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Abstract

Iron-containing active phase was deposited on natural layered silicate (vermiculite)
using several techniques such as ion exchange, precipitation, and forced hydrolysis
during  hydrothermal  digestion.  Tuning  of  the  synthesis  conditions  resulted  in
preparation of the catalysts with different loading of active phase and physicochemical
properties. The composite materials were characterized with respect to their structure
(X-ray diffraction), agglomeration state of Fe (diffuse reflectance UV-vis spectroscopy),
and chemical composition. Catalytic tests were performed in semi-batch reactor under
atmospheric pressure. Aqueous solution of phenol was used as a model industrial
effluent, and hydrogen peroxide was added as an oxidant. Spectral techniques were
used for identification of intermediate oxidation products. Spent catalysts were also
characterized, and structural and chemical changes were determined, e.g., leaching
degree of active phase.

Keywords: Fenton-like process, advanced oxidation processes, catalysis, silicate, ver-
miculite, nanocrystalline iron oxide, phenol

1. Introduction

Refractory organic compounds, such as dyes, phenols, or endocrine disrupting compounds
(EDC), are characterized with high toxicity, carcinogenic properties, and this poses a serious
hazard to aquatic living organisms. Difficulty of contaminations’ removal is caused by their
resistance to aerobic digestion, stability to light, heat, and oxidizing agents. Technologies used
currently for wastewater treatment, however, used widely, suffer from design shortcomings or
are very expensive. Emerging technologies, so-called advanced oxidation processes (AOP), is
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a large group of methods based on oxidation using strong oxidants, such as ozone or hydrogen
peroxide. In AOP methods, higher conversion levels may be obtained at atmospheric pressure
and temperatures lower compared to other oxidation processes [1–6]. Moreover, chemical
oxidants may be accompanied by catalysts or physical agents such as sunlight, UV or γ radiation,
ultrasounds, microwave, or cavitation, increasing efficiency of the reaction [7, 8].

The catalysts used in the Fenton-like system are, among others, natural iron-bearing earth
materials, such as goethite, hematite, magnetite, or ferrihydrite [9–11]. Modification of iron
oxides to improve their performance in organic pollutant degradation can be achieved by
substitution with other transition metals [12]; however, introduction of heavy metals may be
questionable from the point of view of the secondary contamination with catalytic leachates.
It is also known that nanoscale materials are characterized with different properties compared
to their bulk phase [8, 13, 14]. Nanocatalysts offer higher specific surface areas and few or no
mass-transfer limitations. It is expected that reaction rate will be higher for nanomaterials.
Also, diffusion of large organic molecules (organic dyes, pharmaceuticals) will be no longer
problematic as it is observed in microporous materials. On the other hand, the separation and
recycling of nanocatalysts at a technical scale still present a challenge.

To circumvent the costly catalyst separation process, magnetic properties of some iron oxides
may be exploited [15, 16]. The other possibility is the immobilization on solid support. The
most popular materials in this group are activated carbon, silica, and aluminum oxide [17–
21]; however, more advanced technologies are also studied employing graphene oxide [22].
The encapsulation of iron oxide nanoparticles in polymer matrix or carbonized sewer sludge
was reported as another possibility to stabilize oxide nanoparticles [23, 24].

Facing much more stringent environmental regulations, new waste-free technologies must be
developed, based on cheaper, non-toxic materials. Clays proposed as starting materials fulfill
all requirements for low-cost, ecological precursors for industrial technologies or large-scale
applications. Such materials could be used as catalysts in a large group of emerging technol-
ogies consisting on oxidation processes, such as wet oxidation, catalytic wet air oxidation, and
advanced oxidation processes. Natural clay minerals provide with excellent support for Fe-
containing nanocrystalline active phase of the Fenton-like reaction. Vermiculite, which was
used in presented work as a catalytic support, is natural clay mineral belonging to phyllosili-
cates. It is characterized with high thermal and mechanical stability. Moreover, its properties
may be easily modified to obtain efficient adsorbents or catalysts [25, 26].

2. Materials and methods

Commercial expanded vermiculite (South Africa), fraction size 0.5–2 mm, was provided by
Romico Polska Sp. z o.o. The silicate was pulverized in electrical blender, and fraction below
180 μm was separated (sample S0). Such prepared vermiculite was used as a support for
deposition of nanocrystalline iron oxides.

Two standard procedures [27, 28] were applied to obtain well-defined oxide structures. Pure
2-line ferrihydrite was prepared by precipitation from 0.1 M Fe(NO3)3·9H2O (p.a., POCh)
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solution using 1 M KOH (p.a., POCh). Potassium hydroxide solution was added dropwise at
RT and constant stirring until pH was equal to 7. Product was centrifuged, washed with water,
and freeze dried. Similar procedure was used to obtain vermiculite-supported ferrihydrite.
Suspension of 5 g of vermiculite (S0) was prepared in 150 mL of distilled water, then 100 mL
of Fe(NO3)3·9H2O solution was added dropwise. Suspension was stirred for the next 2 h to
allow ion exchange. In the next step, 1 M KOH solution was added to raise pH up to 7.
Crystallization was continued for the next 30 min, product was centrifuged, washed, and dried.
Sample codes, depending on Fe/vermiculite ratio, were S2, S3, and S4 (Table 1).

Sample name (precipitation) Sample name (forced hydrolysis) Fe/vermiculite ratio (mg/g)

S0 HS0 –

– HS1 16.8

S2 HS2 33.6

S3 HS3 67.2

S4 – 134.4

Table 1. Intended Fe/vermiculite ratio in vermiculite-supported Fe oxide catalysts.

Pure hematite with crystal size of 4 nm was prepared by forced hydrolysis. 3.32 g of
Fe(NO3)3·9H2O was dissolved in preheated HCl (p.a., POCh) solution (0.002 M, 400 mL) to
obtain Fe concentration of 0.02 M.. Solution was transferred into polypropylene bottle fitted
in autoclave and heated at 98°C for 7 days. Product was centrifuged, washed with water, and
freeze dried. Synthesis of vermiculite-supported nano-hematite was performed using acidified
iron nitrate solutions with the addition of 20 g of vermiculite. Sample codes, depending on Fe/
vermiculite ratio, were HS0 (no Fe salt was added), HS1, HS2, and HS3 (Table 1).

Phenol removal was studied as a test reaction, and semi-batch reactor was used to minimize
formation of side products [26]. Round-bottom flask equipped with reflux condenser was
heated to 70°C on magnetic stirrer. Each time reactor was charged with 340 mL of phenol
solution (pH = 5.4) and 600 mg of catalyst. Hydrogen peroxide (30%, p.a., POCh) was added
into the reaction mixture in 13-min intervals (10 min of non-disturbed reaction and 3 min for
sample withdrawal and next injection). Phenol concentration was studied spectrophotomet-
rically (Thermo SCIENTIFIC EVOLUTION 220) as a complex with 4-aminoantipyrine. H2O2

concentration (using VO3
− in 8 M H2SO4), Fe dissolved in reaction mixture (SCN− complex),

and colored intermediate products (sample quenched with methanol) were also determined
spectrophotometrically. In each interval, pH was measured. Reaction conditions were sum-
marized in Table 2.

Reaction code Phenol concentration (g/L) H2O2 volume added in one injection (mL)

Catalyst R1 1 2

Catalyst R01 0.1 2

Catalyst R01m 0.1 0.2

Table 2. Reaction conditions of phenol removal over vermiculite-supported iron oxide catalysts.
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The conversion, X (%), of model pollutant (phenol) was calculated according to Eq. (1):

0

0
100%C CX

C
-

= × (1)

where C0 is the starting concentration and C is the concentration at a given reaction time.

Fresh and spent catalysts were characterized by X-ray diffraction method (XRD) using a
powder diffractometer (Bruker, D2 PHASER) equipped with CuKα radiation source. The
Sherrer equation (2) was used for determination of nano-hematite crystal size:

0.89D
cos

l
b q

= (2)

where λ is the X-ray wavelength, β is the line broadening at half the maximum intensity, and
θ is the Bragg angle.

The coordination and aggregation of iron present in the catalysts were studied by diffuse
reflectance-UV-vis spectroscopy (DRS-UV-vis). The measurements were performed in the
range of 190–900 nm with a resolution of 2 nm using an Evolution 600 (Thermo) spectropho-
tometer. Content of iron was measured using spectrophotometric technique at wavelength λ
= 510 nm (Thermo SCIENTIFIC EVOLUTION 220) as a complex with 1,10-phenanthroline after
leaching of metal cations in 6 M HCl.

3. Results and discussion

3.1. Catalytic tests

Three types of catalytic tests were carried out in semi-batch reactor: concentrated (R1—1 g/L)
and diluted (R01—0.1 g/L) phenol solutions with the addition of significant excess of oxidant
(six times 2 mL) and diluted phenol solution with the minimum amount of oxidant added (six
times 0.2 mL). In each series of catalytic tests, it was observed that initiation phase is the first
step, as in the case of free-radical reactions, especially for experiments carried out in concen-
trated phenol solution (Figure 1A). Initial 10–20 min are characterized with slow increase in
pollutant conversion. After 30–50 min of the reaction over iron oxide-containing catalysts,
conversion rapidly increased reaching values above 95%. Non-modified silicates, on the other
hand, presented very low activity. Sample submitted to hydrothermal treatment (HS0) slightly
increased phenol oxidation compared to non-catalytic process; however, in the latter case,
conversion was not higher than 8% after 75 min. On the contrary, the addition of starting
vermiculite (S0) to reaction mixture resulted in slow increase in phenol conversion up to 42%.
Reduction in particle size was the only preparation step in this case; therefore, contaminations
present in the starting materials, such as interlayer and adsorbed transition metal cations as
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well as naturally occurring iron oxides and carbonates, may be responsible for the observed
catalytic effect.

Figure 1. Conversion of phenol in oxidation reaction over vermiculite-supported iron oxide catalysts; A—initial con-
centration of phenol 1 g/L, volume of H2O2 injection = 2 mL; B—initial concentration of phenol 0.1 g/L, volume of H2O2

injection = 2 or 0.2 mL.

When diluted solution of phenol was used (Figure 1B) and accompanied by small excess of
oxidant (R01m—0.2 mL), almost no effect was observed within assigned experimental time.
Only one sample, doped with nano-hematite, HS2, showed catalytical properties after 50 min
of reaction. The non-catalytical reaction performed with large excess of oxidant (R01—2 mL)
resulted in quite significant conversion equal to 48% within 75 min. Slightly higher activity
was observed when ferrihydrite-doped samples, S2 and S3, and non-modified silicates were
added as catalysts. After constant gradual increase of conversion, it reached 60–75% within 75
minutes. Only one sample with the highest loading of ferrihydrite and samples doped with
nano-hematite allowed to reach the conversion level above 95%. Nevertheless, it should be
stressed that after initial increase in conversion, it was inhibited and much slower at longer
reaction times in the case of removal of concentrated pollutant. Similar effect of the reaction
stagnation, due to accumulation of the reaction products, was also observed in homogeneous
Fenton reaction [29].

It may be observed that conversion of phenol was more effective with higher doping with
ferrihydrite. On the contrary, regardless reaction conditions, in the series of nano-hematite-
containing catalysts, an optimum amount of iron oxide results in higher efficiency of the
reaction. The best sample in this case was HS2 doped with 3.36 wt.% of iron in the form of
nano-hematite.

According to results of the catalytic tests described above, 2-line ferrihydrite supported on
vermiculite is less active than analogous materials containing hematite. Additional experi-
ment, performed in concentrated phenol solution (1 g/L) and using active sample HS3 as
catalyst, provided information about reaction path and intermediate products. UV-vis spectra
for samples withdrawn during experiment, quenched with methanol or mixed additionally
with VO3

−/H2SO4 solution, allowed to distinguish between transition products formed in the
course of the reaction. After 29 min of the reaction, which corresponds to 43% of phenol
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conversion, colored products were formed. In the UV-vis spectrum recorded in methanol
(Figure 2A) bands assigned to phenol (278 and 284 nm), hydroquinone (300 nm) and benzo-
quinone/quinhydrone (245, 255, and 300 nm) were identified. However, bands assigned to
catechin were strongly overlapped by other strong peaks, and it cannot be excluded that this
product was also formed. After 62 min of the experiment phenol conversion reached 97%, no
colored products were recorded, and reaction was completed.

Figure 2. Identification of transition products of phenol oxidation over HS3 catalyst (reaction conditions: PhOH = 1
g/L, volume of H2O2 injection = 2 mL): A—derivative UV-vis spectra recorded in MeOH, B—derivative UV-vis spectra
recorded in VO3

−/H2SO4; P—phenol; Q—qiunhydrone; B—benzoquinone; H—hydroquinone; C—catechin.

However, in the spectra measured after the reaction of the sample of effluent with VO3
−/

H2SO4 mixture (Figure 2B), peaks below 230 nm, assigned to unidentified organic compounds,
were recorded at the end of the test. Evolution of pH followed opposite trend as phenol
conversion, and at 29 and 62 min, it was equal to 2.87 and 2.48, respectively. Those observations
confirm that final products are not only H2O and CO2 but also organic acids.

3.2. Characterization of as received and spent catalysts

Iron oxide-bearing catalysts were obtained by direct deposition of formed oxide on the silicate
support. Vermiculite was selected due to its mechanical and thermal stability. On the contrary
to montmorillonite, it is not exfoliating rapidly in contact with water, and swelling is limited
to changes of number of water molecules in the interlayer space. Moreover, mineral itself
contains significant amount of iron.

As it was shown in Figure 3, both expected oxide structures were formed [27, 28]. XRD pattern
of 2-line ferrihydrite consists of two broad reflections, while nano-hematite is characterized by
the presence of several sharp but not intense peaks. Ferrihydrite structure was not observed
after deposition on the support due to inherent poor ordering of the structure and low content
in the composite material. On the other hand, using the Sherrer equation, it was confirmed that
crystal size of pure nano-hematite phase was 4 nm. Only traces of nano-hematite could be
identified in two vermiculite-supported samples with the highest loading of deposited phase
—HS2 (3.36 Fe wt.%) and HS3 (6.72 Fe wt.%). Therefore, it was not possible to determine precise
crystal parameters for oxide phase.
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Figure 3. Structure of vermiculite-supported ferrihydrite- (A) and nano-hematite-containing (B) catalysts; F—ferrihy-
drite; H—nano-hematite; 0, 1, 2—basal reflections of vermiculite corresponding to 0, 1, and 2 layers of interlayer water;
i—interstratified vermiculite phases.

Changes in vermiculite structure reflected chemical modifications performed in each synthe-
sis. Starting material (S0) was characterized with complex pattern typical for vermiculites both
containing in the interlayer divalent cations and collapsed structure (0 layers of water).
Moreover, the interlayer cations are accompanied with 1 or 2 layers of water. Additional peaks
below 8° 2θ were assigned to interstratified contracting and non-contracting phases [30].

Upon hydrothermal treatment in the sample HS0 intensity of peak corresponding to one water
layer increased, while disappeared peak assigned to the collapsed structure. In the synthesis
of 2-line ferrihydrite composite (Figure 3A), a first step consisted on an ion exchange of
interlayer anions for iron. As a result, peak at 1.40–1.43 nm may be observed; however, it was
shifted to lower values for higher loadings of iron oxide: 1.39 and 1.37 nm for S3 and S4,
respectively. Described phenomenon is a result of partial dehydration of the interlayer gallery
and formation of so-called HIV—hydroxy-interlayered vermiculites [31, 32]. Similar shift was
observed also for the sample with the highest nano-hematite content: HS3—1.39 nm.

Application of potassium hydroxide, however, resulted in a deeper rearrangement of inter-
layer space. Both peaks assigned to interstratification and one water layer almost disappeared.
On the other hand, intercalation of K+ resulted in a large increase in peak intensity at 1 nm [33].
On the contrary, in the samples doped with nano-hematite in hydrothermal conditions
(Figure 3B), peak assigned to 0 layers of interlayer water decreased with increasing amount of
oxide.
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In the structure of spent catalysts, traces of hematite were still possible to identify; however,
other changes concerning catalyst properties were noticed. Vermiculite support upon reaction
in concentrated solution was transformed into Mg2+/Fe3+ intercalated structure containing 2
layers in water molecules (Figure 4A). In the samples doped with ferrihydrite, only traces of
interlayer potassium were preserved, and interlayer spaces were occupied with di- and
trivalent cations released from silicate matrix. Hydration state and the number of water
molecules strongly depended on the initial amount of iron oxide—the lower doping level the
easier rehydration proceeded. Similar dependence was observed also for nano-hematite
deposited samples. Such phenomenon should be explained as a result of blocking of interlayer
spaces with iron hydroxides. Moreover, iron oxide particles, which were grown near the edges
of vermiculite layers, may act as cementing agent, preventing structure swelling. It was also
observed that rehydration of the structure depends on the reaction conditions (Figure 4B): the
higher concentration of phenol and hydrogen peroxide, the easier intercalation of water
molecules. As it was shown in Figure 4C/D, swelling intensity, which may be expressed as
peaks 1.42 (2 layers of water) and 1.20 nm (1 layer of water) intensity ratio, increased at higher
concentration of substrates. It cannot be excluded that acidic reaction products also enhanced
structural changes of vermiculite support.

Figure 4. Structure of spent catalysts: A—vermiculite-supported iron oxide catalysts after reaction with phenol concen-
tration 1 g/L; B and C—evolution of basal spacings of HS1 sample at different reaction conditions; D—evolution of
basal spacings of nano-hematite-containing catalysts after reaction with phenol concentration 1 g/L; H—nano-hema-
tite; 0, 1, 2—basal reflections of vermiculite corresponding to 0, 1, and 2 layers of interlayer water; i—interstratified
vermiculite phases.
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Sample named (nm) d (nm) d (nm) d (nm) d (nm)
Fresh catalysts (precipitated)
S0 2.40 1.40 1.21 1.17 1.00
S2 1.43 1.01
S3 1.39 1.01
S4 1.37 1.01
Spent catalysts (precipitated)
S0 H2O2 * 1.44 1.25 1.19 1.01
S0 R1 * 1.43 1.25 1.20 1.01
S3 R1 * 1.43 1.25 1.20 1.01
Fresh catalysts (hydrothermal)
HS0 2.57 1.41 1.22 1.17 1.00
HS1 2.60 1.43 1.24 1.19 1.01
HS2 2.55 1.42 1.24 1.20
HS3 2.53 1.39 1.22 1.18
Spent catalysts (hydrothermal)
HS0 R1 * 1.42 1.24 1.20
HS1 R01m * 1.42 1.24 1.19
HS1 R01 * 1.43 1.25 1.20
HS1 R1 * 1.43 1.25 1.20
HS2 R01m * 1.40 1.23 1.19
HS2 R1 * 1.43 1.25 1.21
HS3 R01 * 1.39 1.23 1.19
HS3 R1 * 1.42 1.25 1.20

Interstratification 2 layers of water
Mg2+/Fe3+ in interlayers

Inter-stratification 1 layer of water
Mg2+/Fe3+ in
interlayers

0 layers of water K+

in interlayers

*2.4-2.6 nm (low-intensity peak).

Table 3. Interlayer distances of iron oxide-modified vermiculite-based catalysts before and after reaction.

The basal spacings calculated for modified vermiculites (Table 3) show that synthesis consist-
ing on 2-line ferrihydrite precipitation resulted in the formation of hydroxy-interlayered phase
and disappearance of peaks related to interstratified phases. Moreover, vermiculite was also
partially intercalated with potassium. After the reaction, almost all peak positions returned to
the initial values similar to the starting material. In nano-hematite modified samples, charac-
teristic peaks for interstratification remained in their positions. However, in the course of
phenol oxidation, first peak (~2.5 nm) became less noticeable.

It may be concluded that deposited iron oxide phases changed properties of the support;
however, alteration was reversible in reaction conditions. Although XRD patterns do not allow
to follow degradation of active phase directly, some indications of that process may be
observed through properties of vermiculite.

More data considering properties of the deposited iron oxides were provided by DRS-UV-vis
spectroscopy. As it was mentioned before, vermiculite itself contains iron [25] and UV-vis
spectrum recorded for solid-state samples consisted of several characteristic bands. Isolated
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Fe3+ cations in the tetrahedral coordination give rise to peaks at 224 nm in both silicate materials
(S0 and HS0), and cations in the octahedral coordination may be identified by the presence of
band at 260 nm [34, 35]. The bands at 319 and 358 nm are characteristic for small oligonuclear
FexOy clusters. Formation of bulk Fe2O3 particles gave characteristic bands above 400 nm [34].

Ferrihydrite and hematite were characterized by multiple bands, revealed by the second
derivative spectra (results not shown), and assigned to the electronic transitions [27, 36]. The
spectra of both oxides consisted of peaks at 260–264 nm, which should be assigned to charge
transfer. The bands at 401 and 424 nm for ferrihydrite and hematite, respectively, resulted from
6A1 → 4E; 4A1 transition, 519 and 550 nm—2(6A1) → 2(4T1) (electron pair transition, EPT), 690–
718 and 665 nm—6A1 → 4T2. Additionally, for nano-hematite, the following bands were
assigned to 6A1 → 4T1 transitions at 310 and 840 nm and 6A1 → 4E transitions at 384 nm.

Figure 5. Agglomeration state of iron species in vermiculite-supported ferrihydrite- (A) and nano-hematite-containing
(B) catalysts (DRS-UV-vis spectra).

Due to possible release of the cations from vermiculite and the contamination of deposited
iron oxides during synthesis, the octahedra may be distorted, and consequently, ligand field
and band positions may be changed. For 2-line ferrihydrite-containing catalysts, DRS-UV-vis
peaks were shifted to 296, 456–478, 527–556, and 675 nm (Figure 5A). Similar result, with peak
positions at 294, 442, 476, 544, 679, and 840 nm, was obtained for nano-hematite deposited on
silicate (Figure 5B).

Further changes in the catalyst structure took place in the course of phenol oxidation. In the
spectrum of starting silicate, S0, new band in the range of 360–480 nm was formed (Fig‐
ure 6A). It is possible that adsorbed on the surface and interlayer Fe3+ cations present in original
material were released and redeposited in the form of larger clusters. Catalysts modified with
ferrihydrite after reaction with diluted phenol solution (R01) were depleted with active phase,
and DRS-UV-vis spectra have shown minimum at 300 and 480 nm. Much larger minimum was
registered in the differential spectrum of sample S3 after reaction with concentrated phenol
solution. The shape and positions of minima (390, 453, and 524–550 nm) reflected distribution
of absorption peaks in fresh catalyst. It may be expected that degradation of the catalyst is
significant, although it is mechanical rather than chemical in nature.
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Figure 6. Leaching of iron species from vermiculite-supported iron oxide-containing catalysts upon phenol oxidation
reaction (DRS-UV-vis spectra).

In nano-hematite-containing catalysts, degradation proceeded differently for each sample. At
the lowest loading of active phase (Figure 6B, HS1), leaching was the most noticeable compared
to the other samples, which were used in the reaction with concentrated substrates (R1).
Moreover, the largest minimum was observed at 360–400 nm, while at 454 and 530 nm, two
smaller features were observed. When the amount of hematite was increasing, minima
recorded in DRS-UV-vis spectra were smaller and shifted to higher wavelengths (Figure 6C/D).
Therefore, it may be concluded that optimization of the active phase loading is more important
for hematite-containing composites, both in terms of catalyst stability and its activity. Surpris-
ingly, although degradation of the catalysts is less noticeable in the reaction using lower
concentration of phenol, the addition of lower excess of oxidant may also increase leaching of
active components (e.g., Figure 6B). This feature may result in olation-oxolation processes,
proceeding differently in the presence of H2O2.

On the basis of catalyst characterization, the following model was proposed for more active
silicate-based nano-hematite-modified materials (Figure 7). In optimum conditions of about
3.36 wt.% of iron, which corresponds to 4.8 wt.% of deposited iron oxide, interlayer spaces of
vermiculite are not blocked by hydroxides and are free to accommodate Fe3+ cations. On the
surface of the layered support, patches of nanocrystalline phase are formed. Below the
optimum hematite loading, besides well-defined nanocrystals, also oligomeric clusters of iron
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oxide are deposited, which may be easily dissolved by the reaction substrates and products in
the course of the reaction. The interlayer space of vermiculite is still available for an ion-
exchange process. Above the optimum loading of the active phase, interlayer spaces of
vermiculite are blocked by hydroxy-compounds, which may be removed during the reaction.
Deposited nano-hematite phase remains almost intact during the reaction.

Figure 7. Simplified structure of nano-hematite-containing vermiculite-supported catalysts.

3.3. Catalytic activity vs. catalyst degradation

Changes in the catalyst chemical composition were followed during the reaction and correlated
with catalytical results. In Table 4, it was presented that ferrihydrite-containing catalysts were
more susceptible to Fe leaching. Surprisingly, the lower was oxide doping, the higher
percentage of active phase was dissolved. No such straight relationship was observed for nano-
hematite-containing catalysts. Apparently, small oligoclusters and interlayered hydroxy-
species described in model in Section 3.2, indeed, contributed significantly to dissolved species.
It was also observed that catalytic activity should not be attributed completely to homogeneous
reaction. Reaction mixtures over ferrihydrite-doped catalysts were characterized with higher
concentration of Fe available for homogeneous reaction. Times, required to obtain phenol
conversion equal 40 and 50%, were longer for ferrihydrite-containing catalysts in comparison
to hematite-doped materials. Moreover, in the latter case Fe concentrations in the reaction
mixtures were relatively low. As it was described in Section 3.1, when diluted phenol solution
was used for the reaction activity stagnated due to product accumulation. Another explanation
could be recombination of radicals formed over the catalysts. Therefore, time for 50% phenol
conversion is more or less 10 min delayed compared to 40% conversion. On the other hand,
time difference for the reactions performed in concentrated phenol solution is closer to 1–3
min. Another conclusion may be formed on the basis of the analysis of residual phenol
concentrations. Within 75 min of the reaction, phenol concentration is reduced to 3–31 and 2–
6 mg/L for ferrihydrite- and hematite-containing catalysts, respectively, in reactions using
starting solution equal to 100 mg/L. When 1 g/L phenol solution was used, final concentrations
were equal to 8–11 and 15–30 mg/L for both iron containing series of catalysts. In this way, it
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was confirmed that dispersed pollutants are more difficult to remove efficiently then
concentrated.

Sample name Fe content in
catalyst
(mg/g)

Fe available (mg/
L)* 

Fe leached from
catalyst (%)**

PhOH residual
(mg/L)*

t40% (min) t50% (min)

S0 56.5

S0 H2O2 1.0 1.0

S0 R01 1.3 1.3 40 40 46

S0 R1 6.3 6.4 577 72 >75

S2 89.1

S2 R01 5.7 3.6 26 32 44

S2 R1 n.d. n.d. 11 52 54

S3 109.2

S3 R01 4.6 2.4 31 34 46

S3 R1 27.1 14.0 21 29 32

S4 154.2

S4 R01 2.8 1.0 3 40 50

S4 R1 n.d. n.d. 8 28 29

HS0 59.0

HS0 R01m 0.9 0.9 92 – –

HS0 R01 0.5 0.4 35 32 49

HS0 R1 1.3 1.2 863 – –

HS1 76.7

HS1 R01m 3.2 2.3 89 – 62

HS1 R01 2.5 1.8 4 29 33

HS1 R1 26.0 19.2 19 41 43

HS2 86.8

HS2 R01m 3.2 2.1 4 – –

HS2 R01 1.0 0.7 2 24 26

HS2 R1 13.4 8.7 15 22 25

HS3 119.1

HS3 R01 5.1 2.4 6 33 41

HS3 R1 23.9 11.4 30 30 33

n.d., not determined.
*In solution after 75 min of reaction.
**Percentage of initial content.

Table 4. Comparison of Fe content in catalysts and reaction solutions, residual concentration of phenol and time of 40
and 50% phenol conversion.
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4. Conclusions

Depending on the experimental conditions, a nanocrystalline phase of hematite was formed
in the hydrothermal synthesis. On the other hand, precipitation resulted in the formation of
ferrihydrite phase. It was demonstrated that the latter phase is less active than nano-hematite;
moreover, it was shown that optimum loading of the active phase is required to obtain the
highest reaction efficiency: fast and high phenol conversion with minimum amount of side
products as well as limited catalyst degradation. Among the transition products, formation of
quinones was confirmed using derivative UV-vis spectroscopy. Physicochemical techniques
also confirmed that nano-hematite-containing catalysts were more stable in studied reaction
—only limited changes were observed in agglomeration state of Fe-containing materials, and
leaching of iron was reduced. It was also shown that each group of catalysts is in different
extents susceptible to degradation. However, the observed catalytic effect cannot be attributed
only to homogeneous reaction. It was confirmed that dispersed pollutants are more resistant
to degradation.
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