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1. Introduction      

As a novel stochastic optimization technique, the Particle Swarm Optimization technique 

(PSO) has gained much attention towards several applications during the past decade for 

solving the global optimization problem or to set up a good approximate solution to the 

given problem with a high probability. PSO was first introduced by Eberhart and Kennedy 

[Kennedy and Eberhart, 1997]. It belongs to the category of Swarm Intelligence methods 

inspired by the metaphor of social interaction and communication such as bird flocking and 

fish schooling. It is also associated with wide categories of evolutionary algorithms through 

individual improvement along with population cooperation and competition. Since PSO 

was first introduced to optimize various continuous nonlinear functions, it has been 

successfully applied to a wide range of applications owing to the inherent simplicity of the 

concept, easy implementation and quick convergence [Trelea 2003]. 

PSO is initialized with a population of random solutions. Each individual is assigned with a 

randomized velocity based to its own and the companions flying experiences, and the 

individuals, called particles, are then flown through hyperspace. PSO leads to an effective 

combination of partial solutions in other particles and speedens the search procedure at an 

early stage in the generation. To apply PSO, several parameters including the population 

(N), cognition learning factor (cp), social learning factor (cg), inertia weight (w), and the 

number of iterations (T) or CPU time should be properly determined. Updating the velocity 

and positions are the most important parts of PSO as they play a vital role in exchanging 

information among particles. The details will be given in the following sections. 

The simple PSO often suffers from the problem of being trapped in local optima. So, in this 

this paper, the PSO is revised with a simple adaptive inertia weight factor, proposed to 

efficiently control the global search and convergence to the global best solution. Moreover, a 

local search method is incorporated into PSO to construct a hybrid PSO (HPSO), where the 

parallel population-based evolutionary searching ability of PSO and local searching 

behavior are reasonably combined. Simulation results and comparisons demonstrate the 

effectiveness and efficiency of the proposed HPSO. 

The paper is organized as follows. Section 2 describes the acronyms and notations. Section 3 

outlines the proposed method in detail. In Section 4, the methodology of the proposed 

HPSO is discussed. Numerical simulations and comparisons are provided in Section 5. 

Finally, Concluding remarks and directions for future work are given in in Section 6. O
pe
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Source:  Advances in Evolutionary Algorithms, Book edited by: Witold Kosiński, ISBN 978-953-7619-11-4, pp. 468, November 2008, 
I-Tech Education and Publishing, Vienna, Austria
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2. Acronym and notations 

Acronym: 

PSO : Particle Swarm Optimization Algorithm 
SPSO : Traditional PSO 
IPSO : An improved PSO proposed in [Jiang et. al. 2007] 

HPSO : The proposed Hybrid PSO 
Notations: 

D : The number of dimensions. 
N : The number of particles in each replication. 
T : The number of generations in each replication. 
R : The total number of independent replications. 

r• : The random number uniformly distributed in [0, 1]. 

cp, cg : The cognition learning factor and the social learning factor, respectively. 
w : The inertia weight. 

xt,i,j : The dimension of the position of particle i at iteration t, where t=1,2,…,T, 
i=1,2,…,N, and j=1,2,…,D. 

Xt,i : Xt,i=(xt,i,1,…,xt,i,D) is the position of particle i at iteration t, where t=1,2,…,T, 
i=1,2,…,N, and j=1,2,…,D. 

vt,i,j : the dimension of the velocity of particle i at iteration t, where t=1,2,…,T, 
i=1,2,…,N, and j=1,2,…,D. 

Vt,i : Vt,i=(vt,i,1,…,vt,i,D) is the velocity of particle i at iteration t, where t=1,2,…,T, 
i=1,2,…,N, and j=1,2,…,D. 

Pt,i : Pt,i=(pt,i,1,…,pt,i,D) is the best solution of particle i so far until iteration t, i.e., the 
pBest, where t=1,2,…,T,  i=1,2,…,N, and j=1,2,…,D. 

Gt : Gt=(gt,1,…,gt,D) the best solution among Pt,1,Pt,2,…,Pt,N at iteration t, i.e., the gBest, 
where t=1,2,…,T. 

F(•) : The fitness function value of •. 

U(•),L(•) : The upper and lower bounds for •, respectively.  

3. The PSO 

In PSO, a solution is encoded as a finite-length string called a particle. All of the particles 

have fitness values which are evaluated by the fitness function to be optimized, and have 

velocities which direct the flying of the particles [Parsopoulos et. al. 2001]. PSO is initialized 

with a population of random particles with random positions and velocities inside the 

problem space, and then searches for optima by updating generations. It combines the local 

and global search resulting in high search efficiency. Each particle moves towards its best 

previous position and towards the best particle in the whole swarm in every iteration. The 

former is a local best and its value is called pBest, and the latter is a global best and its value 

is called gBest in the literature. After finding the two best values, the particle updates its 

velocity and position with the following equation in continuous PSO: 

 vt,i,j = wvt-1,i,j+cprp,i,j(pt-1,i,j-xt-1,i,j)+cprp,i,j(gt-1,j-xt-1,i,j), (1) 

 xt,i,j=xt-1,i,j+vt,i,j. (2) 
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The values cprp,i,j and cgrg,i,j determine the weights of the two parts, and cp+cg is usually 

limited to 4 [Trelea 2003]. Generally, the value of each component in Xt,i and Vt,i can be 

clamped to the range [L(X), U(X)] and [L(V), U(V)], respectively, to limit each particle to 

ensure its feasibility. 

For example, let  

 X3,4=(1.5, 3.6, 3.7, -3.4, -1.9), (3) 

 V2,4=(0.4, 0.1, 0.7, -2.7, -3.5), (4) 

 P3,4=(1.6, 3.7, 3.5, -2.1, -1.9), (5) 

 G3=(1.7, 3.7, 2.2, -3.5, -2.5), (6) 

 Rp=(0.21, 0.58, 0.73, 0.9, 0.16), (7) 

 Rg=(0.47, 0.45, 0.28, 0.05, 0.77), (8) 

 L(X)= (0, 0, 0, -3.6, -3), (9) 

 U(X)=(2, 4, 4, 0, 0), (10) 

 L(V)=( -4, -4, -4, -4, -4), (11) 

 U(V)=( 4, 4, 4, 4, 4), (12) 

 w=.9, (13) 

 cp=cg=2. (14) 

Then, from Eq.(1), we have 

 V3,4=(0.59, 0.296, -0.502, -0.1, -4.074). (15) 

Since -4.074<-4, V3,4 needs to be adjustmented in the following: 

 V3,4=(0.59, 0.296, -0.502, -0.1, -4). (16) 

Under the guidance of Eq.(2),  

 X4,4=(2.09, 3.896, 3.198, -3.5, -5.974), (17) 

and  

 X4,4=(2.0, 3.896, 3.198, -3.5, -3.0) (18) 

after the adjustment according to the upper/lower-bounds of X. 
We conducted the preliminary experiments, and the complete computational procedure of 
the PSO algorithm can be summarized as follows. 
STEP 1: Initialize: Initialize parameters and population with random positions and 

velocities. 
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STEP 2: Evaluation: Evaluate the fitness value (the desired objective function) for each 
particle. 

STEP 3: Find the pBest: If the fitness value of particle i is better than its best fitness value 
(pBest) in history, then set current fitness value as the new pBest to particle i. 

STEP 4: Find the gBest: If any pBest is updated and is better than the current gBest, then set 
gBest to the current value. 

STEP 5: Update and adjustment velocity: Update velocity according to Eq.(1). Adjust the 
velocity to meet its range if necessary. 

STEP 6: Update and adjustment position: Update velocity and move to the next position 
according to Eq.(2). Adjust the position to meet their range if necessary. 

STEP 7: Stopping criterion: If the number of iterations or CPU time are met, then stop; 
otherwise go back to STEP 2. 

4. The proposed HPSO 

To overcome the weakness of PSO for local searches, this paper aims at creating HPSO by 

combining PSO, local search (LS), and vector based (VB) with a linearly varying inertia 

weight. The PSO part in the proposed HPSO is similar to the SPSO proposed in section 3. 

Hence, only the differences, i.e. the linearly varying inertia weight, LS and VB, are 

elaborated in this section. 

4.1 Initial population 

The initial population is generated randomly in the feasible space such that its lower-

/upper-bounds are satisfied. To construct a direct relationship between the problem domain 

and the PSO particles in this study, the ith dimension in the pariticle stands for the value of 

the ith variable in the solution. 

4.2 The linearly varying inertia weight 

One of the most important issues to find the optimum solution effectively and efficiently 
while designing the PSO algorithm is its parameters. The inertia weight represents the 
influence of previous velocity which provides the necessary momentum for particles to 
move across the search space. Hence, the inertia weight dictates the balance between 
exploration and exploitation in PSO [Jiang et. al. 2007]. Shi and Eberhart (2001) made a 
significant improvement in the performance of the PSO with a linearly varying inertia 
weight over the generations, which linearly varies from 0.9 at the beginning of the search to 
0.4 at the end. Thus the linearly varying inertia weight is adapted in the proposed HPSO to 
achieve trade-off between exploration and exploitation, i.e. the inertia weight of the ith 
generation is  

 wi=U(w)-(i-1)[U(w)-L(w)]/N. (19) 

4.3 Vector based PSO 

The underlying principle of the traditional PSO is that the next position of each particle is a 

compromise of its current position, the best position in its history so far, and the best 

position among all existing particles. The vector synthesis is the original mathematical 

foundation of PSO, as shown in the following figure. 
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Fig. 1. The vector synthesis of PSO. 

Eqs.(1) and (2) are more complicated than the concept of the vector synthesis in increasing 
the diversity of the dimensions of each particle. Hence, the following equations are 
implemented in the proposed HPSO instead of Eqs.(1) and (2): 

 Vt,i=wiVt-1,i+cprp(Pt-1,i-Xt-1,i)+cgrg(Gt-1-Xt-1,i), (20) 

 Xt,i=Xt-1,i+Vt,i. (21) 

In the traditional PSO, each particle needs to use two random number vectors (e.g., Rp and 
Rq) to move to its next position. However, only two random number (e.g., rp and rq) are 
needed in the proposed HPSO. Besides, Eqs(20) and (21) are very easy and efficient in 
deciding the next positions for the problems with continuous variables. For example, let P3,4, 
X3,4, P3,4, G3, L(X), U(X) are the same as defined in the example in Section 1. Assume rp=0.34 
and rg=0.79. From Eq.(19),  

 wi=0.9-(4-1)[0.9-0.4]/1000=0.8985. (22) 

Plug wi, rp, rg and the other required value into Eq.(20), we have  

 V3,4=(0.6974, 0.28985, -1.56505, -1.75795, -3.97275), (23) 

 V3,4=(0.6974, 0.28985, -1.56505, -1.75795, -3.97275), (24) 

where X4,4 is adjustmented from 

 (2.1974, 3.88985, 2.13495, -5.15795, -5.87275). (25) 

4.4 Local search method 

One of the major drawbacks of PSO is is its very slow convergence. To surmount this 
drawback, to guide the search towards unexplored regions in the solution space and to 
avoid being trapped into local optimum, LS is implemented for constructing the proposed 
HPSO. 
In PSO, proper control of global exploration and local exploitation is crucial in finding the 
optimum solution efficiently [Liu 2005]. A local optimizer is applied to the best particle (i.e. 
gBest) for each run in order to push it to climb the local optimum [Liu 2005]. With the hybrid 
method, PSOs are used to perform global exploration around particles except the gBest to 
maintain population diversity, while the local optimizer is used to perform local 
exploitation to the best particle. Since the properties of PSOs and conventional local 
optimizers are complementary, HPSOs are often better than either method operating alone 
from the computation exprements shown in Section 5. 
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The proposed LS is very simple and similar to the famous local improvement method the 
pairwise exchange procedure. In LS, the ith dimension of both the current best particle of all 
population (i.e., gBest) are replaced by the current best particle of the jth particle (i.e., pBest). 
If the fitness function value is improved, the the current gBest is updated accordingly. 
Otherwise, there is no need to change the current gBest. The above procedure in the 
proposed HPSO is repeated until all dimensions in the gBest are performed. 
To minimize the number of duplicated computations of the same fitness function in LS, only 
one non-gBest is randomly selected to each dimension of gBest in the local search. The 
complete procedure of the local search part of the proposed HPSO can be summarized as in 
the following: 
STEP 0. Let d=1. 
STEP 1. Let n=1. 
STEP 2. If Gd=Pt,n or gt,d=pt,n,d, go to STEP 4. Otherwise, let F*=F(Gd), Gd=Pt,n, and gt,d=pt,n,d. 
STEP 3. If F(Gd) is better than F*, then let F*=F(Gd). Otherwise, let gt,d=g. 
STEP 4. If n<N, let n=n+1 and go to STEP 2. 
STEP 5. If d<D, let d=d+1 and go to STEP 1. 

5. Numerical examples 

To evaluate the performance of the proposed algorithms, four famous benchmark 
optimization problems [Jiang et. al. 2007] are used, which are described as follows. 
 

Function Formula Range Optima Solution 

Rosenbrock ( ) ( )21 22

1 11
( ) 100 1

n

i i ii
f x x x x

−
+=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑ [-30,30]n 0 (1,…,1) 

Rastrigrin ( )2

2 1
( ) 10cos 2 10

n

i ii
f x x x

=
⎡ ⎤= − π +⎣ ⎦∑  [-5.12,5.12]n 0 (0,…,0) 

Griewark 
2

3 1 1

1
( ) cos( ) 1

4000

nn i
ii i

x
f x x

i= =
= − +∑ ∏  [-600,600]n 0 (0,…,0) 

Table 1. Benchmark functions. 

Features of the above three functions are the following: Rosenbrock is an unimodal function 
and its variables are strongly dependent and gradient information often misleads 
algorithms; Rastrigin is ultimodal function with many local optima; Griewank is strongly 
multi-modal with significant interactions between its variables (caused by the product term) 
and the number of local minima increases with dimensionality [Jiang et. al. 2007].  
These problems are implemented using the proposed HPSO, SPSO, and the best-known 
PSO (IPSO) proposed in  by Jiang et. al. (2007) with regard to these three benchmark 
problems and the results of the experiments were compared. The proposed HPSO, SPSO 
and IPSO were implemented in C programming language on an Intel Pentium 2.6 GHz PC 
with 2G memory. To facilitate fair comparison, the number of iterations, the number of runs, 
and the populations for the proposed HPSO, SPSO and IPSO are taken directly from Jiang 
et. al. (2007). All these methods use a linearly varying inertia weight over the generations, 
varying from 0.9 at the beginning of the search to 0.4 at the end. In addition, cg=cp=2, 
Xmax=Vmax=UB and Xmin=Vmin=LB are used. 
As in Jiang et. al. (2007), the proposed HPSO, SPSO and IPSO were tested on four group 
problems (population sizes of 20, 40, 80, and 160). The population sizes of each group are 
equal and each group problem contains 3 data sets. Each data set was first run with 3 sets of 
dimensions: 10, 20, and 30 and the corresponding maximum number of generations are set 
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as 1000, 1500 and 2000, respectively. Hence, there are 12 different test sets to each 
benchmark problem as follows: 
 

Set A1: N=20, D=10, T=1000; 
Set A2: N=20, D=20, T=1500; 
Set A3: N=20, D=30, T=2000; 
Set B1: N=40, D=10, T=1000; 
Set B2: N=40, D=20, T=1500; 
Set B3: N=40, D=30, T=2000; 
Set C1: N=80, D=10, T=1000; 
Set C2: N=80, D=20, T=1500; 
Set C3: N=80, D=30, T=2000; 

Set D1: N=160, D=10, T=1000; 
Set D2: N=160, D=20, T=1500; 
Set D3: N=160, D=30, T=2000; 

Each algorithm with each set of parameter is executed in 50 independent runs. The average 
fitness values of the best particle found for the 50 runs for the three functions are listed in 
Table 2. The shaded number shows the best result with respect to the corresponding 
function and the set. From the Table 2, it can be seen that IPSO outperforms the HPSO in 
Rosenbrock functions for POP=20 and 80. However, the remaining cases of Rosenbrock 
functions and for the Griewark function, the proposed HPSO has almost achieved better 
results than SPSO and IPSO. Furthermore HPSO is superior to SPSO and IPSO at all 
instances of the Rastrigrin function. 
 

Rosenbrock Rastrigrin Griewark 
SET 

PSO IPSO HPSO PSO IPSO HPSO PSO IPSO HPSO 

A1 42.6162 10.5172 3.3025 5.2062 3.2928 0 0.0920 0.0784 0.0071 
A2 87.2870 75.7246 124.3305 22.7724 16.4137 0.4975 0.0317 0.0236 0.0168 
A3 132.5973 99.8039 122.7829 49.2942 35.0189 1.0760 0.0482 0.0165 0.0190 

B1 24.3512 1.2446 0 3.5697 2.6162 0 0.0762 0.0648 0.0002 
B2 47.7243 8.7328 0.0797 17.2975 14.8894 0 0.0227 0.0182 0.0026 
B3 66.6341 14.7301 120.7434 38.9142 27.7637 0 0.0153 0.0151 0.0012 

C1 15.3883 0.1922 0.0797 2.3835 1.7054 0 0.0658 0.0594 0 
C2 40.6403 1.5824 60.3717 12.9020 7.6689 0 0.0222 0.0091 0 
C3 63.4453 1.5364 4.7461 30.0375 13.8827 0 0.0121 0.0004 0 

D1 11.6283 0.0598 0 1.4418 0.8001 0 0.0577 0.0507 0 
D2 28.9142 0.4771 0 10.0438 4.2799 0 0.0215 0.0048 0 
D3 56.6689 0.4491 0 24.5105 11.9521 0 0.0121 0.0010 0 

Average 39.48832 3.22272 20.66896 15.67783 9.50649 0 0.03396 0.02483 0.00044 

Table 2. Mean Fitness function values 50 independent runs. 

The final statistical result including the Success Rate, the fitness function values, CPU times 
and convergence iterations of all 50 runs related to Rosenbrock function, Rastrigrin function, 
and Griewark function are listed in Tables 3-5. The Success Rate is defined to be the 
percentage of the number of final searching solution that is equal to the global optimal value 
in 50 independent runs. Convergence iterations denote the number of iterations required for 
convergence. These data are divided into three categories: maximum, minimum, average, 
and standard deviations (denoted by max, min, mean, and std., respectively). 
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 Success Fitness Function Value Running Time (sec.) Convergence Iterations 
SET Rate max min mean std max min Mean std max min mean std 

A1 92% 153.17 0 3.3025 21.65 0.03 0.02 0.02 0.00 962 520 720.3 73.77 
A2 90% 3018.59 0 124.3305 597.18 0.12 0.05 0.06 0.01 1264 520 1130.3 141.50 
A3 82% 3018.59 0 122.7829 597.14 0.29 0.09 0.11 0.04 1987 914 1603.5 268.45 
B1 100% 0 0 0 0 0.05 0.04 0.05 0.00 787 607 660.1 39.34 
B2 98% 3.99 0 0.0797 0.56 0.25 0.09 0.14 0.03 1129 813 1024.7 64.66 
B3 96% 3018.59 0 120.7434 597.52 0.47 0.19 0.23 0.07 1635 1176 1477.9 114.45 
C1 98% 3.99 0 0.0797 0.56 0.13 0.07 0.11 0.01 782 556 602.7 37.37 
C2 98% 3018.59 0 60.3717 426.89 0.46 0.24 0.37 0.04 1089 649 946.9 60.43 
C3 98% 237.31 0 4.7461 33.56 0.91 0.44 0.66 0.10 1457 1217 1346.7 56.36 
D1 100% 0 0 0 0 0.27 0.21 0.25 0.02 681 533 567.4 28.35 
D2 100% 0 0 0 0 1.00 0.78 0.89 0.05 1048 818 887.3 47.31 
D3 100% 0 0 0 0 2.41 1.52 1.78 0.17 1452 1073 1232.0 73.77 

Table 3. Experimental results on Rosenbrock function of 50 independent runs. 

 

 Success Fitness Function Value Running Time (sec.) Convergence Iterations 
SET Rate max min mean std max min mean std max min mean std 

A1 100% 0 0 0 0 0.05 0.04 0.05 0.00 112 5 30.3 20.52 
A2 98% 24.87 0 0.4975 3.52 0.16 0.15 0.16 0.00 329 11 56.1 49.95 
A3 96% 28.92 0 1.0760 5.34 0.37 0.33 0.34 0.01 357 19 86.4 74.91 
B1 100% 0 0 0 0 0.09 0.08 0.08 0.00 58 7 25.4 12.34 
B2 100% 0 0 0 0 0.27 0.25 0.25 0.00 104 11 36.4 20.96 
B3 100% 0 0 0 0 0.58 0.53 0.55 0.01 196 20 47.7 28.55 
C1 100% 0 0 0 0 0.17 0.15 0.16 0.00 56 5 19.3 11.02 
C2 100% 0 0 0 0 0.49 0.45 0.47 0.01 106 9 32.9 17.43 
C3 100% 0 0 0 0 1.01 0.92 0.96 0.02 127 18 45.2 25.74 
D1 100% 0 0 0 0 0.32 0.30 0.31 0.00 38 5 15.6 7.43 
D2 100% 0 0 0 0 0.92 0.86 0.89 0.01 63 9 26.4 10.87 
D3 100% 0 0 0 0 1.91 1.74 1.79 0.03 97 9 34.7 15.96 

Table 4. Experimental results on Rastrigrin function of 50 independent runs. 

 

 Success Fitness Function Value Running Time (sec.) Convergence Iterations 
SET Rate max min mean std max min mean std max min mean std 

A1 86% 0.10 0 0.0071 0.02 0.08 0.08 0.08 0.00 711 6 110.7 169.22 
A2 74% 0.13 0 0.0186 0.04 0.30 0.27 0.28 0.01 1401 18 262.1 303.67 
A3 76% 0.21 0 0.0190 0.04 0.72 0.64 0.67 0.03 812 15 275.0 272.40 
B1 98% 0.01 0 0.0002 0.00 0.14 0.13 0.14 0.00 518 4 53.1 74.79 
B2 96% 0.07 0 0.0026 0.01 0.49 0.44 0.45 0.01 823 10 90.7 151.76 
B3 96% 0.03 0 0.0012 0.01 1.06 0.99 1.00 0.01 738 10 95.7 140.38 
C1 100% 0 0 0 0 0.26 0.25 0.26 0.00 124 2 20.5 23.07 
C2 100% 0 0 0 0 0.81 0.78 0.80 0.01 120 10 40.8 26.87 
C3 100% 0 0 0 0 1.74 1.67 1.70 0.02 131 8 48.1 28.07 
D1 100% 0 0 0 0 0.51 0.49 0.50 0.00 30 6 14.8 6.09 
D2 100% 0 0 0 0 1.53 1.46 1.49 0.01 104 9 29.0 16.99 
D3 100% 0 0 0 0 3.18 3.04 3.10 0.03 77 9 32.9 14.44 

Table 5. Experimental results on Griewark function of 50 independent runs. 
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As the dimension increases, the solution space get more complex, and PSO algorithm is 
more likely to be trapped into local optima. Experimental data shown in Table 2 does not 
clearly indicate that the HPSO outperforms the other PSOs in the measures of average 
fitness function values. However, the Success Rates are all over 74%. Therefore, the 
proposed HPSO can find global optima with very high probability, and it is concluded that 
HPSO has the strongest exploration ability and it is not easy to be trapped into local optima. 
Table 3 shows that the proposed HPSO uses only 3.18 seconds in worst case and 0.6 seconds 
in average. Thus, HPSO is very effective, efficient, robust, and reliable for complex 
numerical optimization.  

6. Conclusions 

A successful evolutionary algorithm is one with a proper balance between exploration 
(searching for good solutions), and exploitation (refining the solutions by combining 
information gathered during the exploration phase). In this study, a new hybrid version of 
PSO called HPSO is proposed. The HPSO constitutes a vector based PSO method with the 
linearly varying inertia weight, along with a local search. 
A novel, simpler, and efficient mechanism is employed to move the gBest to its next position 
in the proposed HPSO. The HPSO combines the population-based evolutionary searching 
ability of PSO and local searching behavior to effciently balance the exploration and 
exploitation abilities. The result obtained by HPSO has been compared with those obtained 
from traditional simple PSO (SPSO) and improved PSO (IPSO) proposed recently. 
Computational results show that the proposed HPSO shows an enhancement in searching 
efficiency and improve the searching quality. In summary, the results presented in this work 
are encouraging and promising for the application of the proposed HPSO to other complex 
problems.  
Further analysis is necessary to see how other soft computing method (e.g., the genetic 
algorithm, the taboo search, etc.) react to local searches for future researchers who may want 
to develop their own heuristics and to make further improvements. Our research is still very 
active and under progress, and it opens the avenues for future efforts in this directions such 
as: how to adjust parameters, increase success rates, reduce running times, using other local 
search, and the aggregation of different and new concepts to PSO. 
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