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Abstract

This research is  focused on the development of  a  nonlinear cascade-based control
algorithm for a laboratory helicopter-denominated Twin Rotor MIMO System (TRMS).
The TRMS is  an underactuated nonlinear multivariable system, characterised by a
coupling effect between the dynamics of the propellers and the body structure, which
is caused by the action-reaction principle originated in the acceleration and deceleration
of the propeller groups. Firstly, this work introduces an extensive description of the
platform’s dynamics, which was carried out by splitting the system into its electrical and
mechanical parts. Secondly, we present a design of a nonlinear cascade-based control
algorithm that locally guarantees an asymptotically and exponentially stable behaviour
of the controlled generalised coordinates of the TRMS. Lastly, a demonstration of the
effectiveness of the proposed approach is provided by means of numerical simulations
performed under the MATLAB®/Simulink® environment.

Keywords: nonlinear control, timescale modelling, twin rotor, MIMO systems, labora-
tory platform

1. Introduction

Currently,  there  are  many  possible  uses  for  unmanned  aerial  vehicles  (UAVs),  such  as
inspection operation, battle field operation, forest fire detection, meteorological observation,
or search and rescue operation, among others. All these applications require achieving precise
control systems. This has motivated an increased interest in the last years from researchers in
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developing effective control algorithms for UAVs [1–4]. In many cases, the development of
new control strategies requires the use of software and platforms which are able to simulate
the operation of the UAVs in order to perform experimental tests for evaluating the different
designs. The use of this kind of tools increases the productivity and reduces the development
time.  For  this  purpose,  different  laboratory test  rigs  have been specifically  designed for
teaching and research in flight dynamics and control. One such platform is the laboratory
helicopter used in this research, namely the Twin Rotor MIMO System (TRMS) [5]. The TRMS
is a nonlinear, multivariable and underactuated system, characterised by a coupling effect
between the dynamics of the propellers and the body structure, which is caused by the action-
reaction principle originated in acceleration and deceleration of the motor-propeller groups.
All these features make the control of the TRMS to be perceived as a challenging engineering
problem (note that the TRMS, and other laboratory platforms with similar dynamics are more
difficult to control than a real helicopter platform [6]). The achievement of an accurate system
dynamics model is a challenging problem, whilst, at the same time, an important issue is to
develop accurate and efficient control systems.

The development of the dynamic model for the TRMS has been studied by an important
number of researches. Ahmad et al. presented mathematical models for the dynamic charac-
terisation of the TRMS, using a black box system identification technique [7] and radial basis
function (RBF) networks [8]. Shaheed modelled the dynamics of the TRMS by means of a
nonlinear autoregressive process through external input (NARX) approach with a feed-
forward neural work and a resilient propagation (RPROP) algorithm [9]. Rahideh and Shaheed
have also contributed to the study of the TRMS dynamics by using both Newton- and
Lagrange-based methods [10], and two models based on neural networks using Levenberg-
Marquardt (LM) and gradient descent (GD) algorithms [11]. Toha and Tokhi presented an
adaptive neuro-fuzzy inference system (ANFIS) network design, which was deployed and
used for the TRMS modelling [12]. Finally, Tastemirov et al. developed a complete dynamic
TRMS model using the Euler-Lagrange method [13].

On the other hand, the design of the control system for the TRMS has been widely discussed
through several investigations. Ahmad et al. developed the dynamic model and implemented
a feed-forward/open-loop control [14] and a linear quadratic Gaussian control [15]. López-
Martínez et al. studied the design of a longitudinal controller based on Lyapunov functions
[16], and the application of a nonlinear L2 controller [17]. Rahideh et al. presented an experi-
mental implementation of an adaptive dynamic nonlinear model inversion control law using
artificial neural networks [18]. Other interesting works are those of Tao et al. who designed a
parallel distributed fuzzy linear quadratic regulator (LQR) controller [19]. Studies of Reynoso-
Meza et al. developed a holistic multi-objective optimisation design technique for controller
tuning [20], or the use of a particle swarm optimisation (PSO) algorithm for the proportional-
integral-derivative (PID) controller optimisation developed by Coelho et al. [21].

The aim of the present research is to develop a nonlinear cascade-based control algorithm in
order to locally guarantee an asymptotically and exponentially stable behaviour of the
controlled generalised coordinates of the TRMS. Additionally, the effectiveness of the proposed
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nonlinear feedback controller in terms of stabilisation and position tracking performance is
demonstrated by means of numerical simulations. Finally, the paper is organised as follows.

Section 2 introduces a description of the TRMS platform by illustrating the details of the
dynamics model obtained into two phases: electrical and mechanical parts. Section 3 describes
the nonlinear cascade-based controller scheme proposed. The results of the numerical
simulations performed under the MATLAB®/Simulink® environment are depicted in Section
4, and, finally, Section 5 is devoted to the conclusions of the work.

2. System description

The TRMS (see Figure 1) is a laboratory helicopter platform manufactured by Feedback
Instruments Ltd©. The TRMS is composed of two propellers that are perpendicular to each other
and placed in the extreme of a beam that can rotate freely in both vertical and horizontal planes.
Each propeller is driven by a DC motor, thus forming the main and tail rotor of the platform.
A main feature of the TRMS is that its movement, unlike a real helicopter, is not achieved by
varying the angle of attack of the blades. In this case, the movement of the platform is gotten
by means of the variation in the angular velocity of each propeller, which is caused by the
change in the control input voltage of each motor.

Figure 1. Twin rotor MIMO system.
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This constructive simplification in the TRMS model substantially complicates the dynamics of
the system, because a coupling effect between rotors dynamics and the body of the model
appears. This effect is caused by the action-reaction principle originated in acceleration and
deceleration of the motor-propeller groups.

In addition, the TRMS is an underactuated system. This implies that the number of variables
that act as control inputs (voltages applied to the main and the tail rotor; �� and �� respectively)

is lower than the number of degrees of freedom (DoF) of the system. The DoF are: the pitch
(�) and the yaw (�) angles, both measured by digital encoders, as well as the angular velocities
of the rotors (�� for the main rotor and ��for the tail), both measured by DC tachometers.

Finally, we have to remark that the laboratory platform is locked mechanically, so it cannot
move more than ±2.82 rad in the horizontal plane from −1.05 to +1.22 rad in the vertical plane
[22]. In other words, −2.82 rad ≤ � ≤ + 2.82 rad and −1.05 rad ≤ � ≤ + 1.22 rad.

2.1. Dynamic model of the TRMS

The development of an efficient control algorithm requires a model that represents the dynamic
behaviour of the platform under study as accurately as possible. In the particular case of the
Twin Rotor MIMO System, the modelling has been addressed from several approaches [7–
13]. However, not all of them provide a model that represents the entire complex dynamic
behaviour of this experimental platform. For instance, models based on identification techni-
ques have difficulties in representing the effects of coupling, which are characteristic in this
platform [7], and neuronal networks and learning algorithms allow obtaining accurate models,
but limited to a range of input values and frequencies [11]. Based on previous works developed
for the dynamic model of this platform [13, 22–24], a detailed dynamic model of the TRMS has
been developed by dividing the whole dynamics of the system in their electrical and mechan-
ical parts. This approach allows not only to adequately capture the complex dynamics
behaviour of the TRMS but also the development of novel control algorithms based on nested
feedback loops that offer a higher performance than classical control schemes. Moreover, the
use of the Euler-Lagrange method in the modelling of the mechanical structure of the TRMS
allows a higher adjustment with the real control laboratory platform in comparison with other
analytical methods based on the Newtonian approach [25]. The dynamic modelling has been
developed in two stages and validated by our research group by means of experimental
identification trials. It is presented in the following subsections. The first subsection illustrates
the dynamic model of the electrical part, and the second depicts the dynamic model of the
mechanical part of the system.

2.1.1. Dynamics of the electrical part

The electrical part of the system is formed by the interface circuit and the DC motors of the
main and tail rotors. The interface circuit is the internal electrical circuit that adapts the input
control voltages, applied in MATLAB®/Simulink® (�� for the main rotor and �� for the tail

rotor), to the actual voltage value of the DC motors (�� for the main rotor and �� for the tail

Nonlinear Systems - Design, Analysis, Estimation and Control268



rotor). This interface can be modelled as a linear relationship [13], obtaining the following
result:

v =
mm u mk u (1)

v =
tt u tk u (2)

where ��� and ��� denote the constant gains for the main and tail rotors, respectively. With

regard to the DC motors, there are two identical permanent magnet motors, one in each rotor
of the TRMS, with the only difference of the mechanical loads (the propellers). Bearing in mind
that the dynamics of the motor´s current can be neglected [13], the DC motor dynamics for the
main rotor and the tail rotor are the following ones:

vv w= +
mm m m mR i k (3)

vv w= +
tt t t tR i k (4)

where �� and �� are the motor currents (the subscripts m and t mean “main” and “tail”), ��
and �� represent the motor resistances, and ����� and ����� denote the electromotive

forces of each motor (�� and �� represent the angular velocities of the each motor). On the

other hand, the electromechanical balance of the torques acting on each motor is expressed

as:

1 vw w w w= - -&
m m mm m t m m Q m mI k i f C (5)

1 vw w w w= - -&
t t tt t t t t Q t tI k i f C (6)

being ��1 and ��1 are the moment of the inertia rotors, ����� and ����� denote the electrome-

chanical torques generated by the DC motors, ����� and ����� are the friction torques and����� ��  and ����� ��  illustrate the aerodynamic torques.

After substituting the expression for the current intensity of the respective motors [obtained
from Eqs. (3) and (4)] and the linear relationships for the interface circuit Eqs. (1) and (2), in
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Eqs. (5) and (6), and after operating and rearranging terms, the following two equations are
yielded for the main and tail rotors of the TRMS:

1

v
vw w w w

æ ö
= - + -ç ÷ç ÷

è ø
& m m m

m m m

t t
m m u m m Q m m

m m

k k k
I k u f C

R R
(7)

1

v
vw w w w

æ ö
= - + -ç ÷ç ÷

è ø
& t t t

t t t

t t
t t u t t Q t t

t t

k k k
I k u f C

R R
(8)

The dynamics of the electrical part of the TRMS is now expressed in a matrix form, using the
following compact notation:

( ) ( ) ( )( )t t t= + Γ&ω Nu ω (9)

where ω � = ��, �� � and u � = ��, �� � represent the vector of angular velocities and the

input control voltages, respectively, and, N= ����(��,   ��) and � �(�) = ��, �� � are defined

by:

1

1

0
0

 
0

0

m m

t t

t u

m mm

t t u

t t

k k
I Rn

n k k
I R

é ù
ê ú

é ù ê ú
= =ê ú ê ú
ë û ê ú

ê ú
ë û

N (10)

( ) 1 1

1 1

( )

m m m
m

t t t
t

t v Qm
v m m

m m mm

t t v Qt
v t t

t t t

k k C
f

R I I
t

k k C
f

R I I

w
w w

w
w w

é ùæ ö
- + -ê úç ÷ç ÷ê úGé ù è ø= = ê úê úG æ öë û ê ú
- + -ç ÷ê úç ÷ê úè øë û

Γ ω (11)

Finally, in order to complete the dynamic model of the electrical part of the TRMS, Tables 1
and 2 show the parameters used in the model, indicating the description of the parameters,
their values and their corresponding units. These values, which are based on the data presented
in [13], have been experimentally tuned and validated in the dynamics identification tests that
we have performed during our research.
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Symbol Parameter Value Units��� Motor velocity constant 0.0202 V rad−1 s�� Motor armature resistance 8 Ω�� Motor armature inductance 0.86 × 10−3 H��� Electromagnetic constant torque motor 0.0202 N m   A−1��� Coefficient linear relationship interface circuit 8.5 −
���+ Load factor (�� ≥ 0) 2.695 × 10−7 N m s2 rad−2
���− Load factor (�� < 0) 2.46 × 10−7 N m s2 rad−2��� Viscous friction coefficient 3.89 × 10−6 N m rad−1 s��1 Moment of inertia about the axis of rotation 1.05 × 10−4 kg m2
Table 1. Parameters of the main rotor.

Symbol Parameter Value Units��� Motor velocity constant 0.0202 V rad−1 s�� Motor armature resistance 8 Ω�� Motor armature inductance 0.86 × 10−3 H��� Electromagnetic constant torque motor 0.0202 N m A−1��� Coefficient linear relationship interface circuit 6.5 −��� Load factor 1.164 × 10−8 N m s2 rad−2��� Viscous friction coefficient 1.715 × 10−6 N m rad−1 s��1 Moment of inertia about the axis of rotation 2.1 × 10−5 kg m2
Table 2. Parameters of the tail rotor.

2.1.2. Dynamics of the mechanical part

In the development of the dynamic model of the mechanical part, we consider the mechanics
of the TRMS as an assembly of the following three components explained next. The first
component is formed by the two rotors, their shields and the free-free beam that links together
both rotors. The second component consists in the counterbalance and counterweight beam,
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and finally, the third component is the pivoted beam. Figure 2 helps to clarify the different
components considered in the dynamics of the mechanical part of the system. From the
previous division, and bearing in mind the notation used in Figures 3 and 4, the development
of the dynamic model is achieved by means of the application of the Euler-Lagrange formu-
lation. It can be summarised in the following steps:

1. Resolution of the forward kinematics of the three subsystems.

2. Evaluation of the kinetic energy.

3. Evaluation of the potential energy.

4. Obtaining the equations of motion.

Figure 2. Twin rotor MIMO system (TRMS) prototype platform.
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Figure 3. View of the TRMS on a vertical plane.

Figure 4. View of the TRMS on a horizontal plane.

Nonlinear Cascade-Based Control for a Twin Rotor MIMO System
http://dx.doi.org/10.5772/64875

273



2.1.2.1. Resolution of the forward kinematics of the system

The problem of direct kinematics of the TRMS consists in determining the spatial position of
the three subsystems considered, according to the reference system located in the upper part
of the platform (see Figures 3 and 4). Using the Denavit-Hartenberg method, we can express
the position of a point on each subsystem (�1, �2, �3) parameterised by �1, �2, �3, which
represents the distances between the considerate points and the reference system associated
to each subsystem. The results of these positions are expressed in the following three equations
(where: �� ≡ sin�, �� ≡ cos�, �� ≡ sin� and �� ≡ cos�):

1 1 1 1 1 1 1 
x y z

T T
P P P R S C hC R C C hS R Sf y f f y f y
é ù é ù= = - + +ê ú ë ûë û

P (12)

2 2 2 2 2 2 2 
x y z

T T
P P P R S S hC R C S hS R Cf y f f y f y
é ù é ù= = - + + -ê ú ë ûë û

P (13)

3 3 3 3 3 3 0
x y z

T T
P P P R C R Sf f
é ù é ù= =ê ú ë ûë û

P (14)

2.1.2.2. Evaluation of the kinetic energy

In order to carry out the evaluation of the total kinetic energy of the TRMS, it is necessary to
calculate the kinetic energy corresponding to each of the three subsystems previously defined.
Starting with the first subsystem, its kinetic energy, T1, yields:

( ) ( ) 1 1 1

2 2 2 2 2 2
1 1 1 1

1 1 1
2 2 2y yf y f fy= = + + -ò & & && &T T TT dm R J C h m hS l mv (15)

( )2 2 2 2 2 2 2
1 1 1 1    2 y yf y fy= + + -& && &R C h R R hSv (16)

where � and � represent the yaw and the pitch angle, respectively, and mT1
, lT1

, and J1 are
obtained from the following expressions:

11 m mr ms t tr ts( ) Tdm R m m m m m m m= + + + + + =ò (17)

1
1

t m
tr ts mr ms1 1

1

                     (  ) 2 2

(  )

t m

T
T

m mm m l m m lR dm R
l

mdm R

æ ö æ ö+ + - + +ç ÷ç ÷
è øè ø= =ò

ò
(18)

2 2 2 2
1 t tr ts m mr ms ts ts ms ms

1 1 1 
3 3 2t mJ m m m l m m m l m r m ræ ö æ ö= + + + + + + +ç ÷ ç ÷

è ø è ø
(19)
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On the other hand, the kinetic energy for the second subsystem, T2, results in:

( ) ( ) 2 2 2

2 2 2 2 2 2
2 2 2 2

1 1 1
2 2 2y yf y f fy= = + + +ò & & && &T T TT dm R J S h m hC l mv (20)

( )2 2 2 2 2 2 2
2 2 2 2    2 y yf y fy= + + +& && &R S h R R hCv (21)

in which the terms ��2, ��2 and J2 are the following:

22 b cb( ) Tdm R m m m= + =ò (22)

2
2

b cb2 2

2

     (  )
2

(  )

b
mcb

T
T

lm m lR dm R
l

mdm R

+
= =ò
ò

(23)

2 2
2 b cb

1  
3 b cbJ m l m l= + (24)

On the other hand, the kinetic energy for the third subsystem, T3, gives the following result:

( )2 2
3 3 3 3

1 1
2 2

f= =ò &T dm R Jv (25)

2 2 2
3 3  f= &Rv (26)

being �3 = 13�ℎ�ℎ2 .
Finally, the total kinetic energy of the TRMS, T, is obtained as the sum of the kinetic energy of
each subsystem (Eqs. (15), (20) and (25)). One obtains the following result:

( )( )
( ) ( )

1 2

2 2 1 1

2 2 2 2
1 2 3 1 2 3

2
1 2

1
2
1
2

T T

T T T T

T T T T J C J S J h m m

J J h l m C l m S

y y

y y

f

y fy

= + + = + + + +

+ + + -

&

&& &
(27)
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2.1.2.3. Evaluation of the potential energy

Following a similar procedure to the one used in the computation of the kinetic energy, the
total potential energy of the TRMS, V, consists of the sum of the potential energy of each of the
three subsystems, the free-free beam (including rotors and shields), the counterbalance beam
and the pivoted beam. The following result is obtained:

( )1 1 2 21 2 3 T T T TV V V V g S l m C l my y= + + = - (28)

where:

( ) ( ) ( )
1 1 11 1 1 1 1zz T TV g r R dm R g P dm R gS l my= = =ò ò (29)

( ) ( ) ( )
2 2 22 2 2 2 2zz T TV g r R dm R g P dm R gC l my= = = -ò ò (30)

( ) ( ) ( )
33 3 3 3 3 0

zzV g r R dm R g P dm R= = =ò ò (31)

2.1.2.4. Equations of motion of the TRMS

The last step in the mechanical dynamic model of the TRMS is obtaining the equations of
motion of the system. The first step is the computation of the Lagrangian of the system, defined
as the difference between the total kinetic energy, defined in Eq. (27), and the total potential
energy, defined in Eq. (28), yielding the following:

( )( )
( ) ( ) ( )

1 2

2 2 1 1 1 1 2 2

2 2 2 2
1 2 3

2
1 2

1
2
1
2

T T

T T T T T T T T

L T V J C J S J h m m

J J h l m C l m S g S l m C l m

y y

y y y y

f

y fy

= - = + + + +

+ + + - - -

&

&& &
(32)

Once the Lagrangian function has been obtained, the equations of motion of the TRMS can be
derived using Lagrange’s formulation:

iv
d L L M
dt y y
æ ö¶ ¶

- =ç ÷¶ ¶è ø å&
(33)
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ih
d L L M
dt ff
æ ö¶ ¶

- =ç ÷
¶¶è ø

å&
(34)

where ∑��� and ∑��� represent the sum of the torques of the external forces along the vertical

and horizontal axes, respectively. The following expressions illustrate several partial results
necessary to achieve the equations of motion represented by Eqs. (33) and (34):

( ) ( )2 2 1 11 2 T T T T
L J J h l m C l m Sy yy f
y
¶

= + + -
¶

&&
&

(35)

( )( ) ( ) ( )1 1 2 2 1 1 2 2
2

2 1 T T T T T T T T
L J J C S h l m C l m S g l m C l m Sy y y y y yf fy
y
¶

= - - + - +
¶

& & & (36)

( )( ) ( )1 2 2 2 1 1
2 2 2

1 2 3 T T T T T T
L J C J S J h m m h l m C l m Sy y y yf y
f
¶

= + + + + + -
¶

& &
& (37)

0L
f
¶

=
¶

(38)

( ) ( ) ( )2 2 1 1 1 1 2 21 2y y y yf y fy
y

æ ö¶
= - + + - +ç ÷¶è ø

&& & & &&
& T T T T T T T T

d L h l m C l m S J J h l m C l m S
dt

(39)

( )( ) ( )
( ) ( )( )

1 2 1 1 2 2

1 1 2 2

2 2 2
1 2 3

2
2 12

y y y y

y y y y

f y
f

y fy

æ ö¶
= + + + + - -ç ÷

¶è ø

- + + -

&

&

&& &&

& &

T T T T T T

T T T T

d L J C J S J h m m h l m S l m C
dt

h l m C l m S J J C S
(40)

The sum of the external torques in the vertical axis is shown next:

( )( )
v

v v

y

y y
w w w w y y w

= - - +

= - - + +

å
å & & &

m t t

m t

i T R F I

i T m m m R t t c t t

M M M M M

M C l C f f sgn k (41)

where ��� = ����� �� �� expresses the aerodynamic thrust torque caused by the rotation

of the main propeller, ��� = ����� ��  denotes the load torque created by air resistance in the

tail rotor, ��� = ����̇ + ������ �̇  represents the load torque as a result of the friction

(including the viscous effects and the Coulomb friction), and ��� = ���̇� represents the inertial

counter torque that is caused by the reaction produced by a change in the rotational speed of
the tail rotor.

On the other hand, the sum of the external torques in the horizontal axis is as follows:
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( )( ) ( )0v

f

f f

y y

y

w w w w

f f f f w

= - - - +

= -

- + - - +

å
å

& & &

t m m

T m

ih T R F c I

ih T t t t R m m

c c m m

M M M M M M

M C l C C C

f f sgn C k C

(42)

where ��� = ����� �� ���� expresses the aerodynamic thrust torque of the tail propeller,��� = ����� �� �� represents the load torque created by air resistance in the main rotor,��� = (����̇ + ������(�̇)) denotes the load torque as a result of the friction (including the

viscous effects and the Coulomb friction), �� = ��(� − �0) is the magnitude of torque exerted

by the cable (it has a certain stiffness that allows to model it as a spring)), and finally��� = ���̇��� represents the inertial counter torque that is caused by the reaction produced

by a change in the rotational speed of the main rotor.

Upon merging Eq. (33) to Eq. (42), and after performing some rearrangements, one obtains the
following result for the equations of motion:

( ) ( ) ( ) ( )

( )( )
2 2 1 1 1 1 2 2

1 2 2
1 2 22

vy y

y y y y yy f f

w w w w y y w

æ ö-
+ + - + + +ç ÷ç ÷
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= - - + +
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(43)
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(44)

If we use matrix notation, the dynamic model of the mechanical part of the TRMS can be
expressed in a compact form:

 (45)

in which �(�) = �(�),   �(�) � is the vector of generalised coordinates of the TRMS,�(�) = ��(�),   ��(�) � is the angular velocity vector, and the matrices �(�(�)), �(�(�), �̇(�)),�(�(�)), and the vectors �(�) and �(�(�), �̇(�), �̇(�)) are given by:
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( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ), , ( ) ,t t t t t t t= + +& & & &η q q ω G q F q T q ω (50)
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(53)

Finally, after substituting Eqs. (51)–(53) into Eq. (50), the following yields:
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( ) ( )
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y y
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t t t

f f sgn C k C
η q q ω

(54)
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Symbol Parameter Value Units�t Length of the tail part of the free-free beam 0.282 m�m Length of the main part of the free-free beam 0.246 m�b Length of the counterbalance beam 0.290 m�cb Distance between the counterweight and the join 0.276 m�ms Radius of the main shield 0.155 m�ts Radius of the tail shield 0.1 mℎ Length of the pivoted beam 0.06 m�tr Mass of the tail DC motor and tail rotor 0.221 kg�mr Mass of the main DC motor and main rotor 0.236 kg�cb Mass of the counterweight 0.068 kg�t Mass of the tail part of the free-free beam 0.015 kg�m Mass of the main part of the free-free beam 0.014 kg�b Mass of the counterbalance beam 0.022 kg�ts Mass of the tail shield 0.119 kg�ms Mass of the main shield 0.219 kg�h Mass of pivoted beam 0.01 kg

Table 3. Mechanical parameters.

Symbol  Parameter Value Units���+ Thrust torque coefficient of the main rotor (�� ≥ 0) 1.53 × 10−5 N s2 rad−2
���− Thrust torque coefficient of the main rotor (�� < 0) 8.8 × 10−6 N s2 rad−2��� Load torque coefficient of the tail rotor 9.7 × 10−8 N m s2 rad−2��� Viscous friction coefficient 0.0024 N m s rad−1��� Coulomb friction coefficient 5.69 × 10−4 N m�t Coefficient of the inertial counter torque created by the change in �� 2.6 × 10−5 N m s2 rad−1
Table 4. Parameters of the pitch movement.
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Symbol  Parameter Value Units���+ Thrust torque coefficient of the tail rotor (�� ≥ 0) 3.25 × 10−6 N s2 rad−1
���− Thrust torque coefficient of the tail rotor (�� < 0) 1.72 × 10−6 N s2 rad−2
���+ Load torque coefficient of the main rotor (�� ≥ 0) 4.9 × 10−7 N m s2 rad−2
���− Load torque coefficient of the main rotor (�� < 0) 4.1 × 10−7 N m s2 rad−2��� Viscous friction coefficient 0.03 N m s rad−1��� Coulomb friction coefficient 3 × 10−4 N m�� Coefficient of the elastic force torque created by the cable 0.016 N m rad−1�0 Constant for the calculation of the torque of the cable 0 rad�� Coefficient of the inertial counter torque created by the change in �� 2 × 10−4 N m s2 rad−1
Table 5. Parameters of the yaw movement.

Finally, in order to complete the dynamic modelling for the mechanical part of the TRMS,
Tables 3–5 show in detail the parameters used in the model. For each parameter, its descrip-
tion, its value and the corresponding units is included. The initial approximation of these
values was based in the developments described in [13]. Additionally, some values of the pa-
rameters have been tuned by carrying out several identification trials.

3. Design of the control system

In this section, the proposed nonlinear control for the TRMS platform is described. The
proposed control is based on the division between the electrical and mechanical dynamics of
the system and uses a cascade-type nonlinear control algorithm. Figure 5 displays the
proposed control scheme. As it can be observed, the proposed design is composed of two
independent stages (or control loops) that are utilised to achieve stabilisation and precise
trajectory tracking tasks for the controlled position of the generalised system coordinates. It
should be noted that the proposed solution has been designed to overcome one of the limita-
tions of the TRMS, which is the fact of being an underactuated system. As result of this fact, it
only has two control actions (the input voltages of the main and tail rotors) to control the four
degrees of freedom of the system (the pitch and yaw angles, and the angular velocities of the
propellers). In this way, in order to meet this objective, once the dynamics of the TRMS have
been decoupled, a nonlinear multivariable inner loop is closed to control the vector of the

Nonlinear Cascade-Based Control for a Twin Rotor MIMO System
http://dx.doi.org/10.5772/64875

281



angular velocities, and then, a nonlinear multivariable outer loop is closed to control the vector
of the generalised coordinates of the system. This solution, based on a control scheme with
two nested loops, allows a simplification in the design procedure as a result of its division into
two simpler processes. Moreover, the scheme can be implemented more easily and safely than
the standard controllers.

Figure 5. Nonlinear control scheme for the TRMS.

In the following subsections we describe the specifications and objectives of each control loop,
defined as the inner loop or electrical controller and the outer loop or mechanical controller.

3.1. Inner loop control

The objective of the inner loop control is to determine the input voltages of the main and tail

rotors (simulated in the MATLAB®/Simulink® environment), �(�) = ��, �� �, in order to

eliminate the difference between the vector of reference angular velocities, �*(�) = ��* , ��* �,
calculated in the outer loop stage (as will be described in the next subsection), and the current

vector of angular velocities of the propellers of the TRMS, �(�) = ��, �� �.

The magnitude of the input control voltage vector, �(�), necessary to achieve an asymptotically
stable convergent behaviour of the tracking error trajectories, is calculated as the following
nonlinear control law:

( ) ( ) ( )1 ( )- é ù= -ë ûγ Γt t tweu N (55)
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where N and � �(�)  where defined in Eqs. (10) and (11), respectively, and �� � = γ�, γ� �
represents a vector of auxiliary control inputs, given by the following expression:

(56)

where ��� ∈ ℝ2 × 2 is a constant diagonal positive definite matrix that represents the design

elements of a vector-valued classical proportional controller and �� � = �(�) − �*(�) is the
angular velocity error vector, which satisfies the following predominantly linear dynamic:

(57)

Finally, the coefficients of the matrix KPe are chosen so as to render the closed-loop characteristic
polynomial vectors into a Hurwitz polynomial vector with desirable roots.

3.2. Outer loop control

The aim of the outer loop control (mechanical controller) is to determine the required values

for the angular velocities of the two rotors, ω* (�) = ��* , ��* �, which will be the reference
inputs of the electrical loop (described in the above subsection), in order to eliminate the

difference between the generalised coordinates of the TRMS, q(�) = �, � �, and the reference

trajectories for the generalised coordinates of the TRMS q* (�) = �*, �* � .
As a previous step for determining the mechanical control law, a simplification in the dynamic
mechanical modelling of the TRMS has been considered. If we assume that the movement of
the platform is sufficiently smooth, the terms of the inertial counter torques, which are caused
by the reaction produced by the changes in the rotational speed of each rotor, ��� = ���̇� and��� = ���̇��� included in Eqs. (53) and (54), can be considered negligible in comparison with

the other terms. In this way, the dynamic equation of the mechanical part of the TRMS can be
rewritten as:

( )( ) ( ) ( ) ( )( ) ( )( ) ( ),+ = Ω&& &t t t t t tM q q D q q E q (58)

where the matrices �(�(�)), �(�(�)), and �(�) were defined in the previous section and the new

matrix �(�(�), �̇(�)) = ��, �� � is given by:

( ) ( ) ( )( )1 1 2 2
2

1 2 2
1
2 vy yy y y yf y y= - + + + +& & &T T T T cD J J S g l m C l m S f f sgn (59)
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( ) ( )( ) ( )( ) ( )
1 1 2 2

2
2 1 2 0vf ff y y yy fy f f f f= - + + - + + + -& & && &T T T T c cD h l m C l m S J J S f f sgn C (60)

The following nonlinear feedback control input vector, �(�), is synthesised as a multivariable
proportional-derivative (PD) controller with a cancellation term:

( ) ( )( ) ( )( ) ( ) ( ) ( )( )1 ,t t t t t t- é ù= +ë ûΩ γ &mE q M q D q q (61)

where ��(�) = γ�, γ� � is given by the following expression:

( ) ( ) ( ) ( )( ) ( ) ( )   ( ) ( )= = - - - -γ && && &&t t t t t t t* m * m *
m D Pq q K q q K q q (62)

in which ��� and ��� ∈ ℝ2 × 2 are the diagonal positive definite matrices that represent the

design elements of a vector-valued classical PD controller. Thereby, for the mechanical part,
the closed loop tracking error vector, ��(�) = �(�) − �*(�), evolves governed by:

( ) ( ) ( ) 0+ + =& && t t tm m
q D q P qe K e K e (63)

The controller design matrices ��� and ��� have been selected based in the philosophy used

for the electrical controller. They must be selected to render closed-loop characteristic poly-
nomial vectors into a Hurwitz polynomial vector with desirable roots. Finally, the necessary

angular velocity vector values, �*(�) = ��* , ��* �, are obtained from the input control vector,�(�) = �� �� �� �� �, by performing the following operation:

( )
( )
( )

*

*

m m m mm

t t t t t

sgn
t

sgn

w w w ww

w w w w w

é ù×é ù ê úê ú= = ê úê ú ×ê úë û ë û

*ω (64)

4. Results

This section describes the numerical simulations carried out in the MATLAB®/Simulink®

environment for the sake of verifying the efficiency of the proposed control approach in terms
of quick convergence of the tracking errors to a small neighbourhood of zero, smooth transient
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responses and low control effort. In the simulations, the desired reference trajectory for the
pitch (�) and the yaw (�) angles have been defined by the next expression:

( )
( ) ( )( )

( ) ( ) ( )( )
* 0 1 1 2

*
1 1 2 2 3

2sin sin

sin sin sin

A A t t
t

A t A t t

y y y y

f f f f f

w wy

f w w w

é ù+ +é ù ê ú
ê ú= = ê ú
ê ú ê ú+ +ë û ê úë û

*q (65)

where �*(�) = �*(�), �*(�) � is the reference trajectory vector of the generalised coordinates,
and the values of the constants used in the above expressions are given by:

0 1 1 20.4 rad;  0.1 rad;  0.8 rad;  0.3 rad;A A A A
y y f f
= = = = (66)

1 20.0785 rad/s; 0.0157 rad/s;
y y

w w= = (67)

1 2 30.157 rad/s; 0.0785 rad/s;   0.0157 rad/s;
f f f

w w w= = = (68)

On the other hand, the values used in the simulation of the dynamic model of the TRMS,
electrical parameters (main and tail rotors), mechanical parameters and dimensional param-
eters of the platform are detailed in Tables 1–5. The initial position of the TRMS has been

defined as �0(�) = �0, �0 � = 0, 0 � rad, representing a different value of the initial position

than the reference trajectory vector. This choice of the starting position has been made to
demonstrate the exponential convergence of the desired trajectories. With regard to the
controller design parameters, it must be remarked that they have been selected to make the
dynamics of the inner loop much faster than the outer loop dynamics, all this in order to ensure
the functioning of the cascade controller [26]. The resulting values are as follows:

(10.5, 6.2);diag=e
PK (69)

( )8.20, 3.85 ; (13.20, 2.205);diag diag= =m m
D PK K (70)

Figures 6 and 7 show the performance of the proposed control scheme. Figure 6 illustrates a

comparative between the desired trajectory, �*(�) = �*(�), �*(�) �, and the real trajectory of the

TRMS, �(�) = �(�), �(�) �. The difference between these trajectories, or, in other words, the

error vector of generalised coordinates, ��(�) = �(�) − �*(�) = �(�) − �*(�), �(�) − �*(�) �, is

represented in Figure 7. The exponential convergence of the desired trajectories is observed,
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with the error bounded to a small neighbourhood to zero, and the robustness against large
initial errors.

Figure 6. Real and desired evolution of the vector of generalised coordinates of the TRMS, �(�) = �(�), �(�) �.

Figure 7. Evolution of the error vector of the generalised coordinates of the TRMS,��(�) = �(�) − �*(�) = �(�) − �*(�), �(�) − �*(�) �.

Another graph that shows the excellent performance of the outer control loop is shown in
Figure 8, where the auxiliary control input vector of the mechanical proportional-derivative
(PD) controller (Eq. (62)) can be observed. This figure shows the quick convergence of the
auxiliary control inputs of the mechanical controller to a small value of the origin in the
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reference trajectory tracking vector error phase space, ��(�), in a globally asymptotic expo-

nential dominated manner.

Figure 8. Evolution of the auxiliary control input vector of the mechanical multivariable PD controller,��(�) = γ�(�), γ�(�) �.

Figure 9. Real and desired evolution trajectories of the angular velocity vector, �*(�) = ��* (�),  ��*(�) � and�(�) = ��(�),  ��(�) �.
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Figure 10. Evolution of the angular velocity error vector, ��(�) = �(�) − �*(�) = [��(�) − ��* (�),��(�) − ��*(�)] �.

Figure 11. Evolution of the input voltage vector of the TRMS, �(�) = ��(�),  ��(�) �.

On the other hand, the efficiency of the inner loop control (electrical controller) is depicted in
Figure 9, including a comparative between the reference angular velocity vector,�*(�) = ��* (�), ��*(�) �, obtained from the output of the outer loop, and the real magnitudes
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of angular velocity vector, �(�) = ��(�), ��(�) �. The evolution of the angular velocity error

vector, ��(�) = �(�) − �*(�) = ��(�) − ��* (�), ��(�) − ��*(�) �, is also shown in Figure 10.

To conclude this section, the input voltages in the MATLAB®/Simulink® environment,�(�) = ��(�), ��(�) �, for the main and tail rotors, are represented in Figure 11. From these

graphs, it can be observed that the proposed control scheme has been realised to avoid
saturations on these voltages, which in the simulation MATLAB®/Simulink® environment have
been set to ±2.5 V (similarly to the real prototype platform).

5. Conclusions

In this research, a novel nonlinear cascade-based control has been developed for the TRMS
platform. The performance of the controller shows very satisfactory results in terms of
convergence of the tracking errors for the generalised coordinates of the TRMS to a small
neighbourhood to zero, smooth transient responses, low control efforts and robustness against
large initial errors and parametric uncertainties in the model. The proposed control is an
important base for the subsequent design of novel robust control algorithms in UAV platforms,
which interest is notably increasing in recent years thanks to their multiple possibilities and
applications. This will be the topic of our future research.

Acknowledgements

This work has been partially supported by Spanish Ministerio de Economía y Competitividad/
FEDER under TEC2016-80986-R, DPI2016-80894-R, TIN2013-47074-C2-1-R and
DPI2014-53499-R grants. Lidia M. Belmonte holds an FPU Scholarship (FPU014/05283) from
the Spanish Government.

Author details

Lidia María Belmonte1, Rafael Morales1*, Antonio Fernández-Caballero1 and
José Andrés Somolinos2

*Address all correspondence to: Rafael.Morales@uclm.es

1 University of Castilla-La Mancha, School of Industrial Engineering, Albacete, Spain

2 Polytechnic University of Madrid, School of Naval Engineering, Madrid, Spain

Nonlinear Cascade-Based Control for a Twin Rotor MIMO System
http://dx.doi.org/10.5772/64875

289



References

[1] Castillo P., Lozano R., Dzul A.E. Modelling and control of mini-flying machines.
London: Springer; 2005. doi:10.1007/1-84628-179-2

[2] Raffo G.V., Ortega M.G., Rubio F.R. An integral predictive/nonlinear H∞ control
structure for a quadrotor helicopter. Automatica. 2010; 46(1):29–39. doi:10.1016/
j.automatica.2009.10.018

[3] Cai G., Chen B.M., Dong X., Lee T.H. Design and implementation of a robust and
nonlinear flight control system for an unmanned helicopter. Mechatronics. 2011; 21(5):
803–820. doi:10.1016/j.mechatronics.2011.02.002

[4] Fernández-Caballero A., Belmonte L.M., Morales R., Somolinos J.A. Generalized
proportional integral control for an unmanned quadrotor system. International Journal
of Advanced Robotic Systems. 2015; 12(85): 1–14. doi:10.5772/60833

[5] Feedback Co. Twin rotor MIMO system 33-220 user manual. 1998

[6] Mullhaupt P., Srinivasan B., Lévine J., Bonvin D. A toy more difficult to control than
the real thing. In: Proceedings of the European Control Conference (ECC'97). Brussels,
July 1997

[7] Ahmad S.M., Chipperfield A.J., Tokhi M.O. Parametric modelling and dynamic
characterization of a two-degree-of-freedom twin-rotor multi-input multi-output
system. Proceedings of the Institution of Mechanical Engineers Part G, Journal of
Aerospace Engineering. 2001; 215(2):63–78. doi:10.1243/0954410011531772

[8] Ahmad S.M., Shaheed M.H., Chipperfield A.J., Tokhi M.O. Non-linear modelling of a
one-degree-of-freedom twin-rotor multi-input multi-output system using radial basis
function networks. Proceedings of the Institution of Mechanical Engineers Part G,
Journal of Aerospace Engineering. 2002; 216(4):197–208.doi:
10.1243/09544100260369731

[9] Shaheed M.H. Feedforward neural network based non-linear dynamic modelling of a
TRMS using RPROP algorithm. Aircraft Engineering and Aerospace Technology: An
International Journal. 2005; 77(1):13–22. doi:10.1108/00022660510576000

[10] Rahideh A., Shaheed M.H. Mathematical dynamic modelling of a twin-rotor multiple
input-multiple output system. Proceedings of the Institution of Mechanical Engineers
Part I, Journal of Systems and Control Engineering. 2007; 221(1): 89–101. doi:
10.1243/09596518JSCE292

[11] Rahideh A., Shaheed M.H., Huijberts H.J.C Dynamic modelling of a TRMS using
analytical and empirical approaches. Control Engineering Practice. 2008; 16(3): 241–
259. doi:10.1016/j.conengprac.2007.04.008

Nonlinear Systems - Design, Analysis, Estimation and Control290



[12] Toha S.F., Tokhi M.O. ANFIS modelling of a twin rotor system using particle swarm
optimisation and RLS. In: Cybernetic Intelligent Systems (CIS), 2010 IEEE 9th Interna-
tional Conference on; 1–2 Sept. 2010. IEEE. doi:10.1109/UKRICIS.2010.5898130

[13] Tastemirov  A.,  Lecchini-Visintini  A.,  Morales  R.M.  Complete  dynamic  model
of  a  twin  rotor  MIMO  System  (TRMS)  with  experimental  validation.  In:
39th  European  Rotorcraft  Forum  2013  (ERF  2013);  3–6  Sept.  2013.  Moscow,
Russia.  ISBN:  978-1-5108-1007-5

[14] Ahmad S.M., Chipperfield A.J., Tokhi M.O. Dynamic modelling and open-loop control
of a twin rotor multi-input multi-output system. Proceedings of the Institution of
Mechanical Engineers Part I, Journal of Systems and Control Engineering. 2002; 216(6):
477–496. doi:10.1177/095965180221600604

[15] Ahmad S.M., Chipperfield A.J., Tokhi M.O. Dynamic modelling and linear quadratic
Gaussian control  of  a  twin-rotor  multi-input  multi-output  system. Proceedings of
the  Institution  of  Mechanical  Engineers  Part  I,  Journal  of  Systems  and  Control
Engineering.  2003;  217(3):203–227.  doi:10.1177/095965180321700304

[16] López-Martínez M., Rubio F.R. Longitudinal control for a laboratory helicopter via
constructive approximate backstepping. IFAC Proceedings Volumes. 2005; 38(1):289–
294. doi:10.3182/20050703-6-CZ-1902.00448

[17] López-Martínez M., Ortega M.G., Vivas C., Rubio F.R. Nonlinear L2 control of a
laboratory helicopter with variable speed rotors. Automatica. 2007; 43(4): 655–661. doi:
10.1016/j.automatica.2006.10.013

[18] Rahideh  A.,  Bajodah  A.H.,  Shaheed  M.H.  Real  time  adaptive  nonlinear  model
inversion control of a twin rotor MIMO system using neural networks. Engineering
Applications of Artificial  Intelligence.  2012;  25(6):1289–1297. doi:10.1016/j.engappai.
2011.12.006

[19] Tao  C.W.,  Taur  J.S.,  Chen  Y.C.  Design  of  a  parallel  distributed  fuzzy  LQR
controller  for  the  twin  rotor  multi-input  multi-output  system.  Fuzzy  Sets
and  Systems.  2010;  161(15):  2081–2103.  doi:10.1016/j.fss.2009.12.007

[20] Reynoso-Meza,  G.,  Garcia-Nieto  S.,  Sanchis  J.,  Blasco,  F.X.  Controller  tuning  by
means of multi-objective optimization algorithms: a global tuning framework. IEEE
Transactions on Control Systems Technology. 2013; 21(2): 445–458. doi:10.1109/TCST.
2012.2185698

[21] Coelho J., Matos R., Lebres C., Santos V., Fonseca N.M., Solteiro E.J., Tenreiro J.A.
Application of fractional algorithms in the control of a twin rotor multiple input-
multiple output system. In: 6th European Nonlinear Dynamics Conference (ENOC
2008). June 30–July 4, 2008. Saint Petersburg, Russia

Nonlinear Cascade-Based Control for a Twin Rotor MIMO System
http://dx.doi.org/10.5772/64875

291



[22] Christensen R., Fogh N., Hansen R.H., Jensen M.S., Larse S., Paramanathan A. Model-
ling and control of a twin-rotor MIMO system. Technical report, Aalborg University,
Denmark; 2006

[23] Ekbote  A.K.,  Srinivasan  N.S.,  Mahindrakar  A.D.  Terminal  sliding  mode  control
of a twin rotor multiple-input multiple-output system. IFAC Proceedings Volumes.
2011;  44(1):10952–10957.  doi:10.3182/20110828-6-IT-1002.00645

[24] Rotondo D., Nejjari F., Puig V. Quasi-LPV modeling, identification and control of a twin
rotor MIMO system. Control Engineering Practice. 2013; 21(6): 829–846. doi:10.1016/
j.conengprac.2013.02.004

[25] Feedback Co. Twin Rotor MIMO system. Advanced Teaching Manual 1. Manual:
33-007-4M5 Ed01. 1998

[26] Son Y.I., Kim I.H., Choi D.S., Shim D. Robust cascade control of electric motor drives
using dual reduced-order PI observer. IEEE Transactions on Industrial Electronics.
2015; 62(6): 3672–3682. doi:10.1109/TIE.2014.2374571

Nonlinear Systems - Design, Analysis, Estimation and Control292


