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Abstract

In this chapter, the critical stress transfer factors of interface material have been studied
under tensile  loading.  The polypropylene (PP)  short  fiber  was embedded into the
polypropylene co-ethylene (PPE) cylindrical interface first and then into the matrix
material. Modified interface PPE material with lower elastic constant value than matrix
material was used in our study. In this chapter, interface parameters affecting the stress
transfer mechanism have been investigated. Finite element analysis (FEA) package
(Ansys) has been used in the numerical  modeling by using representative volume
element (RVE). Tensile load was applied on one side of the composite cylinder as the
other side of the composite is fixed. The critical stress-strain distributions are deter-
mined and presented by curves and tables for different fiber and interface diameters.
For verification, the equivalent elastic material constants have been compared with the
analytical solution and the results have been appropriate.

Keywords: FEA, representative volume element, fiber composite, stress transfer, inter-
face, polymer

1. Introduction

There was considerable work on the determination of equivalent elastic constants of fiber-
reinforced composites in the literature survey. The methods used in these studies can be
summarized as follows: (i) numerical methods: finite difference and finite element method; (ii)
analytical methods: semi-empirical Halpin-Tsai equation, rule of mixtures (ROM); and (iii)
experimental studies in macro-, micro-, and nanoscales.
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In the literature survey, studies proposing finite difference modeling and equivalent elastic
properties of fiber composite structures were calculated in the consideration of the effect of
fiber modulus �� and aspect ratio �/�  [1–6]. These studies were performed on the represen-

tative models according to both the multiple and single-fiber-reinforced material composi-
tions.

Finite element method (FEM) is one of the most useful numerical methods in engineering
problem-solving. Other methods such as the sublevel numerical procedures were addition-
ally developed and used with FEM in solution phases. One of the main methods used was
representative volume element (RVE) that used to predict the mechanical properties of uni-
directional fiber composites. By using finite element analysis of RVE, effective elastic mod-
ulii of the composite were determined [7]. Experimental studies were also performed to
support the numerical results [8]. Two-dimensional (unit cell method) and three-dimen-
sional finite element analysis (FEA) with RVE was performed, and results were compared
with the results of experimental studies in the literature [9–23]. Researchers often used the
following FE commercial codes: ABAQUS [11, 12, 16, 19], ANSYS [17, 20], NASTRAN [13],
and ALGOR-FEAS [9]. The numerically obtained results were compared and discussed
with the analytical [2, 5, 14, 15, 21, 23] and experimental data in the literature survey [10,
14, 15, 18].

The aim of this study was to determine the stress and strain distributions in fiber, matrix, and
fiber-matrix-interface in discontinuous fiber-matrix composite by using FEA. Each of the FE
model consists of a polypropylene co-ethylene (PPE) matrix which contains a polypropylene
fiber (PP) in it. In this study, 18 models were used and nine of them had also an interface
volume. In this research, following six main concepts were presented by examining the single
short fiber cylindrical bar within the matrix material under tensile loading for mechanical
response.

1. By using RVE, testing the effectiveness of the finite element modeling procedures on the
results, that is, mesh element types, meshing, definition and implementation of the
boundary conditions, application of the tensile loading.

2. Considering the different volume fractions, testing the effectiveness of the various volume
fraction of the fiber on the stress transfer mechanism from matrix to fiber material.

3. In terms of three-dimensional analysis, to investigate the influence of definition and
modeling of interface volume between fiber and matrix in 3D.

4. In terms of three-dimensional analysis, examining the effects of fiber surface area on the
stress transfer mechanism.

5. Establishing the explanations and curves for clarification the stress and strain localization
at the ends of the fiber.

6. Calculating the equivalent elastic constant E1.
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2. The fiber-reinforced composite material with interface volume:
modeling by representative volume element (RVE) method

Cylindrical RVE was used to represent the matrix and fiber all together. The different ma-
terial properties of fiber, matrix, and interface were selected. The elastic constants of the
polymer material were expressed as �� = 1.05 GPa, �� = 0.33, �� = 4.5 GPa, �� = 0.2,�� = 0.1 × �� = 0.105 GPa [4], �� = 0.33. Here, ��, ��, ��, ��, ��, �� reflected the Young’s

modulus and Poisson’s ratio of the matrix, fiber, and interface materials, respectively.
While the fiber material was composed of elastic polyethylene (PE), the matrix and inter-
face materials were composed of bilinear material (PPE). The thickness �� of the interface

region was defined as �� = 0.025�. Here, � was the diameter of the fiber. The shear modu-

lus of the interface region was defined as �� = 0.1 �� [4]. In 3D composite modeling

steps, nine different geometrical properties were used with variable thickness ��, diameter��, and fiber volume fraction �� as shown in Table 1. According to these different geomet-

ric values, fiber composite RVE was modeled by FEM and the stress-strain transmission
conditions from fiber to interface and stress transfer from interface to matrix of the three
types of materials were examined.

Fiber interface thickness�� �m Fiber diameter � �m  Fiber volume fraction�� %  

Rule of mixtures (L = ℓ),�1 GPa
1 40 4.98 1.222

1.125 45 5.87 1.283

1.25 50 6.75 1.283

1.375 55 7.63 1.313

1.5 60 8.51 1.344

1.625 65 9.37 1.373

1.75 70 10.22 1.403

1.875 75 11.06 1.432

2 80 11.87 1.459

Table 1. PPE/PP single-fiber-matrix modeling according to the various interface geometric properties and analytical
results of continuous � = ℓ  fiber-matrix composite.

Fiber volume fraction values and the size of the material models were obtained by using the
following equation [13];

2

24
f

dV
LS

p
=

l
(1)
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Here, ℓ, �, and � correspond to the fiber spacing, fiber length, and longitudinal fiber spacing,
respectively, as shown in Figure 1.

Figure 1. 2D geometrical parameters of the matrix/interface/fiber combination of PPE/PP microcomposite.

Figure 2. One of the typical geometrical descriptions of the polymer composite (matrix/interface/fiber, d = 50 μm) and
generated volume numbers.

Figure 3. Two different RVE fiber composite geometries and applied displacement boundary conditions: (a) fiber, inter-
face, and matrix combination; (b) fiber and matrix combination.

By rotating the 2D model 360° around the Y′-axis, 3D material models were obtained as
shown in Figure 2. Cylindrical geometry was divided into two segments and one segment was
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used to demonstrate the results (Figures 2 and 3). In general, the cylindrical geometry was
defined in cylindrical coordinates �, �, � . In Ansys, modeling �, �, �  Cartesian coordinate axes
refers to the �, �, �  in the cylindrical coordinate system. However, in this study, all of the results
and Ansys code screen outputs were demonstrated only on the x-y plane of the projected
surface for one half of the cylindrical geometry.

2.1. Analytical formulation.

The aim of the micromechanical approaches was to determine the equivalent elastic constants
of composite material considering individual elastic constants constituting the composite
material. The equivalent elastic constants �1, �2, �12, �12  of the fiber-reinforced-composite

have been determined analytically in terms of the relative volume fractions ��, ��  and elastic

constants ��, ��, ��, ��, ��, ��  of fiber and matrix. It may be mentioned two basic analytical

approaches in micromechanics of continuous fiber-matrix composite materials in obtaining
the equivalent elastic constants. The first one was the rule of mixtures (ROM), and the second
one was the Halpin-Tsai semi-empirical model [24, 25]. The first model “rule of mixtures”
defined as the mathematical expressions that give the elastic properties of the continuous fiber
composite material in terms of original material properties, volume fiber fraction, and
arrangement of its constituents: (a) the apparent Young’s modulus in the same direction as the
fibers (�1) (Eq. (2)), (b) the apparent Young’s modulus in the direction perpendicular to the

fibers (�2) (Eq. (3)), (c) the major Poisson’s ratio (�12) (Eq. (4)), and (d) the in-plane shear

modulus (�12) of a lamina (Eq. (5)). Rule of mixtures (ROM) equations have been listed and

shown as the formulas below:

( )1 1f f m fE E V E V= + - (2)

2
f m

m f f m

E E
E

V E V E
=

+
(3)

( )12 1f f m fV Vn n n= + - (4)

12
m f

m f f m

G G
G

V G V G
=

+
(5)

The second model “Halpin-Tsai” included the expressions obtained by curve fitting as: (a) the
apparent Young’s modulus in the same direction as the fibers (�1) (Eq. (6)), (b) the apparent
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Young’s modulus in the direction perpendicular to the fibers (�2) (Eq. (7)), (c) the major

Poisson’s ratio (�12) (Eq. (8)), and (d) the in-plane shear modulus (�12) (Eq. (9)) of a single layer

of layered composite “ply.” These related equations have been listed and shown below:

1 f f m mE E V E V= + (6)

2
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12 f f m mV Vn n n= + (8)
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The reinforcing factor (�), measuring reinforcement of the composite, is variable depending
on the fiber geometry, packing geometry, and loading condition. It is a measure of reinforce-
ment of the composite. The values of � have been obtained by comparing the Eqs. (7) and (8)
with exact elasticity solutions, and corresponding curve fitting results. The generalized
Hooke’s law equation is as follows:

i ij jCs e= (10)

In this equation, �� is the stress vector, ��� is the stiffness matrix, and �� is the strain vector

components. In functional form, ��� has been represented by Eq. (11) in terms of the elastic

properties of the fiber, matrix, relative volume fractions of fiber and matrix.

( ), , , , ,ij ij f f f m m mC C E V E Vn n= (11)

In most literature studies, the basic analytical approaches have been presented without taking
into account the adhesion of the interface across the end faces of the fibers and the stress
concentration effects at the fiber ends [2, 26, 27].
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3. Finite element modeling of short fiber in microcomposite and analyses
results

In the literature survey, a detailed examination on fiber-reinforced polymer matrix composites
was observed in determining the most suitable fiber-matrix combination model. In the
literature, different studies were found about tension/compression and shear loading to the
different modeling types of fiber/interface/matrix combinations, and in these studies, the
strength of the applied tensile/compression and shear loading types have been investigated.
In this research, the stress transfer mechanism and equivalent elastic constants of short fiber
composites were tried to be obtained by using new modeling. In FE modeling, the design
criteria were as follows: the dimensions of fiber and matrix, the material types of fiber and
matrix, the dimensions and material types of interface volume and the application of the tensile
load. In the first stage of the study, a single short fiber was studied with ANSYS code in
determining the optimum interface thickness by comparing the results obtained. In this step,
two different models were tested. The first one was fiber-matrix microcomposite with inter-
face (Figure 3a); the second model was fiber-matrix microcomposite without interface (Figure
3b). In the second stage of the study, the effects of interface volumes on the values of stress
distributions around the tip points of the fiber were attempted to explain. In the calculation of
the single-fiber modeling, nine different interface thicknesses �� and nine different fiber

diameters �� were used �� = 0.025 ��, (�� = 40, 45,…, 80 �m). In this study, the interface volume

was defined around all of the faces of the fiber. In the literature, the studies were performed
by defining the interface surface or volume along the longitudinal surface (Figure 3).

Fiber diameter� �m Number of mesh elements

and nodes in the fiber-

interface-matrix model

(SHELL93)

Elastic constant�1 GPa  (fiber-

interface-matrix

model)

Number of mesh

elements and nodes in

the fiber-matrix model

(SHELL93)

Elastic constant�1 GPa  (fiber-

matrix model)

40 31,776/93,823 1.472 2271/6680 1.054

45 16,520/48,859 1.465 2475/7238 1.056

50 11,503/33,926 1.459 2474/7237 1.057

55 33,190/98,585 1.449 2543/7438 1.081

60 33,155/98,478 1.446 2559/7486 1.063

65 21,104/62,686 1.415 2957/8668 1.066

70 14,298/42,267 1.428 2998/8795 1.065

75 15,029/44,458 1.441 3103/9110 1.035

80 15,604/46,171 1.411 3229/9480 1.047

Table 2. The used geometric parameters, mesh elements, node numbers, and obtained elastic constants of

discontinuous  fiber-matrix microcomposite.
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In this study, the short single-fiber composite polymer (PPE/PP) material was modeled in
microlevel by finite element method (FEM). Single-fiber arrangement in matrix under the axial
loading was adequate to explain the overall characteristics of the fiber composite structures.
SHELL93 as ANSYS element type was used. This element has 6 degree of freedom per node��, ��, ��, ��, ��, �� . The generated FE models for nine different geometries have different total

number of mesh elements and node numbers. Exact number of elements and nodes corre-
sponding to the composite models has been summarized in Table 2.

Composite model consists of three volume sections representing the fiber matrix and interface
(Figure 4). The first boundary condition of the model was applied by fixing one end of the
geometry, and this was performed by setting the 6 degree of freedom of each node to zero
(BC_1).

The second boundary condition of the model was related with the loading condition. The
second end of the composite cylinder was pulled with a constant load. The loading magnitude
applied to the nodes was � = 0.1 N. In this application, because of the unsymmetrical meshing
system, the resultant deformation of the bar was obtained as unsymmetrical. In order to
overcome this difficulty, second boundary condition was applied to the second end of the

cylinder. On this face along the loading application thickness or level ���� , the “unit dis-

placement” �� = 0.1 �m was adopted to each node to obtain the symmetric displacement

condition over the whole body 1 �m ≤ ���� ≤ 2 �m  (BC_2) (Figure 3). The stress concentra-

tion regions were developed between the fiber and matrix at the sharp edge corners as shown
in Figures 5–8. Fiber-matrix model showed higher stress concentrations than fiber-matrix-
interface model. In order to give more explanation to the developing stress distributions on
these faces, the third boundary condition was applied (BC_3). The previously defined first-
and second-type boundary conditions were applied over the extremely large sections of the

body 20 �m ≤ ���� ≤ 26 �m , and new stress distribution results were obtained (Figures 9 and

10).

Figure 4. FEA meshing with SHELL93 element (a) RVE of fiber cylindrical composite model, (b) fiber, (c) matrix, and
(d) interface.
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Figure 5. Stress (��) distribution on the matrix section obtained from FEA nodal solution without interface region

(� = 40 �m).

Figure 6. Stress (��) distribution on the matrix section obtained from FEA element solution without interface region

(� = 40 �m).

Figure 7. Stress (��) intensity on the matrix section obtained from FEA element solution without interface region

(� = 40 �m).
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Figure 8. Stress (��) intensity developing on the matrix section (a) with interface region, (b) without interface region

(� = 80 �m).

Figure 9. FE results for the BC_2, ��  stress localization which is parallel to the applied displacement loading �� and

generated around the sharp corners of the fiber–matrix model without interface region (� = 80 �m).

Figures 5–7 have been represented the �� distribution developing within the composite model

in matrix segment with noninterface case for the fiber diameter � = 40 �m [2]. The stress
distributions were defined for both nodal and elemental solutions. The developing stress
localizations appeared around the tip sections of the fiber in matrix. The developing maximum
stress distributions were intensified around the fiber end sections. At the same region around
the neighborhood sections of the fiber segment, stress levels reached to relatively lower stress
localizations in comparison with maximum. This stress distribution was wide spread around
the maximum stress localization in a definite region. Normal stress value reached to their
secondarily largest value around the middle section of the fiber in matrix material. Addition-
ally, nodal solution curves gave better results than elemental solution. In nodal solution, stress
localizations appeared in a narrower region with longer segments. In finite element analysis,
element solutions were obtained by Gauss quadrature integration points. Nodal solution
results were determined at the coordinates of the nodal points by interpolation functions.
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Gauss integration points have been defined at the inner section of the elements which were
not coincided with nodal coordinates. These element solutions were obtained by using the
interpolating functions in the curvilinear coordinate system. Element types varied according
to the interpolation functions used. In the generated composite models, the generated total
number of elements, nodes, and the obtained results were listed in Table 2. When the number
of elements increased, the most correct results were obtained. For these processes, high-
capacity computer systems were required. Stress distributions developing on the fiber and
matrix sections without interface volume were presented in Figures 11 and 12. In these figures,
stress localizations were developed on both matrix and fiber surfaces.

Figure 10. FE results for the BC_3, ��  stress localization on the (a) matrix and (b) fiber which are parallel to the ap-

plied displacement loading �� and generated above the sharp corners of the fiber–matrix model without interface re-

gion (� = 75μm ).
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Figure 11. FEA stress ��  distribution developing on the matrix section of the fiber-matrix model without interface

region (� = 80 �m).

Figure 12. Stress (��) distribution on the fiber section obtained from the FEA without interface region (� = 80 �m).

As the fiber diameter decreased, the stress distributions collected at the end surface of the
cylindrical fiber material grown locally. When the stress localizations reduced in the inter-
face region between matrix and fiber at the same time, higher stresses in fiber section has
emerged. As it has shown by Figures 13 and 14, in the polymer fiber model with an interface

region, the maximum stress value was �� = 0.952 × 10−6 N/�m2, and in the polymer fiber

model without interface, maximum stress developing on the fiber was equal to�� = 0.732 × 10−6 N/�m2 � = 40 �m . On the other hand, in the model with an interface, ma-

trix sections near to the fiber had the value �� = 0.265 × 10−6 N/�m2, and in the noninterface

model, stress value was �� = 0.429 × 10−6 N/�m2 (Figures 15 and 16) � = 40 �m .
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Figure 13. FEA stress ��  distribution developing on the fiber section of the fiber-matrix model without interface re-

gion (� = 40 �m).

Figure 14. FEA (��) distribution developing on the fiber section of the fiber-matrix model with interface region

(� = 40 �m).

Figure 15. Stress ��  distribution developing on the matrix section of the fiber-matrix model with interface

(� = 40 �m).
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Figure 16. Stress ��  distribution developing on the matrix section of the fiber-matrix model without interface

(� = 40 �m).

When the models were analyzed in terms of interface thicknesses, in the models with thicker
interface, the stress was found to be more. The interface region with the largest diameter had
the largest stress �� and Von Mises stress �2 distributions relative to the smallest one. These

were equal to �� = 0.130 × 10−5 N/�m2 (Figure 17) and �2 = 0.132 × 10−5 N/�m2 (Figure 18)

for � = 40 �m and �� = 0.08967 N/�m2 (Figure 19) and �2 = 0.233 × 10−5 N/�m2 (Figure 20)

for � = 80 �m. Having studied the Figures 21 and 22, it was seen that the maximum stress
distributions are developed at the tip corner sections of the interface geometries. Nodal

solution results of �� = 0.149 × 10−5 N/�m2 for � = 40 �m and �� = 0.154 × 10−5 N/�m2 for� = 80 �m were obtained.

Figure 17. FEA ��  distribution developing on the interface section of the fiber–matrix model (� = 40 �m).
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Figure 18. FEA Von Mises �2  distribution developing on the interface section (� = 40 �m).

Figure 19. Stress (��) distribution on the interface section obtained from FEA nodal solution (� = 80 �m).

Figure 20. Von Mises �2  stress distribution on the interface section obtained from FEA nodal solution

(� = 80 �m).
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Figure 21. Stress intensity on the interface section (� = 40 �m).

Figure 22. Stress intensity on the interface section (� = 80 �m).

For nine different interface geometries, FEA results were represented by curves. These curves
included the results for the fiber diameters between 40 and 80 �m, and corresponding thick-
nesses were �� = 0.025 40 = 1,…, �� = 0.025 80 = 2 (Table 1). The overall stress-strain distri-

butions developed in the composite were affected by the thicknesses of the interface region,
and these were proportional to the fiber diameter. As it has shown by Figure 23, the largest
interface stresses were developed in the models with the diameters � = 40 �m and � = 55 �m.

As the interface grew in diameter, the interface stresses became diminished from 6.9 × 10−7
to 5.5 × 10−7 N/�m2. Figure 23 presents the suddenly changed stress intensity values at the tip
points of the fiber. Shear stress distributions ��� and ��� along the main axis �′ (Figure 2) were

shown with curves. In Figures 24 and 25, shear stresses were found to be changed suddenly
around the corner sections of the fiber end portion. The largest shearing stresses in fiber-
reinforced microcomposites have been developed with the largest diameters. In summary,
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Figure 23. FEA results for �� stress distributions on nine different interface regions of the fiber-matrix (RVE) under

tensile load.

Figure 24. Comparison of stress ���  distributions along the main y-axis of the fiber composite in microscale for the

fiber diameters � = 40 �m and � = 80 �m.
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Figure 25. Comparison of stress ���  distributions along the main y-axis of the fiber composite in microscale for the

fiber diameters � = 40 �m and � = 80 �m.

10 2
max

5.8 10 N/ m 40 mxy dt -= ´ m = m (12)

10 2
max

3.5 10 N/ m 80 mxy dt -= ´ m = m (13)

9 2
max

3.0 10 N/ m 40 myz dt -= ´ m = m (14)

9 2
max

0.5 10 N/ m 80 myz dt -= ´ m = m (15)

The stress-strain ��− �� curves were plotted in FE models for diameters � = 40 �m,� = 70 �m, and � = 80 �m. These are presented in Figure 26. From the slopes of these curves,
the elastic constant values parallel to the fiber and loading direction �1  were obtained and

results are listed in Table 2 for both fiber-matrix and fiber-interface-matrix models. These
models have provided an opinion to the resultant data for �1 . FE model for the short fiber

composite without interface case gave the value as �1 ��� = 1.058 GPa, and for the short fiber

composite with interface case, it was �1 ��� = 1.446 GPa.
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Figure 26. Stress-strain curves of FE-RVE models for fiber diameters � = 40 �m, � = 75 �m and � = 80 �m.

Figure 27. Comparison of stress distributions ��  obtained from the interface segment of the RVE-FE model

(� = 75 �m): (a) fiber with interface, (b) interface, (c) fiber without interface.

Figure 27 presented the comparison of �� distribution for (a) fiber without interface, (b)
interface, and (c) fiber with interface regions. As it has shown in the curve for � = 75 �m, fiber
with interface and also interface region stresses were near to each other in magnitudes5.7 × 10−7 N/�m2. In case, fiber without interface showed the �� distribution around5.2 × 10−7 N/�m2. The difference between them was equal to 0.5 × 10−7 N/�m2.

4. Discussion and conclusion

The effectiveness of the imposed interface volume and its geometric properties on the homo-
geneously distributed stress components in the polymer type fiber composites have been
shown in this study by using finite element method.
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The results obtained from this study were summarized as below::

1. The developing stress concentrations at the fiber-interface and interface-matrix common
surfaces showed that the increase in fiber content was inversely proportional to the
reduction in stress values.

2. Fiber volume fraction range from 4.98 to 11.87 was examined. Although the generated
number of elements was different in the FE modeling of fiber composite structures, the
obtained results of analysis were converged to the definite values. In the examined fiber
volume fractions, the numerically calculated elastic constant values changed in small
degree. The distribution of all values obtained from FEM was calculated in terms of
polynomials, so that all resultant values were followed the polynomial properties.

3. In the FE modeling, the thickness of the interface region was changed in proportional to
the fiber diameter and then obtained resultant elastic constant remained in a stable range.
The total changes for fiber-interface-matrix and fiber-matrix models were obtained as0.046 and 0.061 GPa mutually.

4. The application of the mechanical load per node � = 0.1 × 10−4 N  gave the elastic
constants 1.39 and 1.18 GPa for fiber and matrix sections of the � = 80 �m microcomposite
by Ansys code FE analysis. While the applied load affected the entire combined structure,
some portions of the stress were transferred to the other sections of the composite body.
Therefore, the original individual material properties of the composite material could not
be measured after loading stage.

5. The maximum developing stress distribution was seen on the composite fiber section
while the maximum developing y-displacement �� was developed on the composite

matrix section.

6. The generated mesh system was not symmetric in composite cylinder transverse cross
sections. The developing displacement distribution �� on the composite fiber section showed

symmetric configuration in the center of the main axis � = 0.1 × 10−4�  (Figure 28). The
developing displacement distribution �� in the composite matrix section localized at the end

portions of the matrix portion of the cylinder.

7. In the analysis, the fiber in the matrix material was moved along the y-axis under tensile
loading. The fiber material was deformed by the help of stress transmission from matrix
to fiber. The role of the difference in Young’s modulus and Poisson’s ratio of the fiber and
matrix material on deformation analysis should be considered (Figure 29).

8. In this study, it was determined that the fiber content of fiber/interface/matrix composition
was significant in the stress distribution in all PPE/PP composite models and this was
confirmed by using FEA. With less fiber content (Vf%), stress concentration at the fiber-
matrix interface was found to be larger.
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9. When three layers of the composite compared, the fiber material carried higher stresses
than the interface and the interface material carried higher stresses than the matrix. This

was displayed as ������� ≥ ��int������ ≥ �������� .

10. According to our study, when high fiber content in the matrix material was present, the
matrix material decreased and the stress transfer mechanism in this case was broken
(Table 2).

11. In our analysis work, the obtained results of stress distributions were applied for all
models of discontinuous fiber embedded into the matrix material. The stress distribution
results obtained from discontinuous fiber were compared with continuous fiber analytical
results for the commercial engineering applications (Tables 1 and 2).

12. In this research, the end-face effect of the fiber was considered by placing interface in the
ends.

Figure 28. Comparison of stress distributions ��  obtained from the cross section of the RVE FE model for mechani-

cal load (� = 80 �m): (a) fiber without interface volume 1, (b) fiber without interface volume 2.

Figure 29. Comparison of displacement distributions (deformed/undeformed shapes) of the fiber obtained from the
cross section of the RVE FE model (� = 80 �m): (a) fiber without interface volume 1, (b) fiber without interface vol-
ume 2 (force loading �����/���� = 0.1 N).
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Three main conclusions obtained from this research were evaluated for the values of the matrix/
fiber diameters and their effect on the equivalent elastic constant.

The first conclusion was presented by the comparison curve that plotted by the “linear
trendline curve” representing the average differences between two FE models. The relative
percentage change of the equivalent elastic constant value �1 in the two main models was

decreased as the diameter increased proportionally (Table 2 and Figure 30). Adding the
interface with the small diameter fiber into the cylinder strengthens the composite structure.

The second conclusion was described in the fiber-matrix models. The diameter of the fiber
increased from 40 to 55 �m in an order. As a result of this application, the equivalent elastic
constant of the composite cylinder �1 was increased from 1.054 to 1.081 GPa in proportion. The

decrease in elastic modulus value �1 was obtained from 1.063 to 1.047 GPa in a nonlinear

manner for the diameter ranges from 60 to 80 μm.

Figure 30. Comparison �1 between fiber-matrix and fiber-interface-matrix FE models.

The third conclusion was explained for the fiber-interface-matrix model. As the diameter
increased from 40 to 65 μm, the equivalent elastic constant �1 of the microcomposite decreased

from 1.472 to 1.415 GPa linearly. However, the decrease in elastic modulus value �1 between

the diameters 70 and 80 μm was obtained as 1.428 and 1.411 GPa in a nonlinear manner.

These results explained us that within the limits of 4.98–9.37% fiber volume fraction, propor-
tionally increased interface volume caused the linearly decreasing elastic modulus value �1.

Within the same limits, the fiber-matrix microcomposite had a linearly increasing value. The
interface volume worked as a brake in the composite system. The interface volume reduced
the stresses passing from matrix to fiber, and this region worked as a damper in a spring-
damper mechanical system. For the fiber volume, fraction ranges from 1022 to 11.87%, the
interface volume caused a nonlinear decreasing in the equivalent elastic modulus values, and
similarly, the fiber-matrix microcomposite had a decreasing value as nonlinear.
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In other words, the physical meaning of the fiber matrix interaction behaviors was dependent
on the interface volume. Interface volume caused a general linearity between the dimensions
of the fiber, matrix, and the calculated equivalent elastic constant value (Table 1).

As a future work,, the effects of dimensional properties of composite models obtained in this
study can be introduced into semi-empirical model (Halpin-Tsai) based on elasticity equations
by curve fitting.
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Nomenclature

Symbols

��� elastic constants matrix N/m2� diameter of the fiber �m�1, �1 ��� equivalent Young’s modulus and average equivalent Young’s modulus parallel to fiber directionN/m2�2 Young’s modulus perpendicular to the fiber N/m2��,��, �� Young’s modulus of fiber, matrix, and interface materials N/m2��,��, �� Shear modulus of fiber, matrix, and interface materials N/m2�12 in-plane shear modulus N/m2� length of the fiber �m� length of the matrix �m� force loading �� diameter of cylindrical matrix segment �m�� thickness of the interface tubular volume �m���� loaded thickness of the composite cylinder �m�� displacement type loading �m
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��,��, �� displacements parallel to the �, �, � directions in an order �m��,�� fiber and matrix volume fractions

Greek symbols

��,�� Poisson’s ratio of fiber and matrix�12 major in-plane ratio� reinforcing factor�� stress vector N/�m2��,� -directional stress component N/�m2�2 Von Mises stress component N/�m2�� strain vector��,��, �� displacements parallel to the �, �, �directions in an order (rad).
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