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Abstract

Different mechanisms of action have been proposed to explain the effects of antiepi-
leptic drugs (AEDs) including modulation of voltage-dependent sodium calcium and
potassium channels, enhancement of y-aminobutyric acid (GABA)-mediated neuronal
inhibition, and reduction in glutamate-mediated excitatory transmission. Recent
advances in understanding the physiology of ion channels and genetics basis of
epilepsies have given insight into various molecular targets for AEDs. Conventional
AEDs predominantly target voltage- and ligand-gated ion channels including the a
subunits of voltage-gated Na* channels, T-type, and «,-0 subunits of the voltage-gated
Ca?" channels, A- or M-type voltage-gated K' channels, the y-aminobutyric acid
(GABA) receptor channel complex, and ionotropic glutamatergic receptors. Molecular
cloning of ion channel subunit proteins and studies in epilepsy models suggest
additional targets including hyperpolarization-activated cyclic nucleotide-gated cation
(HCN) channel subunits, responsible for hyperpolarization-activated current (1),
voltage-gated chloride channels, and acid-sensing ion channels. This chapter gives an
update on voltage- and ligand-gated ion channels, discussing their structures,
functions, and relevance as potential targets for AEDs.

Keywords: epilepsy, antiepileptics, voltage-gated ion channels, ligand-gated ion chan-
nels

1. Introduction

Epilepsy is one of the most common neurological disorders characterized by recurrent and
repeated seizures that vary from the briefest lapses of attention or muscle jerks to severe and
prolonged convulsions. Between 1 and 3% of the World's population suffers from epilepsy [1],
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making it the most prevalence neurological disorder. This debilitating neurological disorder
may either be symptomatic of various disorders (e.g., malformative, vascular, infectious,
traumatic, metabolic, or tumoral conditions) or idiopathic, which is unrelated to any under-
lying cause other than a possible hereditary predisposition [2].

The etiology of epilepsy is not fully understood; however, an abnormality of potassium
conductance, a defect in the voltage-sensitive ion channels, or deficiency in the membrane
ATPase likened to ion transport has been implicated in neuronal membrane instability and
seizures [3]. Selective neurotransmitters such as glutamate, aspartate, acetylcholine, noradre-
naline, histamine, corticotrophin-releasing factor, purines, peptides, cytokines, and steroid
hormones enhance the excitability and propagation of neuronal activity, whereas y-aminobu-
tyric acid (GABA) and dopamine inhibit neuronal activity and propagation [3]. A relative
deficiency of inhibitory neurotransmitters such as GABA or an increase in excitatory neuro-
transmitters such as glutamate would promote abnormal neuronal activity.

The control of abnormal neuronal activity with antiepileptic drugs (AEDs) is accomplished by
elevating the threshold of neurons to electrical or chemical stimuli or by limiting the propa-
gation of seizures discharged from its origin. The AEDs may attenuate or prevent seizures
through effects on pathologically altered neurons of seizure foci or alternatively by reducing
the spread of excitation from seizure foci to additional brain regions. Raising the threshold
involves stabilization of neuronal membranes, whereas limiting the propagation involves
reduction of nerve conduction and depression of synaptic transmission. Different mechanisms
of action have been proposed to explain the clinical effects of AEDs including the modulation
of voltage-dependent sodium channels, modulation of voltage-dependent calcium channels,
enhancement of GABA-mediated neuronal inhibition, and reduction in glutamate-mediated
excitatory transmission.

Ion channels play an important role in the pathophysiology of all forms of epilepsy, making
them obvious targets for AEDs. Aberrant excitability associated with an epileptic discharge is
mediated by voltage-gated and/or ligand-gated ion channels, which may be the result of
defects in the function of these channels. Modern cellular neurophysiological and biochemical
approaches have made it possible to identify these likely molecular targets of AEDs. This
chapter gives an update on voltage- and ligand-gated ion channels, discussing their structures,
functions, and relevance as potential targets for AEDs.

2. Voltage gated ion channels

This ion channels superfamily, which include the voltage-gated sodium, calcium, and potas-
sium channels, represents the critical sites of action for AEDs. They comprise of 143 genes and
encompass the S4 family in which the pore-forming subunits are built on six transmembrane
segments (51-56), and the fourth segment (54) contains a voltage-sensing element (Figure 1).
The voltage-gated ion channels are primarily gated by changes in membrane potential, which
cause movement of gating charges across the membrane and drive conformational changes
that open and close the pore [4]. The detailed mechanism of voltage-dependent gating is not
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well understood, but the positively charged 54 segments are thought to undergo outward and
rotational movement through the protein structure during the gating process, as proposed in
the sliding helix and helical screw models of gating [4].
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Figure 1. (A) The a subunit of voltage-gated ion channels consisting of four homologous repeats (I-IV), each with six
transmembrane domains (1-6). The fourth transmembrane voltage sensor domain (4) has positively charged segments.
(B) An assembled calcium channel with auxiliary (8, a-20 and y) subunits. The four homologous repeats (I-IV) al sub-
unit form the channel pore. The sodium channels are similar, but only has auxiliary (3 subunits [5].

In voltage-gated Na" and Ca* channels, four domains referred to as I-IV or D1-D4 are
expressed around a central pore that conducts the ionic current, while in voltage-gated K*
channels, the channel is a tetramer of four individual subunits, each containing a single S1-56
domain, which is also present in calcium-activated K* channels, cyclic-nucleotide-gated and
the hyperpolarization-activated cyclic nucleotide modulated cation channels [4]. Voltage-
gated ion channels also control excitability in the peripheral autonomic nervous system, the
cardiovascular system and the digestive system as well as control all secretory functions
including the release of hormones [6]. The voltage-gated Na*, Ca*', and K* channels expressed
in the heart are often distinct from, but closely homologous to, those expressed in the brain.

2.1. Voltage gated sodium channels (VGSCs)

The VGSCs are responsible for action potential initiation and propagation in excitable cells,
including nerve, muscle and neuroendocrine cell types [7]. They are also expressed at low
levels in nonexcitable cells where their physiological role is unclear [8]. VGSCs are heteromers
composed of a and 3 subunits [9]. Four 3 subunits (31-34) have been described, and each
subunit is associated with one or more 3 subunits [10].
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Nine mammalian VGSCs a subunits, designated Na,1.1 to Na,1.9, have been functionally
characterized [11]. Four of these including Na,1.1 (SCN1A), Na,1.2 (SCN2A), Na,1.3 (SCN3A)
and Na,1.6 (SCN8A) are predominantly expressed in the central nervous system and two—
Na,1.7 (SCN9A) and Na,1.8 (SCN10A)—are expressed in the peripheral nervous system and
dorsal root ganglia [11]. Na,1.4 (SCN4A) and Na,1.5 (SCN5A) are expressed in skeletal muscle
and cardiac muscle, respectively, but the later is also found in some limbic neurons in the rat
brain, including the peri-form cortex. Na,1.3 is significantly expressed in the brain only early
in development. Na,1.9 (SCN11A) is expressed widely in the brain and spinal cord. There are
four auxiliary () subunits (Na,1-Na,[34; genes SCN1B-SCN4B) that can be found in associ-
ation with the a-units expressed in the brain and have an intramembrane segment and an
immunoglobulin-like extracellular element [11]. Fast, transient Na* currents that generate
action potentials in the mammalian brain are mediated by Na, 1.1, Na,1.2, and Na, 1.6 isoforms.

VGSCs are key mediators of intrinsic neuronal and muscle excitability making the abnormal
VGSCs activity central to the pathophysiology of epileptic seizures. Mutations of neuronal
voltage-gated Na*" channel genes are the most common known cause of familial epilepsy
including generalized epilepsy with febrile seizures plus (GEFS+) type 1 and 2, severe
myoclonic epilepsy of infancy, intractable childhood epilepsy with generalized tonic-clonic
seizures, simple febrile seizures (FS), benign familial neonatal-infantile seizures, and benign
familial infantile seizures [12].

VGSCs mediate the persistent, resurgent, or late Na* currents that may play a significant role
in epilepsy and in the action of AEDs [13]. Many of the most widely used antiepileptic drugs
including phenytoin, carbamazepine, and lamotrigine are inhibitors of VGSC function. AEDs
produce a voltage- and use-dependent block of the channels by binding predominantly to the
inactivated state of the channels, thus suppressing high-frequency, repetitive action potential
firing [14]. The downstream effect may reduce action potential-dependent synaptic neuro-
transmitter release during the high-frequency firing that occurs with epileptic discharges [15].
Some Na* channel blocking AEDs may preferentially inhibit glutamate release as a result of
selective interactions with Na* channels that are located on presynaptic glutamatergic termi-
nals [16]. Voltage-dependent Na* channel block may also reduce the propagation of action
potentials from the soma into the dendrites and the dendritic amplification of synaptic
potentials [17].

Several marketed AEDs including felbamate, topiramate, and zonisamide interact with other
ion channel targets [18]. The combination of actions may contribute to the unique clinical
efficacies of each of these drugs, suggesting that it may be possible to optimize the activity of
drugs that target Na* channels with minimal adverse effects [4].

2.2. Voltage gated calcium channels (VGCCs)

The VGCCs are mediators of calcium entry into neurons in response to membrane depolari-
zation [19], which results to a number of essential neuronal responses, such as the activation
of calcium-dependent enzymes gene expression, the release of neurotransmitters from
presynaptic sites, and the regulation of neuronal excitability [20].
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VGCCs are classified into two major categories: the low voltage-activated (LVA) calcium
channels (i.e., T-type channels) and the high voltage-activated (HVA) channels [18]. Some of
the HVA channel subtypes can be activated at relatively negative voltages under certain
circumstances. The LVA channels are activated by small depolarization near typical neuronal
resting membrane potentials and are key contributors to neuronal excitability [4]. The HVA
channels, which require larger membrane depolarization to open, are further subdivided into
L-, N-, R-, P-, and Q-types [4]. The L-type channels are found on cell bodies where they
participate, among other functions, in the activation of calcium-dependent enzymes and in
calcium-dependent gene transcription events [21]. P- and Q-type channels, like N-type
channels, are concentrated at presynaptic nerve terminals where they are linked to the release
of neurotransmitters [22]. In the context of neurotransmitter release, N-type channels tend to
support inhibitory neurotransmission, whereas the P/Q-type channels have more frequently
been linked to the release of excitatory neurotransmitters but can also support inhibitory
release [23]. R-type channels are distributed in proximal dendrites and presynaptic nerve
termini [24]. Their precise physiological function remains enigmatic; however, there is
evidence that these channels may mediate neurotransmitter release at select synapses [25].

HVA calcium channels are heteromultimers that are formed through association of o, B, -
0, and y subunits. Conversely, the LVA channels may contain only the al subunit. The al
subunit is the pore-forming subunit of both LVA and HVA calcium channels that are sufficient
to form a voltage-gated calcium-selective pore by itself and it is the sole determinant of the
calcium channel subtype [18]. The al subunit is associated with auxiliary subunits including
the intracellular $ subunits (31-p4), the largely intramembranal y subunits (y1-y8), and the
intramembranal/extracellular a2-d subunits (types 1-4) that are unrelated to the sodium
channel auxiliary subunits [18].

Ten functional calcium channel al subunits are known in vertebrates, which fall into three
major classes (Ca,1, Ca,2, and Ca,3) according to their physiological functions and regulations
[26]. The Ca,1 subfamily (Ca,1.1 to Ca,1.4) conducts L-type calcium currents [27], while the
Ca,2 subfamily (Ca,2.1 to Ca,2.3) conducts N-, P/Q- and R-type calcium currents that initiate
fast synaptic transmission at synapses in the central and peripheral nervous systems [28].
Among the Ca,2 family, alternate splice isoforms of Ca,2.1 encode P- and Q-type channels,
Ca,2.2 represents N-type channels, and Ca,2.3 corresponds to R-type channels [28]. The Ca,3
family represents three different types of T-type channels (i.e., Ca,3.1, Ca,3.2, and Ca,3.3) with
distinct kinetic properties.

A variety of mutations involving voltage-gated Ca*" channels have been identified in mice that
exhibit absence-like seizures [29]. Three recessive mutations in Cacnala (Ca,2.1) that produce
absence-like syndromes in tottering, leaner and rocker mice impair channel function, reducing
P/Q-type Ca* currents. L-type channels have not been associated with epilepsy syndromes in
mice or humans and are not considered to be targets for AEDs.

AEDs have been reported to inhibit Ca*" currents with the T-type Ca? channels being the
primary target for seizure protection. The T-type Ca* channels are believed to be the targets
of antiabsence agents such as ethosuximide that weakly block native and recombinant T-
type Ca* channel currents [30]. The anticonvulsant action of the barbiturate phenobarbital
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may be due, in part, to inhibition of Ca* current as well as an action on GABA , receptors [31].
Lamotrigine thatis widely believed to act primarily on voltage-gated Na* channels also inhibits
high voltage-activated N- and P/Q-type Ca? channels and inhibits R-type minimally [32].

The molecular targets for gabapentin and pregabalin are a2-0 proteins, particularly the a2-6-
1 and a2-0-2 proteins [33, 34]. The exact mechanism by which binding to these proteins protects
against seizures is not fully understood. Studies have shown inhibitory effects on voltage-gated
Ca? currents that can selectively block either P/Q- or N-type Ca?" channels [35]. Other studies
have shown inhibition of the release of neurotransmitters [36]. Gabapentin and pregabalin
inhibit neurotransmitter release in many systems mainly by interaction of a2-6 with synaptic
proteins that are involved in the release or trafficking of synaptic vesicles rather than inhibition
of calcium influx [4]. The variability in the effects on Ca?" current may relate to differences in
expression of the a2-d subunit in different cell types or in response to different conditions.

2.3. Voltage gated potassium channels (Ky)

Voltage-gated potassium channels are the most diverse group of ion channels that play a key
role in setting the resting membrane potential and serve to limit excitability in neural cells.
They are activated by depolarization and the outward movement of potassium ions through
these channels repolarizes the membrane to end action potentials and hyperpolarizes the
membrane potential immediately following action potentials [6].

A typical K* channel is a tetramer of a subunits that can assemble into homo- and hetero-
tetramers, leading to a wide diversity of different channel complexes including the six
transmembrane helix voltage-gated (K,) channels, the two transmembrane-helix inward-
rectifier (K;;) channels, the Ca**-activated K* channels (K,), and the tandem-pore domain (K,p)
channels [37]. The K, and K, families are of particular relevance in epilepsy.

The K, channels are involved in diverse physiological processes ranging from repolarization
of neuronal or cardiac action potentials, overregulating calcium signaling and cell volume to
driving cellular proliferation and migration. The K| family has more than 40 members that are
classified into 12 distinct subfamilies based on their amino acid sequence homology (K,1 to
K,12) [37]. They conduct voltage-gated K* currents that have diverse functions in neurons,
including the K,1 (delayed rectifier and A-current), K,2 (delayed rectifier), K,3 (high-voltage-
activated, fast kinetics), K 4 (somatodendritic A-current), and K,7 (M-current) [37]. A-currents
and M-currents play important roles in regulating the excitability of neurons in brain regions
relevant to epilepsy such as the neocortex and the hippocampus [38].

Several K* channel genes have been associated with different forms of epilepsy including
KCNA1 (encodes K,1.1), auxiliary 2 subunit KCNAB2 (encodes K,1), KCNQ2 (encodes
K,7.2), KCNQ3 (encodes K,7.3), KCNMA1 gene that encodes the asubunit of K.,1.1, KCNJ3
(encodes K;3.1), KCNJ6 (encodes K,3.2), KCNJ10 (encodes K;4.1), KCNJ11 (K;6.2), KCNK9
(TASK3) [6].

K, channels are valid molecular targets for both convulsant and anticonvulsant agents.
Classical pharmacological antagonists of K, channels include 4-aminopyridine (4-AP) com-
monly used to induce seizures in rodent models and brain slices [39], which is a blocker of
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K1, K.3, and K4 channels. Several classes of compounds identified as K* channel openers
could potentially have anticonvulsant activity. K,rp (K;;6.x) channel openers, such as croma-
kalim and diazoxide, were reported to inhibit epileptic discharges in brain slices [40].

Actions of several established AEDs on various K* currents have been reported. Ethosuximide
reduces sustained K* currents in thalamic neurons by blocking Ca*-activated K* current [41].
Pregabalin opens ATP-sensitive K* channels [42], while lamotrigine reduces the amplitude of
A-type K currents in cultured hippocampal neurons and levetiracetam inhibits delayed
rectifier in isolated hippocampal neurons [4]. These inhibitory actions enhance excitability and
unlikely contribute to anticonvulsant activity.

A broad range of K* channels offers many unexploited molecular targets, particularly the
channels generating the A-type and M-type currents. Other members of the voltage-gated ion
channel superfamily, including inwardly rectifying, Ca*-activated K" channels, are also
potential targets that have not been validated.

2.4. Voltage-gated chloride channels (CICs)

CICs are expressed in the hippocampus where they mediate chloride currents in pyramidal
cells of the hippocampus. They are involved in regulating chloride homeostasis [43], excita-
bility [44], and acidification of synaptic vesicles [45]. One of the CICs expressed in neurons is
CIC-2, which is a widely expressed chloride channel of the CLC family of chloride channels
and transporters. CIC-2 is activated by hyperpolarization, cell swelling, a rise in intracellular
chloride concentration, or mild extracellular acidification [46, 47].

Genes encoding nine voltage-gated chlorides channels (CICs) with diverse functions in
plasma membranes and intracellular organelles have been identified by molecular studies.
One of these channels, CIC-2, a homodimeric channel found in neurons and glia (encoded
by the CLCN2 gene), has been implicated in epilepsy [48]. Over the past years, several mu-
tations in the gene encoding for CIC-2 have been described [49], but whether mutations in
CIC-2 cause epilepsy or not has been controversial. However, functional studies in trans-
fected cells suggest that the mutations cause a loss of function [50]. Although CIC-2 knock-
out mice do not have epilepsy [51], CIC-2 mutations cosegregated in three families with
various idiopathic generalized epilepsy syndromes, including juvenile myoclonic epilepsy
(JME), juvenile absence epilepsy, childhood absence epilepsy (CAE), and epilepsy with
grand mal seizures on awakening (EGMA) [52]. Epilepsy-associated CIC-2 mutations may
lead to impairment of GABA ,-mediated inhibition or may even become excitatory [4].
Strategies that attempt to influence Cl" gradients by altering the activity of the transporters
that determine Cl gradients (NKCC1 and KCC2) are an attractive area of research, given
the widespread expression of CIC-2 in many tissues.

2.5. Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels activation mechanism,
their modulation in vivo, their cellular and subcellular distribution and their interaction with
agonists or antagonists remain unclear [53]. HCN channels, members of the superfamily of
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voltage-gated cation channels that open upon hyperpolarization and close at positive poten-
tial [54], represent the molecular asubunits of native “funny” channels found in the heart
(where they are referred to as “pacemaker” channels) and the brain. Although the first
complete functional description of the funny current was made in the cardiac sino-atrial node
(SAN), an equivalent current (termed I, for hyperpolarization-activated current) was also
reported and its properties were investigated in a large variety of neuronal cells, where they
contribute to a set of functions such as working memory, motor learning, generation of
rhythmic activity, control of the membrane resting potential, regulation of cell excitability,
dendritic integration, and synaptic transmission [55].

N-terminus

C-terminus

Figure 2. HCN channel topology consisting of six transmembrane domains (S1-56). S4, the putative voltage sensor
characterized by the presence of 11 basic amino acids (two lysines, seven arginines, and two histidines) within its do-
main, is present in all the four HCN subunits. Here, the domains involved in cyclic nucleotide binding (CNBD) in the
C-terminus and the cAMP molecule are also shown [57].

HCN channels form macromolecular complexes that consist of the principal ion-conducting
channel core and auxiliary subunits that are either permanently assembled with the channel
core or can bind and unbind in a regulated fashion [38]. HCN channels (h-channels) are a
family of six transmembrane domains (Figure 2), single pore-loop, hyperpolarization-
activated, nonselective cation channels, which are key regulators of neuronal excitation and
inhibition, and have a rich diversity of subunit composition, distribution, modulation, and
function. Genes coding for four distinct channel isoforms have been cloned (HCN1-4), and
HCN channel transcripts and proteins are widely and variably distributed throughout the
mammalian central nervous system [56]. Each of the four identified subunits (HCN1-4) has
six transmembrane segments. HCN2 is generally considered to be widely distributed in the
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nervous system, and HCN3 is generally poorly expressed except for the olfactory bulb,
hypothalamus and retinal cones pedicles [53]. HCN1 has been detected specifically in the
neocortex, hippocampus, cerebellar cortex, and brainstem [56], whereas HCN4 channels are
highly expressed in particular in thalamic nuclei, basal ganglia, and olfactory bulb [56].

Atthe cellularlevel, several basic functions including control of the membrane resting potential
and dendriticintegration have been attributed to these channels. It was therefore hypothesized
that the dysfunction and/or inadequate expression of HCN channels may be a disease-causing
factor. Dysregulation of HCN channel expression and aberrant HCN channel function have
been implicated in various types of idiopathic and acquired epilepsies. HCN2 deficiencies are
pathological hallmarks of absence epilepsy [58]. Deletion of HCN1 is associated with increased
seizure severity and risk of seizure-related death in different limbic seizure induction models
[59]. Genetic studies suggest that the suppression of HCN channels in neurons is involved in
generation of neuronal hyperexcitability, which have been reported in temporal lobe epilepsy,
the most common and severe form of epilepsy in adults [60].

The reciprocal interactions between neuronal activity and h-channels indicate that these ion
channels could be promising novel targets for antiepileptic therapies. I, is an attractive
potential AED target for different types of epilepsy. However, the complexity and diversity of
the mechanisms connecting impaired HCN channel activity with epilepsy make it very
challenging to develop a generally applicable rationale for the design of anticonvulsant drugs
based on HCN channels. Drugs targeting HCN1 might be relevant for limbic seizures, whereas
those affecting HCN2 may be more relevant to absence epilepsy. ZD-7288, a blocker of HCN
channels, inhibits spontaneous epileptiform bursting in the hippocampal slice, confirming the
potential of I, inhibition as an anticonvulsant approach [61]. Lamotrigine and gabapentin
upregulate the activity of HCN channels [62, 63]. It may be speculated that the action of both
drugs is directed primarily at HCN1, which is the main HCN subtype in the cortex and
hippocampus. In rat hippocampal pyramidal neurons, lamotrigine has also been reported to
decrease dendritic excitability by increasing I, [64].

3. Ligand-gated ion channels

Ligand-gated ion channels in the mammalian brain include the Cys-loop receptors comprising
the GABA ,, glycine, nicotinic cholinergic and 5-HT; receptors (Figure 3), and the ionotropic
glutamate receptors comprising the (+)-a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptors besides the adenosine
triphosphate (ATP)-gated P2X channels and the transient receptor potential (TRP) channels.
GABA, receptors are permeable to CI- and HCO;", while the ionotropic glutamate receptors
are cation permeable, with significant variation in the extent of Ca** permeability. The majority
of known convulsant compounds act via the ligand-gated ion channels to diminish GABA-
mediated transmission either by direct action on GABA, receptors or by other effects on
GABAergic function.
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Figure 3. A typical Cys-loop receptor subunit. A cross section of the transmembrane region at the lower left shows five
subunits that form a central ion-conducting pore. Six loops form the ligand binding site (A-F) and the region that in-
fluences ion conductivity (R-R-R) [65].

3.1. GABA, receptors

Y-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the vertebrate central
nervous system (CNS) that activates GABA ,, GABA;, and GABA receptors. GABA , receptors
are pentameric structures composed of different combinations of subunits arranged around a
central Cl-selective pore [66]. Studies have indentified 19 subunits (a1-6, f1-3, y1-3, d, ¢, 0,
1, p1-3) encoded by 19 distinct genes that form ligand-gated ion channel complexes [67]. The
inclusion of a p subunit (p1-p3) distinguishes the bicuculline-insensitive GABA receptor
family [68]. The subunit composition determines the biophysical properties, pharmacological
characteristics [most notably the sensitivity to benzodiazepines (BZ)], and subcellular locali-
zation of the GABA, receptors [67]. Their modulatory domains include binding sites for
benzodiazepines (BZ site), GABA, barbiturates, nonbarbiturate anesthetics and ethanol,
neurosteroids, picrotoxin, penicillin, and zinc.

Genetic studies in humans reveal a range of idiopathic generalized epilepsy syndromes linked
to mutations in the GABA, receptor [69]. A mutation in the GABA, receptor al subunit is
associated with autosomal dominant juvenile myoclonic epilepsy [70]. Mutations involving
the y2 subunit in two cases are associated with GEFS+ and in two cases associated with
childhood absence epilepsy with febrile convulsions [69]. Studies revealed spontaneous



Antiepileptic Drug Targets: An Update on lon Channels
http://dx.doi.org/10.5772/64456

seizures in 33 knockout mice [71], supporting that seizures that are prominent feature of the
Angelman syndrome are due specifically to defects in GABA , receptors.

GABA, receptors are acknowledged targets of many available anticonvulsants including
drugs enhancing GABA, receptor action through a direct interaction with the receptor
(benzodiazepines, barbiturates, propofol, stiripentol, topiramate, carbamazepine, pheny-
toin, felbamate) or indirectly by increasing the available GABA (tiagabine, vigabatrine, ga-
bapentin, valproate) [68]. Furthermore, anticonvulsants can reduce the depolarizing effects
of GABA, receptors by inhibiting carbonic anhydrase (topiramate, zonisamide, acetazola-
mide) [68]. Studies in genetically modified mice have helped establish the role played by
subunit composition in the antiepileptic and other pharmacological actions of drugs acting
on the GABA, receptor [72].

Majority of drugs that act on GABA, receptors do so at modulatory sites distinct from the
GABA recognition site. The anticonvulsant actions of benzodiazepines result in large part from
their ability to enhance GABA-induced increase in the conductance of chloride ions [73]. A
therapeutically relevant concentration of benzodiazepines acts at subsets of GABA, receptor
channel complex and increases the frequency, but not duration of opening of GABA-activated
chloride channels [74]. The mechanisms underlying the actions of barbiturates on GABA,
receptors appear to be distinct from those of either GABA or the benzodiazepines. Barbiturates
potentiate GABA-induced chloride currents by prolonging periods during which bursts of
channel opening occur rather than by increasing the frequency of these bursts [74].

Substantial effort has been devoted to obtaining GABA , receptor positive allosteric modula-
tors with reduced activity on GABA , receptors containing a1 subunits, to avoid the sedation
mediated by these receptors. Nonbenzodiazepines that bind to the benzodiazepine site have
been developed; some are partial agonists with reduced efficacy. These subtype-selective
agents could potentially be superior to benzodiazepines for chronic epilepsy therapy, but have
not been demonstrated that they are less sedative or more importantly less susceptible to
tolerance [4].

3.2. Ionotropic glutamate receptors

The ionotropic glutamate receptors consist of three receptor superfamilies of ligand-gated
cation channels including AMPA, kainate, and NMDA that mediate most of the fast excitatory
transmission in the CNS and are thus involved in all brain functions. They are tetrameric
structures with four subunits for the AMPA receptors, five subunits for the kainite receptors
and seven subunits for the NMDA receptors [75].

Little evidence for spontaneous mutations involving glutamate receptors has been demon-
strated in epilepsy syndromes in human or mouse. Juvenile absence epilepsy has been
associated with a nine-repeat allele of a tetranucleotide repeat polymorphism in a noncoding
region of the GluRb5 receptor gene (GRIK1I) [76]. Studies have shown that alterations in GluR2
editing that cause AMPA receptors to be Ca** permeable lead to seizures.

Substantial effort has been devoted toward the development of ionotropic glutamate receptor
antagonists for epilepsy therapy because of the role of glutamate in the pathophysiology of
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seizures and the empirical evidence that these antagonists are protective in various animal
seizure models [77]. Competitive and noncompetitive NMDA receptor antagonists demon-
strated the ability to block seizures in rodent epilepsy and possess protective activity in some
rodent models [78, 79]. Competitive NMDA antagonists appeared the most promising in
models of generalized seizures.

AMPA receptor antagonists, which are anticonvulsant in a broad range of rodent animal
models, have been identified and may have greater potential clinical utility than do the NMDA
antagonists [15]. AMPA receptor antagonists have the potential to stop seizures more
effectively and may confer neuroprotection by blocking glutamate-induced excitotoxicity,
which could diminish the brain damage and neurological morbidity typically associated with
status epilepticus.

Three marketed AEDs have been shown to interact with glutamate receptors. Phenobarbital
decreases the depolarizing or excitotoxic action of AMPA and kainate at concentrations similar
to those at which it potentiates GABA [80]. Topiramate has been reported to block kainate-
induced currents in cultured hippocampal neurons [81] by acting specifically on GluR5 kainate
receptors and with lower potency on AMPA receptors [82]. Felbamate has several different
pharmacological actions including specific inhibitory effect on NMDA receptors that have
been proposed as contributing to its clinical efficacy [83].

3.3. Acid-sensing ion channels (ASICs)

Acid-sensing ion channels (ASICs) are superfamily of ligand-gated cation channels that are
widely distributed in the mammalian brain, the spinal cord and the peripheral sensory organs.
ASICs belong to the degenerin/epithelial Na* channels that are activated by external protons.
Increase in extracellular proton concentrations, which is associated with physiological
conditions such as synaptic signaling and pathological conditions such as tissue inflammation,
ischemic stroke, traumatic brain injury, and epileptic seizure, activates this unique family of
membrane ion channels. The ASICs rapidly respond to a reduction in extracellular pH with
an inward cation current that is quickly inactivated despite the continuous presence of protons
in the medium. Abundant experimental evidence shows that ASICs play important roles in
physiological/pathological conditions, such as sensory transduction, learning/memory, retinal
function, seizure, and ischemia [84].

Seven different ASICs subunits of ASICs (1a, 1b1, 1b2, 2a, 2b, 3, and 4) encoded by four genes
have been identified [85, 86]. The 1a, 2a, 2b, and 4 subunits are expressed in the CNS neurons,
while all other ASICs subunits with the exception of ASIC4 are expressed in peripheral sensory
neurons. ASIC genes are also expressed in non-neuronal tissue such as vascular smooth muscle
cells [87] and bone [88].

ASICs are involved in nociception in sensory neurons when injury or inflammation causes
acidification. Protons released during high-frequency stimulation of excitatory synapses in the
brain activate ASICs to cause postsynaptic depolarization [4], resulting in a reduction in the
Mg?* block of NMDA receptors, which promotes epileptic activity. The inhibition of ASICs
might therefore reduce excitatory synaptic neurotransmission resulting to anticonvulsant
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actions [4]. Acidification that occurs during intense seizure activity could activate ASICs and
contribute to seizure-induced brain damage because of Ca*" permeability in many ASICs [89].
ASIC antagonists might minimize these adverse consequences of seizures. There are no
selective ASIC antagonists available to test the role of ASICs as anticonvulsant targets;
however, the potassium-sparing diuretic amiloride does act as an ASIC antagonist and appears
to have anticonvulsant properties [90].
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