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Abstract

The energy structure of multi‐layer core/shell semiconductor quantum dots (QDs) is
simulated and the optical absorption is described within the linear response theory. The
lattice‐mismatch strain field of the multi‐layer nanostructures of spherical symmetry is
modelled by a linear continuum elasticity treatment. The excitonic effect is estimated
by a configuration interaction approach. Multi‐layer core/shell QDs of II‐VI semicon‐
ductors with heterostructures of type I and II are discussed. Localization of the photo‐
excited carriers induced by coating explains the optical stability of these multi‐layer
nanostructures.

Keywords: strain, semiconductor, quantum dot, optical absorption

1. Introduction

Semiconductor quantum dots (QDs) are nanometre‐scale objects that are different to the usual
optical materials, have size‐tuneable and narrow fluorescence and broad absorption spectra.
The large interest for these materials comes from their technical applications and theoretical
openings. For example, the colloidal multi‐shell QDs have led to the development of high‐
efficiency solar cells [1] or laser applications [2], and probably the most important in the
immediate future, to molecular diagnostics and pathology [3]. At theoretical level, the study of
magnetism [4] or photon entanglement [5] is an example in which the theoretical studies emerge
in promising new properties of electronic devices for spintronics or computer microchips. The
main factors used in tuning the physical properties of QDs are the shape and size confinement,
and the lattice‐mismatch‐induced strain. ‘Giant’ core/multi‐shell of 18–19 monolayers (MLs)
shell thickness can be prepared with low cost by chemical synthesis [6, 7]. The theoretical
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predictions of electronic structures and optical  properties are important in the core/shell
quantum dots (CSQDs) engineering. Modelling of the lattice‐mismatch strain is a key factor in
obtaining an accurate physical description of CSQDs. Widely used for analysing the linear
elasticity of epitaxial‐strained heterointerfaces, the valence force field method (see, e.g. Ref. [8])
has some limitations as the predictions are dependent of a priori information regarding the
interface structure and surface passivation. There are several theoretical studies of multi‐
component nanocrystals, in which the role of the strain is considered by ab‐initio calculations [9–
11]. Structural limitations of these first‐principle calculations (e.g. band gap underestimation)
and also more important, the computational cost for larger QDs, make difficult comparison
between theoretical predictions and the experiment. The continuum elasticity approach in the
limits of homogeneous and isotropic materials has been shown to be in good agreement with
the valence force field models for semiconductor QDs of spherical shape and cubic symmetry
(see, e.g. Ref. [12]).

In this context, in this chapter, we discuss optical properties of CSQDs. In Section 2, we
introduce the theoretical modelling. In Section 2.1, we describe the lattice‐mismatch strain field
in core/multi‐shell nanostructures by a continuum elasticity approach. In Sections 2.2 and 2.3,
we describe the electronic structures and obtain the single‐particle states (SPSs) by an effective
two‐band model and by an eight‐band model within the k·p theory, respectively. In Section
2.4, we discuss the excitonic effect in QDs. In Section 2.5, the optical absorption coefficient is
obtained by taking into account the excitonic effect. In Section 3, we apply the theory presented
in the previous section to several types of semiconductor CSQDs with heterostructures of type
I and II. Conclusions are presented in Section 4.

2. Theoretical modelling of core/shell semiconductor quantum dots

The theoretical models introduced in this section combine knowledge from classical mechan‐
ics, solid state physics and quantum optics for description of elasticity, electronic structure and
optical spectra in CSQDs.

2.1. Strain field and the band lineup in the presence of the strain

In the elasticity theory, description of the strain field in finite‐domain elastic bodies is a difficult
problem. Elaborate solutions for such a problem are obtained in few particular cases for
Eshelby‐type inclusion of a finite elastic body (see Ref. [13]). In what follows, we introduce an
efficient simple method to obtain the strain field in concentric spherical domains of different
elastic parameters, which satisfies the necessary accuracy level for our problem. We start by
observing that for an elastic spherical core/shell structure, the displacement field, �, has radial
symmetry and consequently the field is irrotational. Within the continuum elasticity approach,
the equilibrium equation is grad ��� � = 0 [14]. To obtain the strain field, the linear stress‐strain
tensor (���− ���) relation is used. For a structure core/shell/shell (CSS QD) with radii �1 (for

the core), �2 (for core + middle shell) and R (for the total radius of core + middle shell + outer

shell), we consider the following boundary conditions: (a) continuous stress at the interfaces,
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(b) zero pressure outside nanostructure and (c) shrink‐fit induced by the lattice‐mismatch.
Transposed in algebraic equations, we have

A B B C
1 1 2 2( ) ( ), ( ) ( ),rr rr rr rrr r r rs s s s= = (1a)

C ( ) 0rr Rs = (1b)

( ) ( )1 1 1 1 2 2 2 2, ( ) ( ) ,A B B C
r r r ru r u r r u r u r re e- = - = (1c)

where �1 = (��− ��)/�� and �2 = (��− ��)/�� are relative lattice‐mismatches, and A, B and C
denote the core, middle and outer shell, respectively. In Eq. (1c), which makes connection
between the continuum elastic and the discrete crystalline approaches, ��, ��, �� represent the
lattice constants of the crystals. The solutions for the radial displacement in domain X (X = A, B,
C) should respect the above‐mentioned equilibrium equation, that in spherical coordinates�, �, � are of the form ur

X(�) = �1� + �2/r2 (with �1, �2 as constants). Then, using the spherical
coordinates, we derive the strain tensor components from their definition with respect to the
displacement. Then, we obtain the stress tensor ��� in each domain by applying, as mentioned
above, the linear stress‐strain tensor Hooke’s law, ��� = � 1 + � −1 ���+ � 1 − 2� −1������
(where E is the Young modulus and � is Poisson ratio). Finally, the constants �1, �2 for each
domain are found by solving Eqs. (1) and the strain tensor components emerge from their
definitions. The values of the hydrostatic strain, �ℎ�� = ���+ ���+ ��� for the case of similar
elastic parameters of the three materials, �� = �� = �� = �, �� = �� = �� are as follows:

�ℎ��� = � �1 1 − �13�−3 + �2 1 − �23�−3 , �ℎ��� = � −�1�13�−3+ �2 1 − �23�−3 , �ℎ��� = − ��1�13�−3+ �2�23�−3 , with � = 2(1 − 2�)(1 − �)−1. One can observe that in the limit of thick

outer shell, the outer shell hydrostatic strain vanishes, which is in accordance with the physics
anticipation. Complete expressions of the strain tensor components are presented in Ref. [15].
Our expressions for the strain tensor recover the results obtained in Ref. [16] for one shell or
those obtained in Ref. [17] for core embedded in an infinite matrix. The method we described
can be applied to spherical multi‐shell nanostructures and to cylindrical multi‐layer structures
as well.

The band offset is an important parameter in modelling the physical properties of semicon‐
ductor heterostructures. Simple relations are obtained for the band lineup in the presence of
the strain for a two‐band model within the effective mass approximation. Thus, the energy
values at the � point of the valence band (VB) and conduction band (CB) for direct band gap
semiconductors are given by the equation [18]:

, , , ,u
v c v c v c hydE E a e= + (2)
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where the unstrained (bulk) values are related by ��� = ���+ �� (with ��, the unstrained (bulk)

band gap), and ��(�) is the volume deformation potential (subscript v(c) stands for VB(CB)).

Within k·p theory, in a multi‐band approach, the kinetic and strain Hamiltonians are obtained
according to the point group the semiconductors belong. By using a perturbation theory or a
group theory‐based method (method of invariants), the expressions of the kinetic and strain
Hamiltonians are written for the desired number of bands. For example, based on the work of
Kane [19] and Bir and Pikus [20], expressions of the eight‐band kinetic and strain bulk
Hamiltonians, including the spin‐orbit interaction for zinc blende crystals, are obtained in Ref.
[21]. The multi‐band kinetic plus strain Hamiltonians are adapted to limited size structures by
adding a cut‐off potential (corresponding to a buffer shell), which allows the electron to leak
more or less into the environment, outside the structure.

2.2. Single‐particle states by two‐band model within the effective mass approach

The electron and hole SPSs are obtained by solving the Schrödinger equation for the envelope
wave function ��(�) = ��(�). The one‐band effective Hamiltonian is

2

( ) ( ) ( ),
2 ( )
p V r E
r

y y
m

é ù
+ =ê ú

ë û
r r (3)

where �(�) = �� is the photoexcited (electron or hole) carrier r‐dependent effective mass,�(�) = �� is the step confinement potential generated by the band lineup of the materials in the
presence of the strain, as described in Section 2.1, and � = �, �, � for core, middle shell outer shell,
respectively. The solution �(�) separates in a product of a radial function and spherical
harmonics ����(�) = � (�)� ���(�, �), and with � = �� �, ��(�) = ��(�) and ��2 = 2�� � − �� /ℏ2 for
the radial one‐particle Schrödinger equation, one obtains the spherical Bessel differential
equation:

2
2 2

2

( ) ( )2 ( 1) ( ) 0,l l
l

d v dv l l v
d d

r rr r r r
r r

é ù+ ± + =ë ûm (4)

where the upper sign corresponds to E > Vi and the lower to E < Vi. Solutions of Eq. (7) are
spherical Bessel functions ��(�), ��(�) (upper sign) or modified spherical Bessel functions��(�), ��(�) (lower sign). The radial wave function for the three regions, �, �, �, are linear

combinations of these functions as follows:

1 1 1

1 1 2 2 1 2

1 1 2 2 2

( ) ( ), 0

( ) ( ) ( ), ,

( ) ( ) ( ),

A l A
l l A
B l B l B
l l B l B
C l C l C
l l C l C

R r A f k r r r
R r B f k r B f k r r r r
R r C f k r C f k r r r R

ì = £ <
ï

= + £ <í
ï = + £ <î

(5)
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where �1� , �1, 2� , �1, 2�  are constants and �1�, 2��  are spherical Bessel functions with the argument

dependent of �� = ℏ−1 2�� � − ��  (� = �, �, �). The functions f are chosen according to the

resulting band lineup (with taken into account the strain). Imposing the physical conditions

of continuity, ���(�1) = ���(�1), ���(�2) = ���(�2) and ���(�) = 0, and conservation of the prob‐

ability current, ��−1 ����/�� � �1 = ��−1 ����/�� � �1 and ��−1 ����/�� � �2 = ��−1����/�� � �2, we obtain the transcendental equation valid for any relative position of the

band lineup for the three regions:

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 1 2 1 1 1 1 1 1 1 1

2 2 2 2 1 1 2 1 1 1 2 1

' ' '
,

' ' '

B C B A B A B
C l B l l A l l B l l

B C B A B A B
C l B l l A l l B l l

m f r m F f r m f r f r m f r f r
m f r m F f r m f r f r m f r f r

- -
=

- - (6)

where ��� = [�1�� ’(�2)�2�� (�) − ��1� (�) �2�� ’(�2)]/[�1�� (�2)�2�� (�) − �1�� (�) �2�� (�2)] and the prime

are used to denote the first radial derivative. From the condition of normalization∫0���2(�) �2 �� = 1 and the explicit form of functions f, we find �1� , �1, 2� , �1, 2�  and conse‐

quently the explicit analytical expressions for the normalized eigenfunctions. Explicitly
values of functions f are given in Ref. [15].

2.3. Single‐particle states by multi‐band model within the k·p approach

The expansion of the envelope functions in terms of plane waves (see, e.g. Refs. [22, 23]) is one
of the most used techniques within the k·p theory to obtain the energy structure of the
nanostructures. By this method, Schrödinger’s equation is solved by using Fourier transform
of a superlattice formed by periodic boxes containing the nanostructure that is analysed. To
avoid the artefacts induced by the artificial periodic boundary conditions imposed by the array
of boxes, which can affect the accuracy of the results especially when Coulomb and/or strain
field interactions are present, we consider a single nanostructure whose Hamiltonian is solved
in a localized basis set defined over the volume of the nanostructure. Regarding the inner (core/
shell interface) boundary conditions, we adopt the weak solution method (see, e.g. Lassen et
al. [24]) and integrate over the whole volume of nanostructure to obtain matrix elements
between basis states (formed by the products of envelope functions and zone‐centre Bloch
functions) for the Hamiltonian. This method is a convenient alternative to the method of
imposing continuity of the envelope function and probability current at the core/shell interface
to satisfy the boundary conditions. Details of computing the SPS energy structure by an eight‐
band model for CSQDs are given elsewhere [25].

2.4. Excitonic effect

To obtain an accurate description of the optical properties, in addition to the geometrical con‐
finement and strain, the excitonic effect should be considered. In order of their contribution to
the excitonic effect, the interactions that are commonly considered are as follows: the Cou‐
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lomb attractive interaction of the photoexcited electron‐hole pair, the polarization interaction
of the charges induced at the interfaces, the electron‐hole exchange interactions and the corre‐
lation interactions [26, 27]. The polarization interaction, according to calculus of Brus [28], is
about 3–5 times lower than the absolute value of Coulomb interaction and is smaller than the
nanostructure size for ZnO, CdS, GaAs and InSb. The electron‐hole exchange interaction is
smaller. For example, in spherical InAs QDs of radius 3 nm, it is of 2.093 meV comparatively
to the Coulomb interaction of 60.6 meV [26] and of order 0.1 meV in CdSe/CdS QD with thick
shell [27]. The correlation interaction is also of order 1–2 meV or smaller [29]. For the level of
accuracy of the two‐band model introduced in Section 2.1, the Coulomb electron‐hole interac‐
tion yields a reliable estimation of the excitonic effect. The muti‐band k·p method is more
accurate and, within this approach, calculus of all the above‐mentioned interactions is possi‐
ble at the desired accuracy.

Next, we limit discussion at modelling the excitonic effect by the Coulomb electron‐hole
interaction mediated by a homogenized dielectric constant (see below). We write the exciton

state α as a configuration interaction expansion, �(�) = ∑�, � = 1���(�)��+ℎ�+ 0 , with 0  the

ground state (filled VB) and ��+ (ℎ�+) as creation operator of the electron (hole) state���(�) = � ��+ 0  (��ℎ(�) = � ℎ�+ 0 ). The excitonic spinless QD Hamiltonian formed by the

kinetic part and Coulomb electron‐hole interaction in the second quantization is written as [30]

, , ,
,e h eh

D m m m m m m mnpq m n p q
m m m n p q

H E c c E h h V c h h c+ + + += + +å å å (7)

where the first and second term stand for electron and hole kinetic energy, and the third for
electron‐hole Coulomb interaction, respectively. According to Maxwell Garnett (MG) for‐
malism [31, 32] for spherical structures, the non‐local dielectric constant may be replaced by
a homogenized value, and will adopt this approach in our calculus. With the algebra of the
second quantization, one obtains the secular equation:

( )
, , , 1

0,e h eh
i j ik jl ijlk kl

i j k l
E E E V Cd d

=

é ù+ - + =ë ûå (8)

where ��, �, �, ��ℎ = − �2 4��0�� −1∬������ℎ���(��)*��ℎ(�ℎ)* ��− �ℎ −1��ℎ(�ℎ)���(��) are Cou‐

lomb matrix elements and �� is the homogenized screened relative dielectric constant. In the

concrete calculus of the Coulomb matrix elements, we used the series expansion of the Cou‐
lomb Green function in spherical harmonics

*
1

0

1 1 ˆ ˆ4 ( ) ( )
2 1

LL

Lm e Lm hL
L m Le h

r Y Y
L r

p
¥

<
+

= =- >

=
- +å å r r

r r (9)
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and the angular integrals separately factorize for electron and hole and they are computed
analytically by using Gaunt’s formula.

2.5. Optical absorption

In this section, we derive an expression of the absorption coefficient, which is valid in the
limit of low‐light irradiation power. We approximate the absorptive material as being
formed by QDs in contact and assume that each QD is an absorber of volume ���. At the

low‐light irradiation power, the assumption of a linear relation between the polarization
and the electric field is a common approximation. By treating the QD‐field interaction as a
perturbation, absorption coefficient expression can be obtained using either first‐order com‐
plex susceptibility or Fermi’s golden rule. Here, in the proof, we consider Fermi’s golden
rule as follows. For a monochromatic electromagnetic wave � = �0cos �� − �� , propagat‐

ing in z direction in a macroscopic non‐conducting media, the gradient of the energy densi‐

ty is (see, e.g. Ref. [33]) ��/�� = ��−1��/��. The loss of energy per time unit is the loss of

energy in a single QD that is, ��/�� = − ℏ����−1�, where � is the rate of change of the num‐

ber of photons. From the last two equations, one obtains ��/�� = − ℏ�����−1��−1. With the

energy density � = ���0�02/2, the intensity of the electromagnetic wave is (see Eqs. (7.13)

(7.14) in Ref. [34]) � = ���0/(���0)�02/2 ≈ ��0���02/(2�) = ��/�, where � = ���� ≅ �� (Eq.

(7.5) in Ref. [34]). Next, by combining the expressions of ��/��, the derivative ��/�� and the
Beer‐Lambert law, ��/�� = − ����, we obtain the single QD absorption coefficient.

2
0 0

2
QD

QDcn E V
wa

e
=

h R. (10)

Expression of the probability rate for absorption in the first order of approximation, �, can be
obtained following the standard textbook derivation of Fermi’s golden rule as

( )
2 2 20
2 2

,0

,
2 if if

i f

e E M E
m
p d w

w
= -å h

h
R (11)

where ��� = �� � ⋅ � ��  is the optical matrix element between the initial ��  and the final��  states, ��� = ℏ ��− �� , and δ is the Dirac function. To mimic the homogenous broadening

that takes into account the relaxation phenomena of the carriers, one replaces the Dirac function
by a Lorentzian of width �, and the single QD absorption coefficient valid for low tempera‐
tures becomes.
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2
2
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.if
QD

i fQD if

Me
cn m V E

g
a

e w g w
=

+ -
å

h
(12)

Eq. (12) can be applied to obtain the excitonic absorption by computing the optical matrix

element �0� = 0 � ⋅ � � � , where e is the polarization light unit vector. Thus, by writing

the transition linear momentum operator in the basis set 0 , � �  as � = ∑� 0 0∑� = 1� �� � � � � + ℎ . � . , one obtains

( ) ( ) ( )
0

, , 1 , 1 , 1
0 0 ,h e h e

ij k i j ij j v i c vc ij j i
i j k i j i j

M C c h C u u Ca a a
a y y y y+ +

= = =

= × = × = ×å å åe p e p e p (13)

where ��� = �� � �� ; the last equality is obtained by making use of the slow spatial varia‐

tion of the envelope wave functions over regions of the unit cell size and the orthonormality
of the Bloch cell wave functions. By introducing the Kane momentum matrix element,� = − �(ℏ/�0) � �� � = − �(ℏ/�0) �� �� �� = − �(ℏ/�0)����, with �� = 2�0 � 2/ℏ2 and

considering the polarization unit vector, e, parallel to the quantization axis, z, for example,
one obtains

( )
2

2 0
0

, 1
.

2
h eP

ij j i
i j

E mM C a
a y y

=

= å (14)

Then, expression of the single QD absorption coefficient from Eq. (12) becomes

( )

2

( )0
2 2

, 1
( ) ,e h

QD ij i j
i j

C
E

t

t t

a ga w y y
w w g=

=
- +

å å
h

(15)

where �0 = �2��/ 2���0�0��� . The multi‐shell character is brought into the excitonic optical

matrix element,

2
( )

0 , 1
,e h

ij i ji j
f C t

t y y
=

= å (16)
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by the domain dependence of the electron and hole single SPSs. The quantity expressed by
Eq. (15) is the exciton oscillator strength. For the exciton state at resonance, one obtains that
the absorption coefficient is proportional to the exciton oscillator strength. As the parameters
entering Eq. (15) characterizes a single QD, we name it single QD absorption coefficient.
Neglecting light scattering, a good approximation for QD of small size comparatively to the
light wavelength, we introduce a colloidal absorption coefficient for the measured absorption
coefficient in experiment:

( )21/3 2 2/3ln 1 4 1 ,QDR
sol QD QDc R c e aa -é ù= - - -ë û (17)

where ��� is the concentration of QDs in solution and ln is the natural logarithm function. The

model is based on a probabilistic hitting QD as a target and details of the derivation can be
found in Ref. [15]. For ���� < < 1 (that is QDs with radius smaller than approximately 10

nm) and ����1/3 < < 1 (that is for dilute solutions), we obtain ���� = 8�3������.

3. Application of type I and II semiconductor heterostructures

In this section, we apply the theory developed in Section 2 to heterostructures of type I and II
of direct band gap semiconductors. In accordance with our continuum model for strain, we
consider QD structures with thicker shells. On the other hand, as a two‐band model neglects
both VB‐CB and VB sub‐band mixing, we assess its validity in our modelling. As a first
requirement in neglecting VB‐CB mixing, the semiconductors should be of wide enough band
gap. Regarding neglecting of the VB sub‐band mixing, things are more complicated, and to
assess to what extent a two‐band model respects a specific accuracy, a more advanced theo‐
retical treatment is necessary. For this purpose, we compare the SPSs generated by the two‐
and eight‐band approaches for CSQDs of wide band gap semiconductors. For the modelling,
we consider ZnTe/ZnSe CSQD (a type II heterostructure), ZnTe/ZnSe/ZnS CSS QD (a type II
ZnS‐coated heterostructure) and CdSe/CdS/ZnS CSS QD (a type I ZnS‐coated heterostructure).

3.1. Comparison of two‐ and eight‐band approaches for wide band gap CSQDs

Before focusing discussion on quantum mechanics calculation of SPSs, we apply our method
of computing the strain in lattice‐mismatch heterostructures. The results obtained by solving
Eqs. (1) for the general case of different elastic parameters presented in Figure 1 for CdSe/
11CdS/ZnS (CSS QDI) and ZnTe/16ZnSe/ZnS (CSS QDII); the numbers before the chemical
symbols hold for the number of MLs and the core radii are of 2 nm and 2.2 nm, respectively.

The parameters we use are listed in Table 1.

Once the hydrostatic strain and the bulk band offset are known, we can obtain the band lineup
in the presence of the strain, by using Eq. (2). The bulk energy structure of the heterostructures
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(band offset) we discuss is schematically shown in Figure 2 for CdSe/CdS/ZnS and ZnTe/ZnSe/
ZnS (in what follows we take as zero reference the bulk VB edge of the core semiconductor).

Figure 1. Diagonal spherical tensor components, ���, ���, ��� for (a) CdSe/11CdS/ZnS; (b) ZnTe/16ZnSe/ZnS for

outer shell thickness of 3.3 nm.

ZnTe ZnSe CdSe CdS ZnS
a (Å) 6.08a 5.65a 6.05b 5.82b 5.40c

E (1010 N m‐2) 4.17a 4.51a 2.87d 3.26d 5.55c� 0.363a 0.376a 0.408d 0.410d 0.384c���� (eV) 2.25 e 2.69 e 1.74e 2.49e 3.61 e�� (eV) ‐5.34 e ‐6.07 e ‐6.00 e ‐6.42 e ‐6.6 e�� (eV) 0.79f 1.65f 0.9b 0.4b 2.31f�� (eV) ‐5.83f ‐4.17f ‐2.00b ‐2.54b ‐4.09f�1 3.74g 3.77g 3.33h 4.11d 2.54g�2 1.07g 1.24g 1.11h 0.77d 0.75g�3 1.64g 1.67g 1.11h 1.53d 1.09g

��ℎi
0.152 0.148 0.18 0.15 0.225�ℎℎi
1.092 1.292 0.90 0.60 1.582��� 0.20j 0.21j 0.15k 0.22k 0.34l�m 7.4 9.1 10 8.9 9

aRef. [35].
bRef. [36].
cRef. [37].
dRef. [38].
eRef. [39].
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fRef. [40].
gRef. [41].
hRef. [42].

iCalculated with �ℎℎ/�ℎ = �0�1−1 1 ± 6�3+ 4�2 / 5�1 −1 from Ref. [43].
jRef. [44].
kRef. [45].
lRef. [46].
mRef. [47].
For 1 ML of ZnSe, we considered the thickness of 0.33 nm [48], and for 1 ML of ZnS, we approximated it as 0.33 nm
also.

Table 1. Material parameters used in the work

Figure 2. Schematic band lineups in CSS QDs for (a) CdSe/CdS/ZnS; (b) for ZnTe/ZnSe/ZnS heterostructures.

Figure 3. Energy of the first four electron (green colour) and hole (red colour) SPSs in ZnTe/ZnSe CSQDs of core radius
2.2 nm and variable total radius R in a two‐band model. Continuum lines with up (down) triangle symbols show the
band lineup in presence of lattice‐mismatch strain of electron (hole) states for ZnTe (orange colour) and ZnSe (blue
colour). The inset is for the lineup guidance. Zero reference is the bulk ZnTe VB edge.
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Next, we discuss the SPSs obtained for ZnTe/ZnSe CSQDs by the two‐band model introduced
in Section 2. After calculus of the hydrostatic strain (by the method we mentioned above), we
calculate the band lineup in the presence of the strain. For this, the bulk band offset assumed by
Eq. (2) is take from Ref. [39]. To obtain the SPS structures, we take the version of Eqs. (5) and (6)
for core/shell structure (see, for example, Ref. [16]). The eigenvalues of several electron and hole
SPSs are presented in Figure 3. For a core radius of 2.2 nm, beginning with shell thicker than 3.1
nm, the lowest electron states start to be located in the shell while the highest hole states are
practically insensitive to the shell thickness and located in the core. Our calculus shows that the
first two or three (for shell thinner than 3.1 nm) hole SPSs are of heavy hole type.

To get a more complete image, in Figure 4, the probability density (PD) ����(�) 2 is presented
for a shell thickness of 4.3 nm. The SPSs energetically predicted location by the calculus of
the eigenvalues is confirmed (checked) by the geometrical location. The degeneracy of the
states is dictated by the angular momentum quantum number L and the PD shape by the
values of n, L and |m| (which results from the ���(�, �) dependence of the state).

Figure 4. Two‐band electron (green colour) and hole (red colour) SPS probability density 0.75 × max( ����(�) 2)
for ZnTe/ZnSe with core radius 2.2 nm and shell thickness 4.3 nm. The quantum numbers shown in the parentheses
are, in order, n, L and m.

For comparison, we make several remarks on the SPS structure we obtained (see Ref. [25]) by
the k·p method. According to the irreducible representations of Td point group, the maximum
value of degeneracy is four. Absent in the two‐band model, the time‐reversal symmetry is
present in the eight‐band model, and all SPSs are at least two‐fold degenerate (Kramers
degeneracy). The cubic symmetry of the zinc blende structures can also be observed in the PD
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shape. The shape of the PD, except the mentioned cubic symmetry, is similar in the two
approaches. To have a more complete image of the density of states in the two approaches, we
collect and compare the eigenvalue for CSQDs of different shell thicknesses. One obtains that
the density of states is larger in the eight‐band model, and for these wide band semiconductors,
this is mainly caused by the VB sub‐band mixing. However, when the shell thickness increase,
the CB SPSs become denser and the discrepancy decreases. Consistently, in both approaches,
one obtains the red shift of the SPS fundamental inter‐band transition with the shell thickness.
The conclusion of the comparison is that if only several excited states are sufficient to be taken
into account in modelling, then CSQDs with thicker shells and larger cores can be approxi‐
mately characterized by a two‐band model. Generally, the VB SPSs are a mixture of heavy,
light and split‐off hole states. The two‐band calculus shows, as expected, that the close to the
VB edge, the SPSs are heavy hole state type, and this is another approximation that can be
used in a two‐band modelling of this type of CSQDs. On another hand, in case higher excited
states are necessary in modelling, then a two‐band model becomes inadequate. We can
compare our two‐band model prediction with the experimental measurement of the funda‐
mental absorption for this type of CSQDs with shell thickness of 5 ML. Thus, for core radius
of 2.2 nm and total radius of 3.85 nm (corresponding approximately to 5ML ZnSe shell
thickness), we obtain a transition of 517 nm (2.397 eV) comparatively to approximately 550
nm (2.254 eV) reported in Ref. [49]. Energy overestimation by our prediction is mainly due to
neglecting of the excitonic effect. If we estimate the excitonic effect (binding energy) by an
attractive interaction of 0.13 eV, then our prediction becomes 547 nm, close to the experiment.
In the next section, we obtain an estimation of the binding energy from the calculus of the
Coulomb electron‐hole attraction.

3.2. Excitonic effect and optical absorption

In this section, we evaluate the excitonic effect for CSS QDI and CSS QDII with thick outer
shell. First, following the model from the previous section, by using Eqs. (1), (2), (5) and (6),
we obtain the SPS structure. In the calculations, for the both nanostructure types, we find
that the first four VB SPS states are heavy hole states and the fifth is the first light hole. Since
the density of states is higher for heavy hole states, according to discussion from the previ‐
ous section, we can appreciate that a two‐level approach is at least satisfactory if only the
first several hole levels are taken into account in the modelling. The characteristics of the
SPS structure are as follows. The red shift of the fundamental inter‐band transition with the
middle shell thickness is found. The optical stability effect of the outer shell as reported by
experiment [7, 49] is explained by the slight variation of the SPS energy with the ZnS shell
thickness. Both electron and hole are located in the core for CSS QDI while for CSS QDII,
the hole is located in the core and the electron in the shell, revealing the type I and type II
character of the heterostructures, respectively. These observations are shown in Figure 5 (re‐
produced from Ref. [15]). The PDs for the SPSs can be seen in Ref. [15]. With the SPS struc‐
ture obtained, we estimate the exciton binding energy (or in an equivalent formulation, the
fundamental excitonic absorption (FEA)) by computing the Coulomb electron‐hole attrac‐
tive interaction by a configuration interaction method as introduced in Section 2.4. With the
first four energy levels we consider, we form for both modelled nanostructures the set of
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configurations as follows. The SPSs have the quantum numbers (n, L) = (1, 0), (2, 1), (3, 2)
and (4, 3) for electron and (4, 0) for hole, and each state is 2L+1 degenerated. Then, we build
the configurations by replacing one from the set of (1 + 3 + 5 + 1) VB states with one of the (1
+ 3 + 5 + 7) CB states, and obtain a total of 160 configurations.

Figure 5. Energy of the first four electron (green colour) and hole (red colour) SPSs in (a) CSS QDI; (b) CSS QDII of
total radius R. Continuum lines with up (down) triangle symbols show the band lineup in the presence of lattice‐mis‐
match strain of electron (hole) states for ZnTe (blue colour), ZnSe (orange colour), ZnS (violet colour) in figure (a) and
for CdSe (blue colour), CdS (orange colour), ZnS (violet colour) in figure (b). The insets are for the lineup guidance.
Zero reference is core VB edge.

In Figure 6 (reproduced from Ref. [15]), we show the energy value of FEA, �FEA, the single QD

absorption coefficient for the corresponding FEA (obtained by Eq. (15)), ����(�) and the

colloidal absorption coefficient for the corresponding FEA (obtained by Eq. (17)) ����(�); the

argument x represents the number of ZnS‐coating MLs. For the Kane energy, which is a
necessary ingredient, we estimate �� = 20.4eV for CSS QDI and �� = 19.1eV for CSS QDII from

Ref. [36]. Another necessary parameter is the CdS ML thickness, which we take as 0.4 nm, in
accord with Ref. [27]. For Figure 6(a), first, we setup the screened dielectric constant that is
used to obtain the Coulomb matrix elements. Thus, we fit the experimental EFEA of 620 nm from
experiment [7] for CdSe/19CdS (CSQD with core radius of 2 nm and CdS shell thickness of 19
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ML). Then, we analyse the effect of the ZnS coating and obtain the following results. EFEA is
slightly blue shifted with ZnS thickness and asymptotically blue shifted with the ZnS over‐
coating. Thus, a relative weak change of EFEA with the ZnS overcoating as reported by the
experiment [7] is obtained. This behaviour is primarily the result of the lattice‐mismatch strain
and secondly of the excitonic effect. ����(�) obtained is asymptotically decreasing with ZnS

coating. On another hand, the value obtained by the experiment, αsol(x), is weakly changed by
ZnS coating for 100 μM concentration of the colloidal QD solution. This is in agreement with
the reported optical stability of such overcoated QDs [7] and with the slow variation of SPSs
mentioned above. Also, from Eq. (15) we obtain that for 0 �� transition corresponding to

FEA, �0�� is very slightly varying with the ZnS coating. In a similar manner, we obtained

Figure 6(b) as follows. First, to set‐up the screened dielectric constant, we fit the experimental
EFEA for ZnTe/6ZnSe (CSQD with core radius of 2.2 nm and ZnSe shell thickness of 6ML) of
570 nm from experiment [49]. Then, we analyse the effect of the ZnS coating and obtain the
following results.�FEA is weakly blue shifted with the ZnS overcoating as reported by the

experiment [49]. Differently from the CSS QDI, the single QD absorption coefficient is de‐
creasing by one order of magnitude with ZnS coating. This is the result of the orbitals overlap
decreasing with the ZnS coating, the electron is more pronouncedly shifted to the outer shell.
We obtain that ���� also strongly decreases with the ZnS coating but as in the type I case, it is

almost constant with the ZnS overcoating. This dependence can be related to the protecting
effect of the ZnS overcoating reported by experiment [49]. From Eq. (15), we obtain �0��
decreases about five times by ZnS coating and is weakly sensitive with the ZnSovercoating.

Figure 6. FEA (black circle and red‐bordered label for the energy expressed in units of nm), ���� (blue label, units of10�m−1), ����  (green, bordered label, units of 0.01cm‐1) for (a) CdSe/11CdS/xZnS QD; (b) ZnTe/6ZnSe/xZnS QD.���� is obtained for 100 μM concentration of the colloidal QD solution.
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Regarding the location of the photoexcited charges, we introduce the radial probability density��(��)(�) = ∑�, � ���(��) 2�2∫ ���(�) 2��, where � = �, ℎ for electron and hole, respectively.

One observes that ∫0���(��)(�) �� = 1 since ∑�, � ���(��) 2 = 1 from the orthonormalization

condition. The radius expectation value of the photoexcited electron or hole is obtained with��(��) = ∑�, � ���(��) 2 ��� � ��� . The results are remarkable by revealing the ZnS coating effect.

Thus, coating is not significant for CSS QDI, the electron and hole remain located in the core
not close to the core/shell interface. On the other hand, for CSS QDII, the hole radius expect‐
ation value is practically not affected by the ZnS coating and the hole remains close to the centre
but the ZnS coating has a strong effect on the electron localization, namely, the electron moves
to the middle of the ZnSe shell. Numerical details are given in (Ref. [15]). Thus, according to
our modelling in both CSS QDI and CSS QDII, the electron and hole are not confined in the
proximity of the interfaces and surface. Consequently, QD coating induces larger photoexcited
carrier‐trap (interface defects and impurities close to the core/shell interface or to the outer‐
shell‐environment interface) separation. This might have an important effect regarding the
competition between recombination and trapping. Thus, one of the interesting effects of the
QD coating is the blinking suppression observed, for example, in ultra‐thick‐shell CdSe/CdS
[50]. According to our results, the model assuming a tunnelling barrier between the photoex‐
cited carriers and the trap states, similar to that proposed in Ref. [51] can simplely explain the
non‐blinking as follows. Coating induces increasing of the barrier thickness and consequently
a lowering of the trapping probability. Then, under a continuous photoexcitation, (stimulated)
recombination is more probable than the trapping and a continuous luminescence (non‐
blinking) is observed from coated QDs. Given the low trapping probability heuristically
concluded by our modelling, for the non‐bliking in coated QDs, we rather advocate the barrier
model than the model of Auger recombination of the photoexcited carriers on the trapping
states as proposed in Ref. [50].

4. Conclusions

We described optical properties of CSQDs of type I and II with thick shells by a two‐band
model, which first is justified by a comparison with an eight‐band k·p model. To obtain the
lattice‐mismatch strain effect on the energy structure, we developed a continuum elasticity
model for isotropic, homogeneous and finite size multi‐layer structures. When implemented
in the specific quantum mechanics of the multi‐shell semiconductor nanocrystals, the strain
model we introduce is able to predict the main characteristics of fundamental absorption in
thick shell CSQDs. By taking into account the excitonic effect, we can explain the optical
stability of the overcoated core/shell QDs. According to our estimations, the measured
absorption coefficient in colloidal QD solutions is practically not sensitive to the overcoating.
The most important finding regarding the coating effect is related to the photoexcited carrier
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localization. According to our predictions, the photoexcited carriers are moved away from the
surface and interfaces by overcoating. We believe that this work is an argument for improving
the modelling. An eight‐band treatment able to describe the optical absorption of ZnTe/ZnSe
CSQDs which considers high excited states is already done (see Ref. [25]). In this context, the
analysis of the multi‐exciton generation, electron‐phonon interaction and relaxation dynamics
are promising successful directions of research in finding responses to the complex optical
processes that take place in multi‐layer QDs.
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