment over the GRID

325

different parallelization models providing the solver developer with flexibility in designing

his solver. This unique parallelization technique employing GridRPC and GridMPI was first

used in (Takemiya et al, 2006) for a specific problem. MHGrid deploys this technique as a

general model for dynamic grain size definition.

The deployment of solvers and objective functions in such a way to provide those

parallelization models is a complicated process that uses both Ninf-G and Condor-G

deployment techniques. Detailed method of objective function deployment is discussed in

(Munawar et al., 2008).

3.3 Solver developing and integration to MHGrid
When a user requires adding a solver to MHGrid, he is required to provide two things, the

first is the solver source files and the other is an MHML file including the SLD of the solver

to be added (the SLD part of MHML usage will be explained later in section 4.2). On the

other hand for the user to be able to integrate his solver with MHGrid, he/ she needs to use

MHAPI. MHAPI is an API provided by MHGrid that includes a set of functions that allow

the user to run and deploy his solver on MHGrid. As shown in figure 6 the solver developer

writes the solver and uses the APIs in MHAPI for the following:

- Reading the input and configuration data from the job’s MHML file.

- Calling the objective function calculation whenever needed.

- Initialize the deployment of the objective function. Then MHGrid will transparently

deploy the objective function on behalf of the user.

Fig.6.Main functionalities provided by MHAPI. Note that every thing is kept transparent

from the solver developer.

MHAPI

Solver
Using GridMPI

Implements

Objective Func.
Using GridMPI

Transparent

1 mhgrid_ninf_init
2 mhgrid_ninf_destroy
3 mhgrid_ninf_obj_func_async_call
4 mhgrid_ninf_obj_func_sync_call
5 mhgrid_ninf_obj_func_wait_all
6 mhgrid_ninf_obj_func_wait
7 mhgrid_mhml_init
8 mhgrid_mhml_destroy
9 mhgrid_mhml_parse_file
10 mhgrid_mhml_read_client_info
11 hgrid_mhml_read_objective_function_config
12 mhgrid_mhml_read_objective_function_sld
13 mhgrid_mhml_read_solver_config
14 mhgrid_mhml_read_solver_sld
15 mhgrid_mhml_read_job
16 mhgrid_mhml_write_results
17 mhgrid_init
18 mhgrid_destroy

MHAPI

GridRPC
Server

GridRPC
Client

Solver
Developer

www.intechopen.com

 Advances in Evolutionary Algorithms

326

Two points to note here about objective function calling and objective function deployment.

For objective function calling, the writer of the objective function is usually different from

the writer of the solver, so for an objective function to be used by solvers in MHGrid, it must

comply with a predefined Ninf IDL. This IDL defines the interfacing between the solver

and any objective function that will be used with it with eyes on the different problem

encodings that can be used (e.g. binary, real, combinatorial … etc). Figure 7 shows how a

simple Ninf-IDL file looks like.

Fig. 7.Simple sample of a Ninf-IDL file.

3.4 MHML

MHML is an XML-based language providing all the functionalities required from a

language to describe meta heuristics information interchange. Full details about MHML is

beyond the scope of this chapter, MHML language is fully demonstrated in (Munawar et al.,

2007), we will only summarize why the need to use MHML and the basic features of

MHML.

Fig.8.Top level hierarchy of MHML.

// Sample IDL file

Module obj;

Define obj-func(IN int in_length_of_chromosome, IN float in_chromosome[length], OUT float *out_fitness)

“sga on rpc”

Required “obj_func.o”

{

 Extern float obj_func(float length, float *x);

 *out_fitness = obj_func(int in_length_of_chromosome, in_chromosome);

}

www.intechopen.com

EA-based Problem Solving Environment over the GRID

327

The rationale behind MHML was the need for standardizing the communication interface.

Standardizing the communication interface not only enables a flexible design, but also eases

the process of extendibility and interoperability. XML was chosen as it appears the most

promising information interchange language, and its wide dominance in the area of web-

based information interchange.

MHML basically is an extension/ modification to an earlier attempt by (Alba et al., 2003).

(Alba et al., 2003) proposed a language to configure optimization algorithms as XML DTD.

Yet, it failed to address important issues considering the configuration of optimization

algorithms. MHML offers many advantages compared to (Alba et al., 2003), from the top-

level hierarchy of MHML shown in figure 8, it is clear that MHML has the capability to

represent: Job configuration, Solver description and configuration, Objective function description

and configuration, submitting client information and job results

4. Service orientation aspect in MHGrid

Creating a general framework for global optimization problem solving is challenged with

two major problems that will compromise the generality-to-performance trade-off; the first
problem is that if the set of available solvers is fixed then the overall scope of the framework
will be limited to the solvers in hand. The second problem is the reduced efficiency due to
week or non existing relation between the solver and the problem using the solver. Added
to the complexity of the second problem is that the nature and availability of the underlying
resources is dynamically changing in Grid-based systems. Another complexity added to the
second problem is the compound nature of meta heuristics based solvers, as Meta heuristic
based solvers constitute of the main solver code and the objective function which is a
computationally independent, cost expensive and repeatedly called function. Thus, the need
to formulate the interaction between solver and objective function counterparts.

MHGrid tackles these two problems by adopting service oriented architecture (SOA), this

SOA is attained in MHGrid by applying a set of strategies in both the vertical and horizontal

direction. And by applying these set of strategies that melt down MHGrid in a SOA frame,

the performance of MHGrid as a framework is leveraged to the desired level of being a

general framework (i.e. addressing problems of different scope.) while still offering a

reasonable performance to the problems submitted. Figure 9 shows three different models

with different problem type to performance relations. The Narrow scope-High Quality

model is the typical case of optimization problem solvers according to NFL (Wolpert &

Macready., 1995). The Wide scope low quality model is a model having a set of robust

solvers. This model targets average performance for wide scope of problem types. The last

model, MHGrid, targets a wide problem scope with performance that is high above the

average by modelling MHGrid in a SOA through applying strategies to expand in the

horizontal and vertical directions.

This section will give a close-up to the SOA of MHGrid by discussing the strategies used to
model MHGrid into a SOA. An important point to note here is that MHGrid doesn’t
embrace SOA by just using OGSA and Web services in the middleware layer, as normally in
SOA context, modelling a framework to fit into a SOA implies using Web services. This is
not the case in MHGrid, as Web services – though used in all modules of MHGrid – are just
tools in the middleware layer. The SOA referred to here is effective at the application layer
(i.e. solvers as services), section 4.2 discusses this point in details. The next sections will
discuss the horizontal expansion strategies, vertical expansion strategies and finally the
impact of those expansions on the adaptation of MHGrid into a SOA.

www.intechopen.com

 Advances in Evolutionary Algorithms

328

Fig.9. MHGrid scope according to problem-type space.

4.1 Horizontal expansion strategies
Expanding MHGrid in the horizontal direction is mainly directed to widen the solvers base.

The strategies that MHGrid use to expand horizontally can be summarized in two points:

- Offer a variety of state-of-art robust solvers that make the framework suitable for

different problem types.

- Allow the user to add his own solver(s) and objective function(s).

For the first point, a set of robust solvers developed by the information systems design

laboratory at the information initiative center, Hokkaido university are to be used in

MHGrid platform. These solvers are the fuel of MHGrid that provide the ability to address a

wide variety of problems. The second point is as mentioned before in section 3.3, providing

a mechanism to allow the solver developers to add their solvers and objective functions.

4.2 Vertical expansion strategies
The vertical expansion strategies are much more complicated as they are mainly concerned

with increasing the semantics of the solver to problem relation. The following are the

strategies:

- Solvers and objective functions are represented as services in MHGrid, thus binding a

Service Level Description (SLD) with each solver/ objective function to describe the

service level offered by the solver/ objective function. MHML has two main sections one

for solvers and the other for objective functions. The SLD part should be submitted with

newly added solvers/ objective functions. The SLD section contains information like

what problem type is the solver targeting, problem encoding and what model of

parallelization is used (e.g. Island model GA will use any parallel model while

master/ slave pBOA requires the solver to run in parallel on the same cluster). The SLD

information is later used to guide the user for which solver to select to the problem in

hand and to check if the grid resources will support the parallelization model required.

- Having an M-N relation between the solvers and objective functions registered with

MHGrid, where the user can run the same solver against many objective functions and

vice versa. This strategy is handled through the Ninf-IDL interface described in section

3.3.

Performance

Type of Problem

average

Narrow Scope-High Quality

MHGrid’s Scope

Wide Scope-Low Quality

www.intechopen.com

EA-based Problem Solving Environment over the GRID

329

- Allowing the solver developer to control the parallelization model in the solver

/ objective function he writes. The solver developer can choose the parallelization

model and thus the grain size as mentioned in section 3.2.

- Offering two SAPs (Service Access Points) for the user of MHGrid, one of them is the

web portal and the other is by consuming the MHGrid’s Web services directly.

Accessing MHGrid services through the portal will be shown in the test case of section

5, also there is another SAP that can be used in case the user wants to avoid the

overhead in using the web portal and also to use MHGrid’s services automatically in

case he needs that.

- Having a Service Level Agreement (SLA) for each job submitted to MHGrid. Initially
upon job submission and after the user chooses the solver/ objective function pair, the

scheduler checks the state of the available resources, then the SLA manager using the

state of resources along with the solver/ objective function SLD informs the user with

the expected scenario that rises from running the selected solver/ objective function

running on the current available resources. The SLA in the case of MHGrid is at the

application layer and not the middleware layer, and therefore refraining from the

expected SLA procedure at middleware (i.e. SLA based scheduling). SLA at the

application layer guarantee to the user that his problem is well matched to a solver,

while if at middleware layer will be targeting QoS metrics such as time, cost and

resources availability. The current SLA implementation is rather trivial, but different

options are now being investigated and it is anticipated that SLA mechanism will later

use e-contracts at the application level.

4.3 MHGrid as a grid application benefiting from SOA
Grid applications are combined with SOA and service fundamentals in many projects, and

often the grid application that are modelled after SOA are referred to as service-oriented grid

applications. The case of MHGrid despite being a service-oriented application, yet it used a

different approach to combine SOA with grid technology. MHGrid as a framework is

designed to be a general framework for global optimization, yet this goal was challenged

with the NFL theorem, and so the expansion in both directions was thought of in order to

enable more generality for MHGrid. This expansion design for MHGrid was clearly

consistent with SOA fundamentals and concepts, for example the following are the SOA

projections mapped to the vertical expansion strategies:

- Solvers as services with SLDs. Mapping: A well known practice of SOA, where every

service in a SOA model should have a description of what it is doing in order to be used

later for QoS process. Analogous to WSDL associated with Web services.

- M-N solver to objective function relation (one solver can be associated to many

objective functions and vice versa). Mapping: Service interoperability is a main concept in

SOA.

- Solver developer control over the parallelization model. Mapping: From SOA

perspective, this is providing strong semantics for inter-services relations.

- Offering two SAPs. Mapping: The two service access points for the solvers in MHGrid comes

in favour of ease of use, this polymorphic interfacing to the services is indeed a merit from SOA

perspective.

- Having an SLA for each job submitted. Mapping: A straightforward SOA pillar.

www.intechopen.com

 Advances in Evolutionary Algorithms

330

Fig.10. MHGrid modules mapped to a typical SOA layout.

The point of concern that can be concluded from merging MHGrid as a grid application with
SOA, is that MHGrid was not designed as a SOA compliant model in order to benefit from the
typical advantages of SOA such as ease of extensibility, but MHGrid was framed into a SOA
model to achieve the basis of having a general problem solving framework in terms of wide
problem type support. Figure 10 shows a mapping of MHGrid modules to a typical SOA layout.

5. Test case of MHGrid from user perspective

This section illustrates a test case example for MHGrid from the user perspective. The illustration
will start by a solver developer registering a solver he wrote for MHGrid, then as a user
retrieving the list of solvers and objective functions and finally submitting a job to MHGrid.
- Solver registration: The solver developer will initially write his solver that uses MHAPI,

and then write the MHML file with the SLD section of the solver. Then the solver
developer logins to the portal opens the solver registration portlet and uploads both the

solver tar ball and the MHML file. The solver developer will be notified though his e-
mail registered with the portal. Figure 11 middle snapshot shows the solver registration
portlet while registering a solver.

- Job submission: The job submission is done in two steps, first the user uses the retrieve
portlet to get a list of all the registered solvers and the registered objective functions.
For each solver and objective function displayed, the information for the corresponding
SLD is displayed to give guidance to the user. Figure 11 top snapshot shows the retrieve
portlet where the user can view the solvers and objective functions before deciding
which one to use. The next step where the user actually submits the job, the user will
switch to the job submission portlet and choose a solver/ objective function pair, and
then the portlet will give the user an indication of how the current available resources
are coherent with the SLDs of the solver and objective function. After the user decides

which solver/ objective function pair to use, he has to supply the MHML job file, and
he’ll later get the MHML result file on his e-mail. Figure 11 bottom snapshot shows the
job submission portlet while in submission process.

www.intechopen.com

EA-based Problem Solving Environment over the GRID

331

Fig.11. Top Snapshot: A user registering a solver with MHGrid through the web portal.

Middle snapshot: A user retrieving information about the solvers and objective functions

registered with MHGrid through the web portal. Bottom snapshot: A user submitting a job

to MHGrid through the web portal

www.intechopen.com

 Advances in Evolutionary Algorithms

332

This was a simple example case just to acknowledge the reader with how MHGrid is viewed

from the user perspective, nevertheless, MHGrid can still be accessed directly from the Web

services, but illustration for that was skipped to refrain the user from details outside the

scope of the book.

6. Conclusions and future work

This chapter presented a grid based problem solving environment that uses EAs and other

algorithms all falling under the meta heuristics category to offer black box global

optimization for the user. The chapter first highlighted the grid computing technology and

then discussed with reasons behind using the grid for MHGrid, Meta Heuristics Grid, and

the benefits of the grid technology compared to other distributed paradigms.

Then a comparison of MHGrid with related work was discussed, to imply the concepts

behind the design of optimization solving grid applications. The design and implementation

of MHGrid was explained, including the layered architecture, the workflow inside the

framework and explanation of MHAPI, a library that allows the solver developers to

integrate their solvers with MHGrid.

MHGrid as a model was expanded in both the vertical and horizontal directions in order to

widen the base of MHGrid to be a general framework rather than being tailored to one

problem type. The expansion strategies reformed the architecture of MHGrid into a SOA,

the main impact for MHGrid adopting SOA was the representation of solvers and objective

functions as services and thus having the service oriented grid application mostly affecting

the application layer whilst using OGSA and Web services at the middleware layer. A

sample example case was demonstrated to acknowledge the reader with the user

perspective of MHGrid.

For the future work, modifications and extensions will cover different aspects. Major points

will include adopting a more sophisticated SLA mechanism, defining new interfaces that

allow one solver to use another solver, for example pBOA algorithm can internally use Tabu

search for candidate offspring selection, and one more important point is to conduct more

study on the dynamic grain size in EAs to reach the best formulation of parallelization

models adopted. Other minor points will include enchantments on the portlets to auto

generate the MHML files on behalf of the users.

7. References

Abramson, D. ; Lewis, A. & Peachy, T. (2000). Nimrod/ O: A Tool for Automatic Design

Optimization, Proceedings of 4th International Conference on Algorithms & Architectures

for Parallel Processing; ICA3PP 2000, pp. 90-98, ISBN, Hong Kong, December 2000,

World Scientific Publishing

Abramson, D. (2006). Applications Development for the Computational Grid, Proceedings of

APWEB 2006, pp. 1-12, China, January 2006, Springer, Harbin

Alba, E.; Garc-Nieto, J. & Nebro, A. (2003). On the Configuration of Optimization Algorithms by

Using XML Files, Technical report, http:/ / neo.lcc.uma.es/ publications/ Publi2003

Cantu-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms, Springer, 0792372212,

Chicago IL.

Chrabakh, W. & Wolski, R. (2006). GridSAT: Design and Implementation of a

www.intechopen.com

EA-based Problem Solving Environment over the GRID

333

Computational Grid Application. Journal of Grid Computing, Vol. 4, No. 2, (June 2006) pp.

177-193. 1570-7873

Chunlin, L. & Layuan, L. (2007). Utility Based Multiple QoS Guaranteed Resource

Scheduling Optimization in Grid Computing. Proceeding of the International

Conference on Computing: Theory and Applications, 2007. ICCTA apos;07, pp 165-169,

India, October 2007, Kolkata.

Cox, S.; Chen, L.; Campobasso, S.; Duta, M.; Eres, M.; Giles, M.; Goble, C.; Jiao, Z.; Keane,

A.; Pound, G.; Roberts, A.; Shadbolt, N.; Tao, F.; Wason, J. & Xu, F. (2002). Grid

Enabled Optimization and Design Search (GEODISE), Technical report,

www.geodise.org

Czyzck, J.; Mesnier, M. & More, J. (1998). The NEOS Server. IEEE Journal on Computational

Science and Engineering, Vol. 5, No. 3, (May 1998) pp. 68-75.

Daniel, M. & Emiliano, C. (2004). Quality of Service Aspects and Metrics in Grid

Computing. Proceeding of Computer Measurement Group Conference, pp 102-111, USA,

December 2004, Las Vegas, NV.

Foster, I. & Kesselman, C. (1999). The Grid : Blueprint for a New Computing Infrastructure,

Morgan Kaufmann Publishers, 1558604758, Chicago IL.

Foster, I. (2002). What is the Grid? A three point checklist. GRIDtoday, Vol. 1, No. 6,

(February 2002)

Foster, I.; Kishimoto, H..; Sava, A.; Berry, D.; Djaoui, A.; Grimshaw, A.; Horn, B.; Maciel, F.;

Siebenlist, F.; Subramaniam, R.; Treadwell, J. & Reich, J. (2005). The Open Grid

Services Architecutre Version 1.0, GGF informational document Global Grid forum,

www.globalgridforum.org

Foster, I. (2006). Globus toolkit version 4: Software for service oriented systems, Proceedings

 of IFIP International Conference on Network and Parallel Computing,, pp. 2-13, Japan,

October 2006, Sprinder-Verlag LINCS 3779, Tokyo

Frey, J.; Tannenbaum, T.; Foster, I.; Livny, M. & Tuecke, S. (2001). Condor-G: A

Computation Management Agent for Multi-institutional Grids, Proceedings of 10th

IEEE symposium on High Performance Distributed Computing, pp. 7-19, USA, August

2001, Morgan Kaufmann Publishers, San Francisco, California

Glankwamdee, V. & Linderoth, J. (2006). MW: A Software Framework for Combinatorial

Optimization on Computational Grids, In: Parallel Combinatorial Optimization, Talbi,

E., pp. 239-256, Wiley-Interscience, 0471721018

Ishikawa, Y.; Kaneo, Y.; Edamoto, M.; Okazaki, F.; Koie, H.; Takano, R.; Kudoh, T. &

Kodama. Y., (2005). Overview of GridMPI Version 1.0, Proceedings of SWoPP’05, pp.

116-127, Japan, October, Tokyo

Larson, S.; Snow, C. & Pande, V. (2003). Folding@Home and Genome@Home: Using Distributed

Computing to Tackle Previously Intractable Problems in Computational Biology, R. Grant,

Horizon Press

Lim, D.; Ong, Y.; Jin, Y.; Sendhoff, B. & Lee, S. (2007). Efficient Hierarchical Parallel Genetic

Algorithms using Grid Computing. Future Generation Computational systems, Vol. 4,

No. 23, (May 2007) pp. 658-670.

Munawar, A.; Wahib, M.; Munetomo, M. & Akama, K. (2007). Optimization Problem

Solving Framework Employing GAs with Linkage Identification over a Grid

Environment, Proceedings of CEC2007: IEEE Congress on Evolutionary Computation,

pp. 3659-3661, Singapore, September 2007

www.intechopen.com

 Advances in Evolutionary Algorithms

334

Munawar, A.; Wahib, M.; Munetomo, M. & Akama, K. (To Appear). Parallel GEAs with

Linkage Analysis over Grid, In: Linkage in Genetic and Evolutionary Algorithms,

Springer.

Novotny, J.; Russell, M. & Wehrens, O. (2004). Gridsphere: A Portal Framework for Building

Collaborations, Concurrent Computing: Practices and Exercises, Vol. 5, No. 16, （June

2004) pp. 503-513

Symour, K.; Nakada, H.; Matsuoka, S.; Dongarra, J.; Lee, C. & Casanova, H. (2002).

Overview of GridRPC: A Remote Procedure Call API for Grid Computing,

Proceedings of 3rd International Workshop of Grid Computing, pp. 274-278, USA,

November 2002, Morgan Kaufmann Publishers, Baltimore, Maryland

Takemiya, H.; Tanaka, Y.; Sekiguchi, S.; Ogata, S.; Kalia, R.; Nakano, A. & Vashishta, P.

(2006). Sustainable Adaptive Grid Supercomputing: Multiscale Simulation of

Semiconductor Processing Across the Pacific, Proceedings of the 2006 ACM/IEEE

conference on Super Computing; SC’06, pp. 106-118, USA, November 2006, Morgan

Kaufmann Publishers, New York, NY

Tanaka, Y.; Nakada, H.; Sekiguchi, S.; Suzumura, T. & Matsuoka, S. (2003). Ninf-G: A

Reference Implementation of RPC based Programming Middleware for Grid

Computing, Journal of Grid Computing, Vol. 3, No. 7, (June 2003) pp. 41-51

Wahib, M.; Munawar, A.; Munetomo, M. & Akama, K. (2007). MHGrid: Towards an Ideal

Optimization Environment for Global Optimization Problems using Grid

Computing, Proceedings of Parallel and Distributed Computing, Applications and

Technologies; PDCAT2007, pp. 217-220, Australia, December 2007, Morgan

Kaufmann Publishers, Adelaide

Weise, T. (2007). Global Optimization Techniques and Genetic Programming Applied to

 Distributed Computing, Thomas Weise, Online as e-book.

Wolpert, H. & Macready, G. (1995). No Free Lunch Theorems for Search, Technical report, SFI-

TR-95-02-010 Santa Fe, NM

www.intechopen.com

Advances in Evolutionary Algorithms

Edited by Xiong Zhihui

ISBN 978-953-7619-11-4

Hard cover, 284 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

With the recent trends towards massive data sets and significant computational power, combined with

evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim

of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mohamed Wahib, Asim Munawar, Masaharu Munetomo and Kiyoshi Akama (2008). EA-based Problem

Solving Environment over the GRID, Advances in Evolutionary Algorithms, Xiong Zhihui (Ed.), ISBN: 978-953-

7619-11-4, InTech, Available from:

http://www.intechopen.com/books/advances_in_evolutionary_algorithms/ea-

based_problem_solving_environment_over_the_grid

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

