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Abstract

In this chapter, a review is made on the processing and properties of hybrid composites
based on a polymer matrix and a blend of different natural (lignocellulosic) fibers. In
particular, the processing methods are described and comparisons are made between
the general properties with a focus on physical, mechanical and thermal properties. A
discussion  is  presented  on  the  effect  of  the  polymer  and  fiber  types,  as  well  as
reinforcement content. Properties improvement is also discussed using fiber surface
treatment  or  the  addition  of  coupling  agents.  Finally,  auto‐hybrid  composites  are
presented with conditions leading to  a  positive deviation from the rule  of  hybrid
mixture (RoHM) model.

Keywords: hybrid composites, polymer matrices, natural fibers, fiber concentration,
mechanical properties

1. Introduction

Composites are materials containing at least two constituents, each one with different chemical
composition. Their combination provides a new material with better functional properties than
each of the components separately [1].

The main component in the composite is the matrix, which can be a metal, ceramic or polymer,
while the other part is a reinforcement which can be in particulate, laminate, short fiber or long
fiber form [2]. Composite materials are widely used in construction, aerospace, aircraft,
medicine, electrical and automotive industries [2–5]. Here, a focus is made on fiber reinforced
composites made from a polymer matrix reinforced with fibers having a natural origin [6].
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2. Natural fibers

Natural fibers are biosourced materials extracted from plants (lignocellulosic) or animals [7].
Lignocellulosic fibers are produced by plants for which, on a dry basis, the cell walls are mainly
composed of cellulose, with hemicelluloses, lignins, pectins and extractives in lower amounts.
Chemical composition and distribution mostly depend on fiber source and varies within
different parts even of the same type or family [7, 8]. According to their source, lignocellulosic
fibers can be classified as bast fibers, leaf fibers, fruits‐seeds fibers, grass‐reed fibers and wood
fibers [7, 9–12]. Table 1 presents some examples of each category [13].

Fiber type  Characteristics Examples

Bast  High cellulose content, flexible, obtained from plants phloem  Kenaf, hemp, flax 

Seed  Fibers that have grown around seeds  Cotton, kapok 

Fruit  Obtained from fruit shells  Coir, oil palm 

Stalk  Cereal stalks byproducts  Wheat and corn straw 

Grass  Obtained from grass plants  Bamboo, wild cane, esparto grass 

Leaf  Obtained by decortication of plants leaves  Banana, sisal, pineapple, agave 

Wood  Extracted from flowering and conifers trees  Maple, pine 

Table 1. Lignocellulosic fibers classification [13].

Due to natural fibers’ strength, stiffness, availability, low cost, biodegradability and lower
density (1.2–1.5 g/cm3) compared to synthetic fillers such as talc (2.5 g/cm3) and glass fiber
(2.5 g/cm3) [14–16], they can be effectively used in lightweight composites production [8, 9, 17].

3. Natural fiber composites

Natural fiber composites are materials based on a polymer matrix reinforced with natural
fibers [9]. The polymer matrix can be a thermoplastic or a thermoset, the main difference being
that once thermoplastics are molded they can be remelted and reprocessed by applying heat
and shear, while this is not the case for thermosets [14, 15]. But thermoset matrices generally
provide higher rigidity and are more chemically stable. This is why they are more difficult to
recycle. The main thermoset matrices used for natural fiber composite production are poly‐
ester, vinyl ester, phenolic, amino, derived ester and epoxy resins. Thermoset composites are
commonly processed via resin transfer molding (RTM), sheet molding compound (SMC),
pultrusion, vacuum‐assisted resin transfer molding (VARTM) and hand lay‐up. All these
manufacturing processes do not need high pressure requirements. Another advantage of
thermoset matrices is that fiber loading can be higher than for thermoplastics since the resin
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is initially in a liquid form. So, lower viscosity improves fibers introduction and dispersion via
different mixing equipment [18–22]. Fiber orientation as well as fiber content might improve
mechanical properties in thermoset composites. Grass, leaf and bast fibers are more effective
to increase the matrix mechanical properties, while surface treatment improves interfacial
interactions. Table 2 summarizes some work on natural fiber thermoset composites with their
manufacturing process, fiber content, fiber treatments and fiber source, as well as the main
results obtained from each work.

Matrix Natural
fiber source

Manufacturing
process 

Fiber
content
(%) 

Fiber
treatment 

Mechanical properties References

E
(GPa) 

TS
(MPa)

FM
(GPa)

FS
(MPa)

IS
(J/m)

Epoxy  Banana  Hand lay‐up  10  NaOH solution 0.6–1.4 12.1–
33.6 

15–
34 

26–
69 

2–12  [23]

Recycled
cellulose 

RTM  19, 28,
40, 46 

–  –  –  0.5–
5.5 

60–
140 

5–22  [21] 

Flax  RTM  40–50  –  17.3–
33.6 

–  –  –  –  [19] 

Hand lay‐up  50  –  8.6  –  –  –  –  [24] 

Compression
molding and
pultrusion 

40  NaOH solution 2.7–32  50–283  8–27  0.4–
4.1 

–  [25] 

Oil palm  Compression
molding 

5, 10, 15,
20 

NaOH solution –  11–17  –  –  –  [26] 

Hemp  Hand lay‐up  30  H2PO3 solution
NH4OH Geniosil
GF‐9 Toluene
solution
aminosilane 

3–4.8  49.1–
66.5 

3–
5.2 

69–
92.8 

–  [27] 

Date palm  Hand lay‐up  10  NaOH solution 1.5–2.5 10–40  –  –  –  [28] 

Sansevieria
cylindrical
leaf 

Molding  1, 5, 7,
9 

NaOH solution –  98.3–
114.9 

–  17–
26 

–  [29] 

Polyester  Jute  Hand lay‐up  NA  –  –  –  –  –  3.8–
4.1 

[30] 

Macadamia
nut shell 

Hand lay‐up  10, 20,
30, 40 

–  –  –  4.1–
4.6 

26–
38 

–  [31] 

Flax  VARTM  20  –  15.3–
20.3 

188.6–
230.7 

2.1–
2.3 

16.3–
17.5 

–  [32] 

Curaua  RTM  0–40  –  –  –  0.1  –  20–
190 

[33] 

Wild cane
grass 

Hand lay‐up  0–40  NaOH solution
KMnO4

solution 

–  –  1.8–
7 

–  –  [34] 

Sisal  Mixing and
compression
molding 

10, 20,
30, 40 

NaOH solution –  –  1.49–
2.68 

–  –  [35] 

Typha leaf  Compression
molding 

7.3, 10.3,
12.6 

NaOH solution
Sea water 

–  –  3.5–
6 

25–
70 

–  [36] 
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Matrix Natural
fiber source

Manufacturing
process 

Fiber
content
(%) 

Fiber
treatment 

Mechanical properties References

E
(GPa) 

TS
(MPa)

FM
(GPa)

FS
(MPa)

IS
(J/m)

Rice husk  Mixing and
compression
molding 

57  GMAMAHSAH
solutions  

0.4–1.6 2.5–19  0.1–
1.9 

3–42  9.5–
40 

[22] 

Elephant
grass 

Hand lay‐up  30.4,
31.3,
31.5 

NaOH
KMnO4

solutions 

0.6–2.2 31.5–
118.1 

–  –  –  [37] 

Bamboo  Mixing and
compression
molding 

NA  H2O2 +DTPA
+Na2O3Si +NaOH
solution, IEM
+DBTDL 

–  39–65  –  75–
105 

–  [38] 

Coir  Hand lay‐up  NA  NaOH
solutions 

–  17.9–
23.6 

–  18.7–
48 

–  [39] 

10, 20,
30 

–  –  10.6–
15.6 

–  25.9–
38.5 

25.6–
161.9 

[40] 

Polyurethane Kraft
cellulose 

Compression
molding 

5, 10, 15,
20 

–  0–0.2  –  –  –  –  [41] 

Phenolic  Bagasse  Compression
molding 

17.6  HClO2 solution
Furfuryl
alcohol 

–  –  –  –  17–28  [42] 

Curaua  Compression
molding 

17.6  HClO2 solution
Furfuryl
alcohol 

–  –  –  –  39–88  [42] 

Cellulose
from
eucalyptus 

Molding  1, 3, 5,
7 

NaOH solution,
propyl‐
trimethoxy‐
silane 

0.7–0.9 9.5–16.5  5.1–
1.0 

18.5–
28.0 

–  [43] 

Ramie  Compression
molding 

40.4  –  3.3, 1.2 72.3,158  –  90–
145 

–  [44] 

Jute  Pultrusion  N/A  –  –  25–38  –  28–
63 

–  [45] 

Bamboo  Compression
molding 

15  –  21.2–
30.1 

–  –  210–
320 

–  [46] 

Vinyl ester  Silk  Hand lay‐up  0–15  –  0.9–1.3 40–71  –  –  –  [47] 

Cellulose  VARTM  20, 30,
40, 50 

–  3–7  –  –  40–
160 

–  [20] 

Sisal  RTM  10, 15,
20, 25,
30 

NaOH solution 1.7–2.9 38–75  2.1–
4.5 

75–
180 

–  [48] 

Kenaf  Pultrusion  40  –  9–12.5  135–145  1.6–
1.9 

150–
190 

–  [49] 

Pineapple
leaf 

Molding  20  NaOCl
solution 

1.9–
3.9 

68–
119 

19–
105 

[50] 

E: Tensile modulus; TS: tensile strength; FM: flexural modulus; FS: flexural strength; IS: impact strength; GMA:
glycidyl methacrylate; MAH: maleic anhydride; SAH: succinic anhydride; DTPA: diethylenetriaminepenta‐acetic acid;
IEM: isocyanatoethyl methacrylate; DBTDL: dibutyltin dilaurate.

Table 2. Mechanical and thermal properties of natural fiber composites based on thermoset matrices.
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The most common thermoplastic matrices used for natural fiber composites production are
the different grades of polypropylene (PP) and polyethylene (PE), as well as polycarbonate
(PC), nylon (PA), polysulfones (PSU), polyethylene terephthalate (PET) and polystyrene (PS).
More recently, biopolymers such as polylactic acid (PLA) have gained interest to produce 100%
biosourced materials [51–55]. Typical manufacturing processes for these composites are
extrusion, injection, calendering, compression molding and thermoforming. Some advantages
of using thermoplastic matrices are their recyclability and the production can be continuous
[56–61]. Depending on the matrix, fiber and additives content, fiber treatment and manufac‐
turing process, the mechanical and thermal properties of these composites can be adjusted as
presented in Table 3, with the main results obtained.

The main objective of adding natural fibers in polymer matrices is to increase mechanical
properties regardless of polymer and fiber type [21, 26, 31, 40, 52, 54, 55, 61–68]. Since natural
fibers have lower density (1.2–1.5 g/cm3) compared to synthetic/inorganic reinforcement such
as glass fibers (2.5 g/cm3), lightweight composites can be produced [28, 69, 70]. Nevertheless,
lignocellulosic fibers are hydrophilic and polar which causes some incompatibility with the
most common polymer matrices which are hydrophobic and nonpolar. This effect leads to poor
mechanical properties due to a lack of interfacial adhesion between the fibers and the matrix.
Furthermore, the high amount of hydroxyl groups available on the fiber surface is increasing
water absorption, even when inside a composite [65, 71, 72]. These problems can be resolved
by modification of the fibers surface such as mercerization (treatment in sodium hydroxide
solution to remove lignins and hemicellulose) with subsequent addition of coupling agents
[22, 73–75]. There is also the possibility to combine thermomechanical refining with coupling
agent addition [71, 72]. More recently, fiber treatment with a coupling agent in solution has
been proposed [76].

Matrix Fiber
source

Processing Fiber
content
(%)

Fiber
surface
treatment

Additive  Mechanical
properties

TD
(°C)

References

CA BA E
(MPa)

TS
(MPa)

FM
(MPa)

FS
(MPa)

IS
(J/m)

HDPE Flax Injection
molding

0, 15, 30– – ACA 220–
470

14–24 500–
1600

15–26 60–
230

– [66]

Wood Compression
molding

0–40 Thermo‐
mechanical
refining

MAPEACA – – 0.9–
3.9

– – – [72]

Wood Extrusion 20, 30,
40

– MAPE– 2300–
2900

– 1900–
3400

– – – [56]

Wood Extrusion 50, 60,
70, 80

– MAPE– 3130–
4600

11.1–
30.2

2470–
3370

25.0–
58.8

– – [77]

Wood Injection
molding

40 Ethanol and
toluene
extraction
NaClO2

treatment
NaOH
solution

MAPE– 3570–
4940

23.8–
48

– – – – [78]
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Matrix Fiber
source

Processing Fiber
content
(%)

Fiber
surface
treatment

Additive  Mechanical
properties

TD
(°C)

References

CA BA E
(MPa)

TS
(MPa)

FM
(MPa)

FS
(MPa)

IS
(J/m)

Wood Injection
molding

25, 35,
45

– – – 1200–
2000

18.5–
27.5

1200–
2700

27.5–
43

– – [59]

Oil
palm

Compression
molding

30, 40 – MAPP– 650–
1050

10–15 [65]

Hemp Compression
molding

0–40 – – ACA – – 1093–
1634

18.8–
23

– – [55]

Agave Injection
molding

0–20 – – ACA 225–
550

15–24 1–2.7 – – – [79]

Hemp Compression
molding

40 Thermo‐
mechanical
refining

MAPE
MAH

– – – 2–2.6 – – – [71]

Argan
nut
shell

Injection
molding

5, 10,
15, 20,
25

NaOH
solution

– – 1136–
1795

27.2–
29.3

– – – – [80]

UHMWPEWood
powder

Compression
molding

0–30 – – – 195–
280

– 650–
1260

– – – [67]

LMDPE Agave Rotomolding 5, 10, 15– – – 255–
440

13–
18.8

495–
590

12.5–
16.5

0.9–
7.5

– [81]

Agave Rotomolding 15 Solutions of:
MAPE
NaOH
Aldehyde
Acrylic acid
Methyl
methacrylate
Silane

– 167–
217

13–18 420–
520

13–
17.8

83.8–
148.5

– [76]

Hemp Injection
molding

30 Solutions of:
NaOH
MAPE

MAPE– 241–
668

13.1–
17.9

– – – – [73]

LLDPE Maple
wood

Rotomolding 0–20 – – ACA 26–
184

3–16.4119–
680

– – – [52]

Wood Injection
molding

47 – MAPP– – 30.2 – – – – [82]

Agave Compression
molding

0–40 Solutions of:
NaOH
MAPE

– – 224–
381

10–22 389–
1027

14–31 123–
260

– [75]

PS Agave Compression
molding

10, 20,
30

– – ACA 3345–
4929

30–62 – – – 400 [83]

Wood
fiber

Extrusion 10, 20,
30, 40

MAPS – – – 31–49 – 54–
94.5

– – [84]

Wood
flour

Extrusion 10, 20,
30, 40

MAPS – – – 31–
41.5

– 55–68 – –

PP Argan
nut
shell

Injection
molding

0–30 – SEBS‐
g‐MA

– 1034–
1593

26.5–
30

– – – 339.4–
350 

[85]

Flax Compression
molding

10, 20,
26, 30

– MAPP
PPAA

– 1000–
3200

– – – – – [86]
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Matrix Fiber
source

Processing Fiber
content
(%)

Fiber
surface
treatment

Additive  Mechanical
properties

TD
(°C)

References

CA BA E
(MPa)

TS
(MPa)

FM
(MPa)

FS
(MPa)

IS
(J/m)

Abaca Injection
molding

10, 15,
20, 25

Benzene
diazonium
treatment,
NaOH
solution

– – 800–
2700

24.5–
31

800–
3100

43–55 22.5–
50

– [87]

Coir
bagasse

Injection
molding

5, 10,
15, 20,
25, 30

NaOH
solution

– – 1100–
1700

27.5–
34.7

1400–
2000

35–53 – – [88]

Wood Compression
molding

10, 20,
30, 40

– MAPP– 600–
1600

– 2100–
2400

44–52 10–
17

– [89]

NNC Compression
molding

1 – MAPP– 450–
663

32.3–
39.1

1809–
2238

– – – [90]

Sisal Injection
molding

10, 20,
30

NaOH
solution

MAPP– 500–
1100

23–28 – – – 363.2–
434.5

[91]

Pine
cone

Injection
molding

5, 10,
15, 20,
25,
30

NaOH
solution

SEBS‐
g‐MA
SBS

– 1020–
1550

21–
27.5

– – – 321–
355 

[92]

Wood
cotton

Compression
molding

10, 20,
30

– MAPP– – 28–50 – 37–
152

– – [93]

PLA Flax Injection
molding

15, 25,
40

– – – – – 2500–
6000

– – 282–
340 

[54]

Maple
wood

Injection
molding

15, 25,
40

– – – – – 2400–
5900

– – 282.3–
342.7

[62]

Maple
wood

Injection
molding

5, 10,
15, 20,
25

– – – 1250–
1890

59.8–
61.5

3650–
5260

96.6–
107 

21.7–
34.3

250–
360 

[94]

Wood Injection
molding

20, 30,
40, 50,
55, 60,
65

– – – 5270–
10300

56.8–
64.6

5400–
1088

77–
91.8

– – [58]

Cotton Injection
molding

10, 20,
30, 40,
50

– – – 1260–
2500

58.1–
62.6

3690–
8220

97.9–
106.2

17.5–
24.3

250–
360 

[94]

Agave
Coir
Pine

Injection
molding

10, 20,
30

– – – 1242–
1865

43–60 2300–
3110

55–96 30–
49

– [95]

Post
consumer
PP+HDPE

Wood
flour

Compression 
molding

0–40 – MAPP
MAPE

– 247–
394

12.7–
15.3

950–
1889

– 38–
65.6

– [61]

Wood
flour

Compression
molding

0–40 – POE
MAPP
MAPE

– – – 1073–
1958

16.6–
22.4

– – [96]

Flax Injection
molding

30 – MAPP
EO‐g‐
MAH
–

– 608 – 3090 – – – [97]

– 579 – 2921 – – – [98]

– 332–
608

– 1114–
3090

– – – [99]

Post
consumer
HDPE

Pine
wood

Compression
molding

30 – MAPE
CAPE

– – 21.4–
30.6

– – – 341.3–
342.4

[60]
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Matrix Fiber
source

Processing Fiber
content
(%)

Fiber
surface
treatment

Additive  Mechanical
properties

TD
(°C)

References

CA BA E
(MPa)

TS
(MPa)

FM
(MPa)

FS
(MPa)

IS
(J/m)

TDM

BagasseCompression
molding

30 – MAPE
CAPE
TDM

– – 22.3–
36.1

– – – 348.5–
353.3

[60]

Wood Compression
molding

50, 60 – MAPE– – 9–18 – – 20–
35

– [100]

Post
consumer
PP

Wood Extrusion – – MAPP– 450–
490

27.3–
29.8

2230–
2940

43–51 – 285–
499 

[101]

Oil
palm

Extrusion – – MAPP– 340–
380

18.7–
19

1870–
2150

30.1–
33.8

– 268–
495 

[101]

CA: coupling agent; BA: blowing agent; TD: thermal degradation; ACA: Azodicarbonamide; MAPE: Maleic
anhydride‐grafted polyethylene; MAPP: maleic anhydride‐grafted polypropylene; MAH: maleic anhydride, SEBS‐g‐
MA: styrene‐(ethylene‐octene)‐styrene triblock copolymer grafted with maleic anhydride; PPAA: acrylic acid grafted
polypropylene; POE: ethylene‐octene copolymer; EO‐g‐MAH: maleic anhydride grafted ethylene‐octene metallocene
copolymer; CAPE: carboxylated polyethylene; TDM: titanium‐derived mixture.

Table 3. Mechanical and thermal properties of natural fiber composites based on thermoplastic matrices.

Coupling agents are usually copolymers containing functional groups compatible with the
fibers (hydroxyl groups) and the polymer matrix [74]. These reactions (chemical or physical)
are increasing interfacial adhesion leading to improved mechanical properties and water
absorption reduction [22, 65, 71–73, 75, 76, 99, 102, 103]. Coupling agents can be mixed with
the polymer matrix by extrusion previously to fibers addition [65, 74, 92] but can also be added
during composite compounding, i.e. mixing the matrix, fiber and coupling agent all together
[55, 72, 83, 90, 97–99, 102–104]. Likewise, natural fibers can be functionalized by treating them
with a coupling agent in solution, to increase compatibility with the polymer matrix [22, 71,
73–76].

Since natural fibers start to degrade at lower temperature (150–275°C) than most polymer
matrices (350–460°C) [60, 63, 74, 83, 105], fiber mercerization and coupling agent addition were
shown to improve the thermal stability of the fibers and therefore of the final composites [24,
29, 73, 75, 85, 91, 92].

4. Hybrid composites

To improve on the properties of natural fiber composites and/or overcome some of their
limitations such as moisture absorption, thermal stability, brittleness and surface quality, the
concept of hybrid composite was developed. The idea is to combine natural fibers with other
fibers or particulate reinforcements, which can be of natural or synthetic origin such as glass
fibers or rubber particles [15, 51, 63, 106–109]. The main purpose of blending different rein‐
forcements is to obtain a material with better properties than using a single reinforcement.
Assuming there is no chemical/physical interaction between each type of fibers, the resulting
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properties of hybrid composites (PH) should follow the rule of hybrid mixtures (RoHM) given
as [106, 110, 111]:

1 1 2 2H C C C CP P V P V= + (1)

where PC1 and PC2 are the properties of composite C1 and C2, respectively, while VC1 and VC2

are their respective volume fractions such that:

1 2 1C CV V+ = (2)

Naturally, the model can be generalized for more than two types of reinforcement.

Natural and synthetic reinforcements combination has showed to improve several composite
characteristics such as thermal stability [106, 112–114], impact strength [63, 115–117] and water
uptake [70, 112–114, 118, 119]. But the combination of two different types of lignocellulosic
fibers was shown to control water absorption [53, 103, 110] and increased impact strength [103,
120], especially when using coupling agents.

The final properties of hybrid composites depend are function of different factors [53, 74, 104,
120], and Table 4 summarizes some of the most important mechanical and thermal properties
of hybrid composites based on thermoset matrices. The effect of fiber and matrix type, as well
as fiber surface treatment is reported with their mechanical properties and thermal degrada‐
tion temperature. Similarly, Table 5 reports the corresponding information for hybrid com‐
posites based on thermoplastic matrices. In general, it is observed that combining natural fibers
with inorganic reinforcements leads to improved thermal stability and impact strength, as well
as higher flexural and tensile moduli. Moreover, Table 6 shows that water uptake decreases
by combining two natural fibers from different sources, or using natural fibers with inorganic
reinforcements in hybrid composites based on thermoplastics matrices.

Matrix Fibers Manufacturing
process

Fiber
treatment

Mechanical properties TD
(°C)

References
E
(GPa) 

TS
(MPa) 

FS
(MPa) 

FM
(GPa) 

IS
(kJ/
m2) 

Polyester  Hemp/
wool 

Pultrusion  –  16.84  122.12  180  11    –  [18] 

Palmyra
palm
leaf/jute 

Compression
molding 

NaOH
solution 

2.3–
5.1 

    15.3–
19.3 

24.7–
36.4 

–  [121] 

Banana/
sisal 

Hand lay‐up +
compression
molding 

–  1.1–
1.5 

    2.7–
4.2 

∼16–
37 

–  [122] 

Coir/
silk 

  NaOH
solution 

  11.4–
17.4 

  37.4–
42 

  –  [123] 
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Matrix Fibers Manufacturing
process

Fiber
treatment

Mechanical properties TD
(°C)

References
E
(GPa) 

TS
(MPa) 

FS
(MPa) 

FM
(GPa) 

IS
(kJ/
m2) 

Oil palm/
glass 

Compression
molding 

–  ∼2.5–
5.5 

∼20–
75 

∼30–
138 

∼1.5–
8 

∼7–
16 

–  [124] 

Banana/
kenaf 

Hand lay‐up  Solutions of:
NaOH
SLS 

–  45–
139 

75–
172.2 

–  ∼15–
28 

–  [125] 

Ramie/
cotton 

Compression
molding 

–  –  24.2–
118 

–  6.3–
27.4 

–    [126] 

Sisal/
roselle 

RTM  –  –  30.1–
58.7 

48.4–
63.5 

–  1.39–
1.41 

–  [127] 

Sisal/
glass 

Hand lay‐up  –  –  ∼78–
95 

∼70–
265 

∼2.1–
11 

∼66–
88 

–  [128] 

Sisal/jute/
glass 

Hand lay‐up  –  –  111.2–
232.1 

214.1–
308.6 

–  –  –  [118] 

Hemp/
glass
fibers 

Hand lay‐out +
compression
molding 

NaOH
solution 

–  –  –  –  –  345  [107] 

Epoxy  Banana/
jute 

Hand lay‐up +
compression
molding 

–  0.6–
0.7 

16.6–
19 

57.2–
59.8 

8.9–
9.1 

13.44–
18.23 

376.5–
380 

[108] 

Banana/
sisal 

Hand lay‐up  –  0.6–
0.7 

16.1–
18.6 

57.3–
62 

8.9–
9.3 

13.2–
17.9 

–  [129] 

Jute/
bagasse 

Hand lay‐up  NaOH
HCl
solution 

0.3–
0.7 

0.6–
1.7 

6.9–
15.9 

0.6–
1.7 

6.9–
15.9 

438.2–
475.9 

[109] 

Jute/
coir 

Hand lay‐up  NaOH
Cyclohexane/
ethanol
Furfuryl
alcohol 

∼0.3–
0.7 

∼8.5–
35 

∼39–
37 

∼0.5–
1.5 

–  –  [130] 

Banana/
silica 

Hand lay‐up  –  6.5–
9.1 

–  –  –  –  –  [111] 

Sisal/
silica 

Hand lay‐up  –  4.7–
6.1 

–  –  –  –  –  [111] 

Polyurethane Hemp/
wool 

Pultrusion  –  18.91  122.66 ∼142  ∼12  –  –  [18] 

Vinyl ester  Hemp/
wool 

Pultrusion  –  15.27  112.54 ∼143  ∼13  –  –  [18] 

Jute/
ramie 

VARTM  –  6.7–
6.8 

6.2–
6.7– 

–  ––  18–19  –  [131] 

Coconut/
sisal/
glass 

Molding  –  –  –  –  –  1993–
16373 

–  [117] 
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Matrix Fibers Manufacturing
process

Fiber
treatment

Mechanical properties TD
(°C)

References
E
(GPa) 

TS
(MPa) 

FS
(MPa) 

FM
(GPa) 

IS
(kJ/
m2) 

Vetiver/
glass 

Hand lay‐up  NaOH
solution 

1–2.4  53.2–
69.8 

97.3–
131.9 

2–3.6  –  –  [116] 

Jute/
vetiver 

Hand lay‐up  NaOH
solution 

1.7–
1.9 

63.3–
71.7 

114.8–
133.1 

2.9–
3.6 

–  –  [116] 

E: tensile modulus, TS: tensile strength, FS: flexural strength, FM: flexural modulus, IS: impact strength, TD: thermal
degradation.

Table 4. Mechanical and thermal properties of natural fiber hybrid composites based on thermoset matrices.

Manufacturing 

process

Composite Coupling 

agent

Filler

content 

(%)

Filler  

surface

treatment

Mechanical  

properties

TD

(°C)

References

E

(MPa) 

TS

(MPa) 

FS

(MPa) 

FM

(GPa) 

IS

(J/m)

PP‐glass

/flax fibers

MAPP (5%) 40 (vol) – 522–629 21.9–

25.5

– – 37.9–

49.6

– [106]

MAPE‐GTR

rubber

/hemp fiber

– 10, 30

50, 60

– 120–243 9.8–14.3 – 363–781139.6–

239.8

294–

465

[63]

PP‐Kenaf/

coir/MMT

MAPP

(5%)

30 – 300–360 11–12 – – – – [132]

PP‐NNC/

Maple fibers

MAPP

(2%)

21 – 444.9 25.4 – 1735.2 – – [104]

PP‐

wood/SiO2

PP‐wood/

CaCO3

PP‐wood/

milled glass

fibers

MAPP

(4.5%)

50 – – 32–45 48–65 2400–

3540

– 348 [133]

PP‐sisal/

glass fibers

MAPP

(1%, 2%,

3%)

30 – 41.75–

55.1

970–

1686

47.4–

67.5

1900–

2800

59.3–

81.6

346–

384

[70]

PP‐jute/flax

fibers

MAPP

(19.12%)

25.96% PP/jute and

MAPP/flax

woven fabrics

were treated

with NaOH

solution

29.7–

42.6

2437.3–

2852.4

50.1–

68.8

1399.7–

2331.8

– – [134]
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Manufacturing 

process

Composite Coupling 

agent

Filler

content 

(%)

Filler  

surface

treatment

Mechanical  

properties

TD

(°C)

References

E

(MPa) 

TS

(MPa) 

FS

(MPa) 

FM

(GPa) 

IS

(J/m)

LDPE‐

banana/coir

fibers

MAPP

(5%)

15 Solutions of:

NaOH

Acetylation

bleaching with

H2SO4

36.2–50 29.5–

52.4

9.3–

13.6

473 [135]

HDPE‐

coir/Oil

palm fibers

MAPE

(2%, 4%)

40 Hot water

and soap

8–13.5 550–630 17–27 1570–

2380

– – [120]

HDPE‐kenaf/

pineapple

leaf fibers

(PALF)

– 40 – 27–30 550–680 23–28 1700–

2100

– – [110]

PS‐banana/

glass fibers

– 20 Solutions of:

NaOH

Benzoyl

chloride

PSMA

29–38.8 1462.2–

1558.3

7.9–11.3 489.7–

698.8

– – [136]

Injection +

compression

PP‐SBR

rubber/

birch wood

MAPP

(3%, 5%)

0–40 – 10.5–25 520–

1560

– – – – [51]

Injection moldingPP‐sisal/

glass fiber

N/A

(3.5%)

10, 20,

30

Boiled in

methanol and

benzene

mixture and

with NaOH

solution

– – – – 100 190–

230

[112]

PP‐sisal/

glass fibers

MAPP

(3%)

30 – 29.2–

31.6

2330–

2430

66.7–

68.8

4.03–

4.14

16.7–

20

331.3–

464.7

[113]

RPP‐date

palm wood/

glass fiber

– 30 – 19.5–21 1100–

1300

– – – 361.8–

479.4

[114]

PP‐hemp/

glass fibers

MAPP

(5%)

40 – 52.5–59 3800–

4300

97–101 5000–

5400

49–

55.4

360–

474

[57]

PP‐wood

flour/glass

fiber

MAPP

PP‐g‐MA

POE‐g‐MA

40 – 28–45.4 – 39.7–

62.8

2680–

3497

– 345–

363

[137]
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Manufacturing 

process

Composite Coupling 

agent

Filler

content 

(%)

Filler  

surface

treatment

Mechanical  

properties

TD

(°C)

References

E

(MPa) 

TS

(MPa) 

FS

(MPa) 

FM

(GPa) 

IS

(J/m)

SBS‐g‐MA

(3%, 6%)

PP‐wood/

kenaf fibers

MAPP

(1%)

40 – 39–44 2771–

3008

– – – – [138]

PLA‐kenaf/

corn husk

– 30 NaOH

solution

Sodium lauryl

sulfate

solution

Silane and

potassium

permanganate

– 1547 – – – – [139]

PLA‐banana

/nano‐clay

– 33 – 67 4965–

5577

105–108 7715–

7725

119–

120

295–

397

[140]

HDPE‐Pine

/agave

fibers

MAPE

(3%)

20, 30 – 20.5–

26.5

415–650 24–32 670–

1180

37–47 – [53]

HDPE‐coir/

agave fibers

MAPE

(3%)

20, 30 NaOH

solution

19.5–

25.9

355–500 23.3–

31.9

890–

1190

42–68 – [103]

HDPE‐sisal/

hemp

MA

solution

(10%)

25, 30 NaOH

solution

15.7–

19.2

– – – – – [141]

PP‐coir

shell/coir

fibers

SEBS‐g‐

MA (8%)

20 NaOH

solution

Benzoyl

peroxide

solution

26.5–

29.5

1050–

1300

– – – 344–

349

[74]

PLA‐banana/

sisal fibers

– 30 – 57–79 1700–

4100

91–125 4200–

5600

– – [142]

PLA‐hemp/

lyocell

– 40 – 41.4–

71.5

4643–

7035

– – – – [143]

PLA‐hemp/

kenaf fibers

– 40 – 34.4–61 4920–

7039

HDPE‐

wood/hollow

– 50 – 26.2–31 3300–

3600

– – – – [119]
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Manufacturing 

process

Composite Coupling 

agent

Filler

content 

(%)

Filler  

surface

treatment

Mechanical  

properties

TD

(°C)

References

E

(MPa) 

TS

(MPa) 

FS

(MPa) 

FM

(GPa) 

IS

(J/m)

glass

microspheres

Extrusion HDPE‐

wood/bast

fibers

– 60 Vinyl

triethoxysilane

42–44 650–700 73–77 4900–

5250

– – [144]

HDPE‐

wood/Kevlar

– 60 Allyl and 3–

trimethoxy

silyl‐propyl

13.8–

19.8

3050–

4100

24.5–

3600

2200–

3400

– – [145]

Extrusion

calendering

PP‐jute/glass – 20, 30, 40 – 42–63 4660–

7170

72.8–

102.5

3550–

5950

– – [69]

MAPP: maleic anhydride‐grafted PP; MAPE: maleic anhydride‐grafted PE; GTR: ground tire rubber; LDPE: low
density polyethylene; HDPE: high density polyethylene; PS: polystyrene; SBR: styrene butadiene rubber; RPP: recycled
polypropylene; PP‐g‐GMA: glycidyl methacrylate‐grafted PP; POE‐g‐MA: maleic anhydride‐grafted ethylene‐octene
copolymer; SEBS‐g‐MA: maleic anhydride‐grafted hydrogenated styrene‐butadiene‐styrene; PLA: polylactic acid.

Table 5. Mechanical and thermal properties of hybrid composites based on thermoplastic matrices.

Matrix  Reinforcements Observations References

MAPE  GTR rubber/hemp fiber  GTR decreases water uptake  [63] 

PP  Kenaf/coir/MMT  Water uptake is reduced by hybridization  [132] 

Wood/SiO2

Wood/CaCO3

Milled glass fibers 

SiO2, CaCO3 and milled grass decreased water uptake  [133] 

Hemp/glass fibers  Glass fiber reduced water uptake  [57] 

Wood/glass fibers  Increasing fiber glass weight ratio, water uptake was reduced.  [146] 

HDPE  Pine/agave fibers  Pine fiber decreased water uptake in hybrid composites  [53] 

Coir/agave fibers  Coir reduced water uptake in hybrid composites  [103] 

PP: polypropylene; HDPE: high density polyethylene; MAPE: maleic anhydride‐grafted polyethylene; GTR: ground
tire rubber; MMT: montmorillonite.

Table 6. Water uptake in hybrid composites using thermoplastic matrices.

5. Auto‐hybrid composites

Composites reinforced with two sizes of the same type of reinforcement are referred to as auto‐
hybrid composites. As these composites only have a single type of reinforcement, they are
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easier to recycle. But most importantly, these materials were shown to exhibit a positive
deviation from the RoHM depending on fiber concentration, weight ratio, size and type [64,
102, 147]. Nevertheless, the auto‐hybridization effect seems to be more influenced by the total
fiber content than coupling agent addition [64, 147]. However, coupling agent addition is
always important to improve tensile strength [102]. As total fiber content, fiber type and
coupling agent content, all affect the level of deviation from the RoHM, and optimization of
these parameters is a new challenging field of research to develop better composite perform‐
ances. Table 7 summarizes the limited amount of work on auto‐hybrid composites using
natural fibers as reinforcement.

Processing Composite  Coupling 
agent

Fiber
diameter
(µm)

Fiber
content 
(%)

Crystallinity 
index (%)

Main results  References

Injection  PP‐hemp
fibers 

MAPP
(3%, 5%)*

Fiber:
300–710
Powder:
45–180

20, 30 – Hybridization more
effective at 20 wt.%
reinforcement
Optimum weight ratio of
20/80 (powder/fibers)
3% of coupling agent was
more efficient
Ductility and impact
strength decreased with
fiber content
Tensile and flexural
modulus increased with
fiber content

[147]

HDPE‐
pine fibers

MAPE
(3%)

Short
fiber: 
40–105
Long
fiber: 
300–425

10, 20,
30

56.2–61.1 Coupling agent increased
tensile strength, and
decreased tensile modulus,
flexural strength and
impact strength of auto‐
hybrids
Total fiber concentration
affected hybridization
being more effective at 20
and 30 wt.%
Higher values of
mechanical properties
were obtained at 30/70
(short/long) weight ratio
(without coupling agent)
in auto‐hybrids
Crystallinity index
decreased with coupling
agent addition

[102]

HDPE‐
agave
fibers

53.3–57.4

PP‐pine fiber – Short
fiber: 
50–212

10, 20, 30 – Hybridization did not
affect flexural and tensile
strength
Hybridization was more
effective at 30/70 (short/

[64]

PP‐agave
fibers
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Processing Composite  Coupling 
agent

Fiber
diameter
(µm)

Fiber
content 
(%)

Crystallinity 
index (%)

Main results  References

Long
fiber: 
300–425

long) and 50/50 (short/
long) weight ratio
Positive hybridization
effect was higher at 20 and
30 wt.% fiber content
Impact strength was
higher at 20 wt.% with a
30/70 (short/long) weight
ratio
Water absorption was not
affected by fiber size

Compression 
molding

LLDPE‐
maple fibers

MAPE
(3%)

Short
fibers:
0–45
Medium
fibers: 
125–250
Long
fibers: 
355–450

5, 10, 15,
20

13–32 Positive deviation of
RoHM at 30/70 (smaller/
longer) weight ratio,
regardless of fiber size
20 wt.% showed higher
RoHM positive deviation
and auto‐hybridization
was more effective
Positive deviation of
RoHM is affected by fiber
size and total fiber content
Tensile and flexural
modulus increased with
fiber content, but not with
fiber size
Impact strength and
torsion modulus of hybrid
composites are affected by
fiber weight ratio

[148]

*MAPP was not used in auto‐hybrid composites.

Table 7. Overview of the different investigations on auto‐hybrid composites based on natural fibers.

6. Conclusion

Natural fibers are now interesting alternative to replace synthetic fibers due their good specific
properties (per unit weight). They have been used to develop different composites based on
thermoset and thermoplastic matrices. As for any composite, their mechanical, thermal and
physical properties are function of the properties of the matrix and the reinforcement, as well
as fiber loading, fiber source and manufacturing process. Nevertheless, interfacial conditions
are always important to optimize the general properties.

The main disadvantages of using natural fibers are water uptake, low thermal stability, as well
as low mechanical properties due to fiber agglomeration and poor interfacial adhesion,
especially at high concentration. The problem is usually more important in thermoplastics than

Composites from Renewable and Sustainable Materials288



thermosets due to their difference in initial resin viscosity. But most of the limitations associated
to natural fiber composites can be controlled or overcome by the addition of coupling agents
and/or fiber surface modifications.

Finally, another possibility to improve the properties of natural fiber composites is to add a
second reinforcement to produce hybrid composites. These materials were shown to have
improved mechanical and thermal properties over neat natural fiber composites as they follow
the rule of hybrid mixture (RoHM) regardless of the matrix, manufacturing processing and
fiber combination. Based on this concept, different class of materials was also developed such
as all natural fiber hybrid composites (combination of two different natural fibers) and auto‐
hybrid composites (combination of two different sizes of the same fiber). The latter is highly
interesting as positive deviations from the RoHM were reported. This is usually the case
around 20 wt.% of total fiber content with around 30/70 short/long fiber ratio regardless of
coupling agent addition, fiber type and processing method. This opens the door to a new field
of investigation as several parameters can be controlled to optimize the final properties of the
materials and to design new applications for these multi‐functional composites.
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