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1. Introduction 

Evolutionary Algorithms (EA) (Goldberg, 1989) have been successfully applied to learn 
fuzzy models (Ishibuchi et al., 1999). EAs have been also combined with other techniques 
like fuzzy clustering (Gómez-Skarmeta & Jiménez 1999) and neural networks (Russo, 1998). 
This has resulted in many complex algorithms and, as recognized in (Valente de Oliveira, 
1999) and in (Setnes et al., 1998), often interpretability of the resulting rule base is not 
considered to be of importance. In such cases, the fuzzy model becomes a black-box, and 
one can question the rationale for applying fuzzy modeling instead of other techniques. 
On the other hand, EAs have been recognized as appropriate techniques for multi-objective 
optimization because they perform a search for multiple solutions in parallel (Coello et al., 
2002) (Deb, 2001). Current evolutionary approaches for multi-objective optimization consist 
of multi-objective EAs based on the Pareto optimality notion, in which all objective are 
simultaneously optimized to find multiple non-dominated solutions in a single run of the 
EA. The decision maker can then choose the most appropriate solution according to the 
current decision environment at the end of the EA run. Moreover, if the decision 
environment changes, it is not always necessary to run the EA again. Another solution may 
be chosen out of the set of non-dominated solutions that has already been obtained. 
The multi-objective evolutionary approach can also be considered from the fuzzy modeling 
perspective (Ishibuchi et al., 1997). Current research lines in fuzzy modeling mostly tackle 
improving accuracy in descriptive models, and improving interpretability in approximative 
models (Casillas et al., 2003). This chapter deals with the second issue approaching the 
problem by means of multi-objective optimization in which accuracy and interpretability 
criteria are simultaneously considered. 
In this chapter, we propose a multi-objective neuro-evolutionary optimization approach to 
generate TSK fuzzy models considering accuracy and interpretability criteria. This approach 
allows a linguistic approximation of the fuzzy models. The rule-based fuzzy model and 
criteria taken into account for fuzzy modeling are explained in the text, where a multi-
objective constrained optimization model is proposed. 
Two different multi-objective evolutionary algorithms (MONEA, ENORA-II) are proposed 

and compared with the well-known algotithm NSGA-II (Deb et al., 2000) for the O
pe
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approximation of a non linear system (studied by Wang & Yen, 1998, 1999). The results of 

the experiments performed for this standard test problem show a real ability and 

effectiveness of the proposed approach to find accurate and interpretable TSK fuzzy models. 

2. Improving interpretability in TSK fuzzy models 

2.1 Fuzzy models identification 
We consider Takagi-Sugeno-Kang (TSK) type rule-based models (Takagi & Sugeno, 1985) 

where rule consequents are taken to be linear functions of the inputs. The rules have, 

therefore, the following expression: 

 
( )

1 1

1 1 1

:

=

i i n in

i i in n i n

R If x is A and and x is A

then y x xθ θ θ ++ + +
…
…

 

where: 

Mi ,1,= … , M is the number of rules, 

( )nxx ,,= 1…x , xj∈[lj uj]⊂ ℜ is the input vector ( nj ,1,= … ), 

θij ∈[l, u] ⊂ ℜ are the consequent parameters ( 1,1,= +nj … ), 

iy is the output of the ith rule, and 

ijA are fuzzy sets defined in the antecedent space by membership functions [ ]0,1: →jijA Xμ , 

being jX the domain of the input variable jx ( nj ,1,= … ). 

The total output of the model is computed by aggregating the individual contributions of 

each rule: 
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where ( )xiμ  is the normalized firing strength of the ith rule: 

 ( ) ( )jijA

n

j

i xμμ ∏
1=

=x  (2) 

and ( )xif  is the function defined in the consequent of the ith rule: 

 ( ) ( )111= ++++ nininii xxf θθθ …x  (3) 

Each fuzzy set ijA  is described by a symmetric gaussian membership function: 

 ( )
2

1
= exp

2

j ij

A jij

ij

x c
xμ

σ

⎡ ⎤⎛ ⎞−
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 (4) 

where: 

www.intechopen.com



Improving Interpretability of Fuzzy Models Using Multi-Objective Neuro-Evolutionary Algorithms 

 

281 

[ ]jjij ulc ,∈  is the center, 

0>ijσ  is the variance, 

Mi ,1,= …  and 

nj ,1,= … . 

This fuzzy model can be defined by a radial basis function neural network. The number of 

neurons in the hidden layer of an RBF neural network is equal to the number of rules in the 

fuzzy model. The firing strength of the ith neuron in the hidden layer matches the firing 

strength of the ith rule in the fuzzy model. We apply a symmetric gaussian membership 

function defined by two parameters, the center c and the variance σ. Therefore, each neuron 

in the hidden layer has these two parameters that define its firing strength value. 

The neurons in the output layer perform the computations for the first order linear function 

described in the consequents of the fuzzy model, therefore, the ith neuron of the output 

layer has the parameters ( )1)(1 ,,= +niii θθ …θ  that correspond to the linear function defined in 

the ith rule of the fuzzy model. 

2.2 Criteria for fuzzy modeling 
We consider three main criteria: (i) accuracy, (ii) transparency, and (iii) compactness. It is 

necessary to define quantitative measures for these criteria by means of appropriate 

objective functions which define the complete fuzzy model identification. 

Accuracy. 
The accuracy of a model can be measured with the mean squared error: 

 ( )2
1=

1
= kk

N

k

ty
N

MSE −∑  (5) 

where: 

ky  is the model output for the kth input vector, 

kt  is the desired output for the kth input vector, and 

N  is the number of data samples. 

Transparency. 
For the second criterion, transparency, there are many possible measures, however we 

consider one of the most used, the similarity (Setnes, 1995). The similarity S  among distinct 

fuzzy sets in each variable can be expressed as follows: 

 ( )
1,...,
1,...,
1,...,

= ,max ij kj
i M
j n
k M

A Aij kj

S S A A
=
=
=
≠

 (6) 

Similarity between two different fuzzy sets A  and B  can be measured using different 
criteria. In our case we use the following measure: 

 ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ∩∩

B

BA
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BA
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The value of S  is, therefore, an aggregated similarity measure for the fuzzy rule-based 

model with the objective to minimize the maximum similarity between the fuzzy sets in 

each input domain. 

Compactness. 

Finally, measures for the third criterion, the compactness, are the number of rules, ( M ) and 

the number of different fuzzy sets ( L ) of the fuzzy model. It is assumed that models with a 

small number of rules and fuzzy sets are compact. 

Table 1 summarizes the three criteria considered for the fuzzy models and the measures 

defined for each criterion. 

Criteria Measures

Accuracy MSE  

Transparency S  

Compactness M , L  

Table 1. Criteria for the fuzzy models and their measures 

2.3 An optimization model for fuzzy modeling 
According to the previous remarks, we propose the following multi-objective constrained 
optimization model: 

 
1

2

1
: 0

s

Minimize f MSE

Minimize f M

Subject to g S g

=
=

− ≤

 (8) 

where gs∈[0, 1] is a threshold for similarity defined by the decision maker (we use gs = 0,25). 

An “a posteriori” articulation of preferences applied to the non-dominated solutions of the 

problem is used to obtain the final compromise solution. 

3. Multi-objective neuro-evolutionary algorithms 

We propose a hybrid learning system to find multiple Pareto-optimal solutions 

simultaneously, considering accuracy, transparency and compactness criteria. We study 

different multi-objective evolutionary algorithms to evolve the structure and parameters of 

TSK-type rule sets, together with gradient-based learning to train rule consequents. 

Additionally, a rule set simplification operator is used to encourage rule base transparency 

and compactness. This method may be applied to a wide variety of classification and control 

problems. 

Considering the multi-objective constrained optimization model (8), we use three Pareto-

based multi-objective evolutionary algorithms: MONEA, ENORA-II and NSGA-II. MONEA 

and ENORA-II are algorithms proposed by authors in (Gómez-Skarmeta et al., 2007), and 

(Sánchez et al., 2007) respectively, while NSGA-II is the well-known multi-objective EA 

proposed by Deb in (Deb, 2001). 

The main common characteristics are the following: 

• The algorithms are Pareto-based multi-objective EAs for fuzzy modeling; that is, they 
have been designed to find, in a single run, multiple non-dominated solutions 
according to the Pareto decision strategy. There is no dependence between the objective 
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functions and the design of the EAs; thus, any objective function can easily be 
incorporated. 

• Constraints with respect to the fuzzy model structure are satisfied by incorporating 
specific knowledge about the problem. The initialization procedure and variation 
operators always generate individuals that satisfy these constraints. 

• The EAs have a variable-length, real-coded representation. Each individual of a 
population contains a variable number of rules between 1 and max, where max is 
defined by a decision maker. Fuzzy numbers in the antecedents and the parameters in 
the consequent are coded by floating-point numbers. 

• The initial population is generated randomly with a uniform distribution within the 
boundaries of the search space, defined by the learning data and model constraints. 

• The EAs search among rule sets treated with the technique described in Section 3.6 and 
trained as defined in Section 3.3, which is an added ad hoc technique for transparency, 
compactness, and accuracy. 

Table 2 summarizes common and specific characteristics of the algorithms MONEA, NSGA-

II and ENORA-II. 
 

Common characteristics 

Pittsburgh approach, real-coded representation. 

Training of the RBF network consequents. 

Constraint-handling technique. 

Variation operators. 

Rule-set simplification technique. 

Elitist generational replacement strategy. 

Specific characteristics 

MONEA:     Preselection over 10 children, 

                      steady-state replacement (n = 2). 

ENORA-II: Non-dominated radial slots sorting. 

NSGA-II:    Non-dominated crowded sorting. 

Table 2. Common and specific characteristics of MONEA, ENORA-II and NSGA-II. 

3.1 Representation of solutions 
The EAs have a variable-length, real-coded representation using a Pittsburgh approach. An 

individual I  for this problem is a rule set of M  (between 1 and max, where max is defined 

by a decision maker) rules defined by the weights of the RBF neural network. With n  input 

variables, we have for each individual the following parameters: 

• Parameters of the fuzzy sets ijA : 

centers ijc  and variances ijσ , Mi ,1,= … , nj ,1,= …  

• Coefficients for the linear function of the consequents: 

ijθ , Mi ,1,= … , 1,1,= +nj …  
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3.2 Initial population 
The population is initialized by generating individuals with different numbers of rules. Each 

individual is generated randomly with a uniform distribution within the boundaries of the 

search space, defined by the learning data and trained with the gradient technique described 

in subsection 3.3. 

An individual with M  rules is generated with the following procedure: 

1.  For each fuzzy set ijA  ( Mi ,1,= … , nj ,1,= … ), generate two real values:  ijc in the 

interval [ ]jj ul ,  and the parameter of the gaussian fuzzy set , ijσ . 

2.  Parameters ijθ  ( Mi ,1,= … , 1,1,= +nj … ) are random real values in the interval [ ]ul, . 

3.  The individual is treated with the technique to improve transparency and compactness 
describe in subsection 3.6. 

4.  The individual is trained using the gradient technique described in subsection 3.3. 

3.3 Training of the RBF neural networks 
In RBF neural networks, each neuron in the hidden layer can be associated with a fuzzy 

rule; therefore RBF neural networks are suitable to describe fuzzy models. The RBF neural 

networks associated with the fuzzy models can be trained with a gradient method to obtain 

more accuracy. However, in order to maintain the transparency and compactness of the 

fuzzy sets, only the consequent parameters are trained. The training algorithm 

incrementally updates the parameters based on the currently presented training pattern. The 

network parameters are updated by applying the gradient descent method to the MSE error 

function. The error function for the ith training pattern is given by the MSE function error 

defined in equation (5). The updating rule is the following: 

 
ij

ijijijij
MSE

θ
ηθθηθθ

∂
∂

−Δ+← =  

where: 

Mi ,1,= … , 

1,1,= +nj … , and 

η  is the learning rate. 

This rule is applied during a number of iterations (epochs). We use a value 0.01=η  and a 

number of 10  epochs. The negative gradients of MSE  with respect to each parameter are 

calculated in the following way:  
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= = x , 1,...,

ij k k i j

ij

MSE
t y x j n

z
θ μ

θ
∂

Δ − − =
∂

 

 ( )
( ) ( )xikk

ni
ni

z
yt

MSE μ
θ

θ 1
==

1
1)( −

∂
∂

−Δ
+

+

 
 

where: 

Mi ,1,= … , 
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( )xiμ  is the firing strength for the ith rule defined in equation (2), and 

( )xi

M

i
z μ∑ 1=

= . 

3.4 Constraint-handling 
The EAs use the following constraint handling rule proposed in (Jiménez et al., 2002). This 
rule considers that an individual I is better than an individual J if any of the following 
conditions is true: 

• I is feasible and J is not 

• I and J are both unfeasible, but SI < SJ 
        (SI and SJ are similarity of I and J) 

• I and J are feasible and I dominates J 

3.5 Variation operators 

As already said, an individual is a set of M  rules. A rule is a collection of n  fuzzy numbers 

(antecedent) plus 1+n  real parameters (consequent), and a fuzzy number is composed of 

two real numbers. In order to achieve an appropriate exploitation and exploration of the 
potential solutions in the search space, variation operators working in the different levels of 
the individuals are necessary. In this way, we consider three levels of variation operators: 
rule set level, rule level and parameter level. 
Rule Set Level Variation Operators 
Rule Set Crossover 

This operator exchanges a random number of rules. Given two parents ( )11
11

1
=

M
RRI … and 

( )22
12

2
=

M
RRI … generate two children:  

 
( )22

1
11

13 = ba RRRRI ……
 

 ( )22
1

11
14

21
=

MbMa RRRRI …… ++  

with: 

 
( )1= Mrounda α

 

 
( )( )21= Mroundb α−

 

where α  is a random real number in [ ]0,1 . The number of rules of the children is therefore 

in [ ]21, MM . 

Rule Set Increase Crossover 
This operator increases the number of each child rules adding a random number of rules of 

the other parent. Given two parents ( )11
11

1
=

M
RRI …  and ( )22

12
2

=
M

RRI …  generate two 

children:  

 ( )22
1

11
13

1
= aM

RRRRI ……  
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 ( )11
1

22
14

2
= bM

RRRRI ……  

with: 

 
{ }21,= MMa −maxmin

 

 { }12 ,= MMb −maxmin  

Rule Set Mutation 
This operator adds or deletes, with the same probability, a rule. Given an individual 

( )MRRI …1=  generates other individual I ′ : 

 

( )
( ) caseotherinRRRI

ifRRRRI

MM

Maa

,,=

0.5,,=

11

111

+

+−
′

≤′

…
…… α

 

where: 

α  is a random real number in [ ]0,1 , 

a  a random index in [ ]M1,  , and 

1+MR  a new random rule generated with the initialization procedure. 

Rule Level Variation Operators 
Rule Arithmetic Crossover 

It performs an arithmetic crossover of two random rules. Given two parents ( )11
11

1
=

M
RRI …  

and ( )22
12

2
=

M
RRI …  generates two children:  

 ( )131
13

1
=

Mi RRRI ……  

 ( )242
14 2

= Mj RRRI ……  

with 3
iR  and 4

jR  obtained by arithmetic crossover:  

 
( ) 213 1= jii RRR αα −+

 

 
( ) 124 1= ijj RRR αα −+

 

where: 

α  is a random real number in [ ]0,1 , 

ji,  are random index in [ ]11, M  and [ ]21, M , respectively. 

The product iRα  is defined as follows:  

 1)(11: +niiniinii AAR αθαθαθααα ……
 

The fuzzy set ijAα  is defined as follows:  

{ }ijijijijij dcbaA ααααα ,,,=
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Rule Uniform Crossover 

It performs a uniform crossover of two random rules. Given two parents ( )11
11

1
=

M
RRI …  and 

( )22
12

2
=

M
RRI …  generates two children:  

 ( )131
13

1
=

Mi RRRI ……  

 ( )242
14

2
=

Mj RRRI ……  

where: 
3
iR  and 4

jR  are obtained by uniform crossover, 

ji,  are random index in [ ]11, M  and [ ]21, M . 

Parameter Level Variation Operators 
The operators considered at this level are arithmetic crossover, uniform crossover, non-

uniform mutation, uniform mutation and small mutation. These operators excluding the last 

one have been studied and described by other authors (Goldberg, 1989). The small mutation 

produces a small change in the individual and it is suitable for fine tuning of the real 

parameters. 

3.6 Rule set simplification technique 
Automated approaches to fuzzy modeling often introduce redundancy in terms of several 
similar fuzzy sets and fuzzy rules that describe almost the same region in the domain of 
some variable. According to some similarity measure, two similar fuzzy sets can be merged 
or separated. The merging-separation process is repeated until fuzzy sets for each model 
variable are not similar. This simplification may results in several identical rules, which 
must be removed from the rule set. The proposed algorithm is the following: 

1 While there be kji ,,  such that ( ) 2>, ηkjij AAS  

               If ( ) 1>, ηkjij AAS  then  

                             Calculate C  as the merging of ijA  and kjA  

                             Substitute ijA  and kjA  by C  

               in other case  

                             Split ijA  and kjA   

2 While there be ki,  such that the antecedents of rules iR  and kR  are the same 

               Calculate a new consequent with the average of the parameters of the consequents 

               of iR  and kR  

               Substitute the consequent of iR  by the new consequent  

               Eliminate kR   

Similarity between two fuzzy sets, ( ), ,S A B  is measured using the expression in equation 

(7). The values 1η  and 2η  are the threshold to perform the merging or the separation and 

must be 1<<<0 12 ηη . (we use 0.9=1η  and 0.6=2η ) 
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If ( ) 1>, ηBAS , fuzzy sets A and B are merged in a new fuzzy set C as follows:  

( ) BAC ccc αα −+ 1=  

}},max{},,min{max{ CBBAABBAAC cccccc −++−−−= σσσσσ  

 

where [ ]0,1∈α  determines the influence of A  and B  in the new fuzzy set C :  

 
l
B

r
B

l
A

r
A

l
A

r
A

cccc

cc

−+−
−

=α
 

 

If ( ) 12 <,< ηη BAS , fuzzy sets A  and B  are splitted as follows:  

( )
( )βσσ

βσσσσ
−←

−←<

1

1

BB

AABA

caseotherin

thenIf
 

where [ ]0,1∈β  indicates the amount of separation between A  and B  (we use 0.1=β ). 

3.7 Algorithm descriptions 
In order to describe the algorithms, we consider the following formulation as a general form 
of the multi-objective constrained optimization model (8): 

 
1,..,

0 1,..,

k

i

Minimize f k n

Subject to g i m

=
≤ =

 (9) 

Where ik gf ,  are arbitrary functions.  

Multi-objective neuro-evolutionary algorithm (MONEA) 
The main characteristic of MONEA is that Chromosome selection and replacement are 

achieved by means of a variant of the Preselection scheme. This technique is, implicitly, a 

niche formation technique and an elitist strategy. Moreover, an explicit niche formation 

technique has been added to maintain diversity with respect to the number of rules of the 

individuals. 
 

Algorithm MONEA 
1.      t ä 0 
2.      Initialize P (t) 
4.      while t < T do 
5. parent1,parent2 ä Random selection from P(t) 
6. Generate a new individual best1ä parent1 
7. Generate a new individual best2ä parent2 
8.  Repeat nChildren times 
9.           child1,child2ä Crossing and Mutation of parent1  and parent2 
10.           Improve transparency and compactness in child1 and child2 
11.           Train child1and child2 by the gradient technique 
12.           For i=1 to 2 
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13.  If childi is better than besti and  
  (the number of rules of childi is equal to the number of rules of parent i) or 
  (the niche count of parenti is greater than minNS and the niche count of the 
  childi is smaller than maxNS) then 
14.              bestiä childi 
15. P (t + 1) äP(t) – {parent1, parent2} ∪  {best1, best2} 
16. t ä t + 1 
17.     end while 
The preselection scheme is an implicit niche formation technique to maintain diversity in the 

population because an offspring replaces an individual similar to itself (one of its parents). 

Implicit niche formation techniques are more appropriate for fuzzy modeling than explicit 

techniques, such as the sharing function, which can provoke excessive computational time. 

However, we need an additional mechanism for diversity with respect to the number of 

rules of the individuals in the population. The added explicit niche formation technique 

ensures that the number of individuals with M rules, for all M Є [1, max], is greater or equal 

to minNS and smaller or equal to maxNS. Moreover, the preselection scheme is also an elitist 

strategy because the best individual in the population is replaced only by a better one. 

The better function 
 

Given two individuals k and l,  k is better than l if: 

• k is feasible and l is unfeasible, or 

• k and l are unfeasible and { } { }lj
mj

k
j

mj
gg

...1...1
maxmax
==

≤ , or 

• k and l are feasible and k dominates l, or 

(10) 

 

ENORA-II: An Elitist Pareto-Based Multi-Objective Evolutionary Algorithm 
ENORA-II uses a real-coded representation, uniform and arithmetical cross, and uniform 
and non-uniform mutation. Diversity among individuals is maintained by using an ad-hoc 
elitist generational replacement technique. 
ENORA-II has a population P of N individuals. The following algorithm shows the 
pseudocode of ENORA-II. 
 

Algorithm ENORA-II 
1.       t ä 0 
2.       Initialize P (t) 
3.       Evaluate P (t) 
4.       while t < T do 
5. Q (t) ä Random Selection, Crossing and Mutation of N individuals from P (t) 
6. Improve transparency and compactness in Q(t) 
7. Train all individuals in Q(t) by the gradient technique 
8. Evaluate Q(t); 
9. P (t + 1) ä Best individuals from P (t) ∪ Q(t); 
10. t ä t + 1; 
11. end while; 
12.     return the non dominated individuals from P(t); 
Given a population P of N individuals, N children are generated by random selection, 

crossing and mutation. The new population is obtained selecting the N best individuals 

from the union of parents and children. 
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Better individuals 
The better individuals are obtained by using the ranking established by the operator best. It 
assumes that every individual i has two attributes: 

• a ranking in its slot (ri), and 

• a crowding distance (di). 
Based on these attributes, an individual i is better than an individual j if: 

• ri < rj or 

• ri = rj and di  > dj. 
Crowding distance 
Quantity di is a measure of the search space around individual i which is not occupied by 
any other individual in the population. This quantity di serves as an estimate of the 
perimeter of the cuboid formed by using the nearest neighbors as the vertices. 
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Where max
jf = { }ij

Ni
f

...1
max
=

, min
jf = { }ij

Ni
f

...1
min
=

, 
i
j

jf
sup

 is the value of the jth objective for the 

individual higher adjacent in the jth objective to individual i, and 
i
j

jf
inf

 is the value of the 

jth objective for the individual lower adjacent in the jth objective to individual i. 
Ranking of individuals in its slot 

Individuals are ordered in ⎣ ⎦( ) 1
1 1

−− +
n

n N  slots. An individual i belongs to slot is  such that: 
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where maxr
jf and minr

jf are the maximum and minimum values for the jth objective if the 

objective space is bounded; if it is not, then these are bounding reference points so that 
i
j

r
j ff ≥max and i

j
r
j ff ≤min  for any individual i.  

The ranking inside slots is established as an adjustment of the better function (10): given two 
individuals k and l belonging to same slot, ranking of individual k is lower than ranking of 
individual l in the slot if: 

• k is feasible and l is unfeasible, or 

• k and l are unfeasible and { } { }lj
mj

k
j

mj
gg

...1...1
maxmax
==

≤ , or 

• k and l are feasible and k dominates l, or 

• k and l are feasible and does not dominated each other and lk dd > . 

4. Experiments and results 

We consider the second order non-linear plant studied in (Wang & Yen, 1999) and (Yen & 
Wang, 1998): 
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kykyky
kykyg

with
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The objective is the approximation of the non-linear component of the plant 

( ) ( )( )2,1 −− kykyg  using a fuzzy model. 200 training values and 200 evaluation values are 

obtained starting at the initial state (0,0) with a random input signal u(k) uniformly 

distributed in the interval [ ]1.5,1.5− . 

MONEA, ENORA-II and NSGA-II are executed 100 times for 10000 evaluations, with a 
population of 100 individuals, cross and mutation probabilities of 0.8 and 0.4 respectively. 
The different variation operators are applied with equal probability. We can compare our 
results with the results obtained by other approaches proposed in (Wang & Yen, 1999), (Yen 
& Wang, 1998) and (Roubos & Setnes, 2000) which are shown in Table 3. Table 4 shows the 
best non-dominated solutions in the last population over 100 runs. Solutions with 4 rules are 
chosen which are shown in Figure 1 and Table 5. 
 

Reference M L Train MSE Eval MSE 

Wang & Yen, 1999 
40 (initial) 

28 (optimized) 
40 
28 

3.3 E-4 
3.3 E-4 

6.9 E-4 
6.0 E-4 

Yen & Wang, 1998 
36 (initial) 

24 (optimized) 
12 
12 

1.9 E-6 
2.0 E-6 

2.9 E-3 
6.4 E-4 

Roubos & Setnes, 2000 
7 (initial) 

5 (optimized) 
14 
5 

1.8 E-3 
5.0 E-4 

1.0 E-3 
4.2 E-4 

Table 3. Fuzzy models for the second order non-linear plant reported in literature. 

 

M L Train MSE Eval MSE S 

MONEA 

1 2 0.041882 0.043821 0.000000 

2 3 0.004779 0.005533 0.249887 

3 4 0.002262 0.002749 0.232016 

4 4 0.000216 0.000248 0.249021 

ENORA-II 

1 2 0.041882 0.043821 0.000000 

2 3 0.004951 0.005722 0.242090 

3 4 0.001906 0.002411 0.249391 

4 4 0.000161 0.000194 0.249746 

NSGA-II 

1 2 0.041882 0.043821 0.000000 

2 3 0.004870 0.005639 0.249998 

3 4 0.001885 0.002343 0.249999 

4 4 0.000249 0.000314 0.250000 

Table 4. Non-dominated solutions (best results over 100 runs) obtained in this paper for the 
second order non-linear plant. 
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R1 If y(k-1)  is LOW and y(k-2)  is LOW then g = 0.4327y(k-1) + 0.0007(k-2) – 0.2008 
R2 If y(k-1)  is LOW and y(k-2)  is HIGH then g = -0.4545y(k-1) – 0.0131(k-2) + 0.2368 
R3 If y(k-1)  is HIGH and y(k-2)  is LOW then g = -0.3968y(k-1) – 0.0044(k-2)+ 0.1859 
R4 If y(k-1)  is HIGH and y(k-2)  is HIGH then g = 0.43645y(k-1) – 0.0052(k-2)– 0.2110 

y(k-1) LOW = (-1.5966, 2.0662) HIGH = (1,7679, 2.6992) 
y(k-2) LOW = (-1.7940, 3.1816) HIGH = (1.5271, 2.1492) 

Table 5. Fuzzy model with 4 rules for the non-linear dynamic plant obtained by ENORA-II. 

  

 
Fuzzy Sets for y(k-2) 

Figure 1. Solutions with 4 rules obtained in this paper for the second order non-linear plant. 
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To compare the algorithms, we use the hypervolume indicator (ν) which calculates the 

fraction of the objective space which is non-dominated by any of the solutions obtained by 

the algorithm in (Deb, 2001), (Laumans et al., 2001) and (Zitzler et al., 2003). The aim is to 

minimize the value of ν. This indicator estimates both the distance of solutions to the real 

Pareto front and the spread. Whenever a set of solutions is preferable to other with respect 

to weak Pareto dominance, the indicator value for the first set of solution will be at least as 

good as the indicator value for the second; it is, therefore, a Pareto compliant quality 

indicator. Value ν can be calculated for a population P0 which is composed by the N0 non-

dominated solutions of P. 

Algorithms were executed 100 times, so we have obtained a 100 sample for each algorithm. 
The statistics showed in Table 6 indicate that MONEA and ENORA-II obtain lower 

localization values than NSGA-II while NSGA-II obtains the greatest dispersion values. 

Finally, the 90% confidence intervals for the mean obtained with t-test show that ENORA-II 

obtains lower values than MONEA and this obtains lower than NSGA-II. That is, the 

approximation sets obtained by ENORA-II are preferable to those of MONEA and those of 

NSGA-II under hypervolume indicator ν. t-test is robust with no normal samples which are 

greater than 30 individuals, so the results are significant and we can conclude that there is 

statistical difference between the hypervolume values obtained by the algorithms. The 

Boxplots showed in Figure 2 confirm the above conclusions. 

 
 

 MONEA ENORA-II NSGA-II

Minimum 0.3444 0.3337 0.3318 

Maximum 0.4944 0.4591 0.9590 

Mean 0.3919 0.3799 0.5333 

S.D 0.0378 0.0334 0.1430 

C.I. Low 0.3856 0.3743 0.5096 

C.I. High 0.3982 0.3854 0.5571 

S.D = Standard Deviation of Mean 

C.I. = Confidence Interval for the Mean (90%) 

 

Table 6. Statistics for the hypervolume obtained with 100 runs of MONEA, ENORA-II and 
NSGA-II for the second order non-linear plant. 

Taking all the above, we can conclude that the hypervolume values obtained with ENORA-

II are significantly better than the values obtained with MONEA and NSGA-II. The 

statistical analysis shows, therefore, that for the kind of multi-objective problems we are 

considering, Pareto search based on the space search partition in linear slots is most efficient 

than general search strategies exclusively based on diversity functions, as in NSGA-II. 
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Figure 2. Boxplots for the hypervolume obtained with 100 runs of MONEA, ENORA-II and 
NSGA-II for the second order non-linear plant. 

5. Conclusions 

This chapter remarks on some results in the combination of Pareto-based multi-objective 

evolutionary algorithms, neural networks and fuzzy modeling. A multi-objective 

constrained optimization model is proposed in which criteria such as accuracy, 

transparency and compactness have been taken into account. Three multi-objective 

evolutionary algorithms (MONEA, ENORA-II and NSGA-II) have been implemented in 

combination with neural network based and rule simplification techniques. The results 

obtained improve on other more complex techniques reported in literature, with the 

advantage that the proposed technique identifies a set of alternative solutions. Statistical 

tests have been performed over the hypervolume quality indicator to compare the 

algorithms and it has shown that, for the non linear plant problem, ENORA-II obtains better 

results than MONEA and NSGA-II algorithms. 

Future improvements of the algorithms will be the automatic parameter tuning, and a next 

application of these techniques will be on medicine data. 
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