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Abstract

We present an analysis of the discontinuous Galerkin (DG) finite element method for
nonlinear ordinary differential equations (ODEs). We prove that the DG solution is $(p
+ 1) $th order convergent in the $L^2$-norm, when the space of piecewise polynomials
of degree $p$ is used. A $ (2p+1) $th order superconvergence rate of the DG approxi-
mation at the downwind point of each element is obtained under quasi-uniform meshes.
Moreover, we prove that the DG solution is superconvergent with order $p+2$ to a
particular projection of the exact solution. The superconvergence results are used to
show that the leading term of the DG error is proportional to the $ (p + 1) $-degree right
Radau polynomial. These results allow us to develop a residual-based a posteriori error
estimator which is computationally simple, efficient,  and asymptotically exact.  The
proposed a posteriori error estimator is proved to converge to the actual error in the
$L^2$-norm with order $p+2$. Computational results indicate that the theoretical orders
of convergence are optimal. Finally, a local adaptive mesh refinement procedure that
makes use of our local a posteriori error estimate is also presented. Several numerical
examples  are  provided  to  illustrate  the  global  superconvergence  results  and  the
convergence of the proposed estimator under mesh refinement.

Keywords: discontinuous Galerkin finite element method, ordinary differential equa-
tions, a priori error estimates, superconvergence, a posteriori error estimates, adaptive
mesh refinement

1. Introduction

In this chapter, we introduce and analyze the discontinuous Galerkin (DG) method applied to
the following first-order initial-value problem (IVP)
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0= ( , ), [0, ], (0) = ,du f t u t T u u
dt (1)

where � :[0, �] ℝ�, � 0 ∈ ℝ�, and � :[0, �] × ℝ� ℝ�. We assume that the solution exists and

is unique and we would like to approximate it using a discontinuous piecewise polynomial
space. According to the ordinary differential equation (ODE) theory, the condition� ∈ �1([0, �] × ℝ�) is sufficient to guarantee the existence and uniqueness of the solution to (1).

We note that a general �th-order IVP of the form �(�) = �(�, �, �′, …, �(� − 1)) with initial

conditions �(0) = �0, �′(0) = �1, …, �(� − 1)(0) = �� − 1 can be converted into a system of

equations in the form (1), where � = [�, �′, …, �(� − 1)]�, � (�, � ) = [�2, �3, …, ��, �(�, �1, …, ��)]�,
and � 0 = [�0, �1, …, �� − 1]�.
The high-order DG method considered here is a class of finite element methods (FEMs) using
completely discontinuous piecewise polynomials for the numerical solution and the test
functions. The DG method was first designed as an effective numerical method for solving
hyperbolic conservation laws, which may have discontinuous solutions. Here, we will discuss
the algorithm formulation, stability analysis, and error estimates for the DG method solving
nonlinear ODEs. DG method combines the best proprieties of the classical continuous finite
element and finite volume methods such as consistency, flexibility, stability, conservation of
local physical quantities, robustness, and compactness. Recently, DG methods become highly
attractive and popular, mainly because these methods are high-order accurate, nonlinear
stable, highly parallelizable, easy to handle complicated geometries and boundary conditions,
and capable to capture discontinuities without spurious oscillations. The original DG finite
element method (FEM) was introduced in 1973 by Reed and Hill [1] for solving steady-state
first-order linear hyperbolic problems. It provides an effective means of solving hyperbolic
problems on unstructured meshes in a parallel computing environment. The discontinuous
basis can capture shock waves and other discontinuities with accuracy [2, 3]. The DG method
can easily handle adaptivity strategies since the ℎ refinement (mesh refinement and coarsen-
ing) and the � refinement (method order variation) can be done without taking into account
the continuity restrictions typical of conforming FEMs. Moreover, the degree of the approxi-
mating polynomial can be easily changed from one element to the other [3]. Adaptivity is of
particular importance in nonlinear hyperbolic problems given the complexity of the structure
of the discontinuities and geometries involved. Due to local structure of DG methods, physical
quantities such as mass, momentum, and energy are conserved locally through DG schemes.
This property is very important for flow and transport problems. Furthermore, the DG method
is highly parallelizable [4, 5]. Because of these nice features, the DG method has been analyzed
and extended to a wide range of applications. In particular, DG methods have been used to
solve ODEs [6–9], hyperbolic [5, 6, 10–19] and diffusion and convection diffusion [20–23] partial
differential equations (PDEs), to mention a few. For transient problems, Cockburn and Shu [17]
introduced and developed the so-called Runge-Kutta discontinuous Galerkin (RKDG)
methods. These numerical methods use DG discretizations in space and combine it with an
explicit Runge-Kutta time-marching algorithm. The proceedings of Cockburn et al. [24] and
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Shu [25] contain a more complete and current survey of the DG method and its applications.
Despite the attractive advantages mentioned above, DG methods have some drawbacks.
Unlike the continuous FEMs, DG methods produce dense and ill-conditioned matrices
increasing with the order of polynomial degree[23].

Related theoretical results in the literature including superconvergence results and error
estimates of the DG methods for ODEs are given in [7–9, 26–28]. In 1974, LaSaint and Raviart
[9] presented the first error analysis of the DG method for the initial-value problem (1). They
showed that the DG method is equivalent to an implicit Runge-Kutta method and proved a
rate of convergence of (hp) for general triangulations and of (hp+1) for Cartesian grids. Delfour
et al. [7] investigated a class of Galerkin methods which lead to a family of one-step schemes
generating approximations up to order 2� + 2 for the solution of an ODE, when polynomials
of degree � are used. In their proposed method, the numerical solution �ℎ at the discontinuity

point �� is defined as an average across the jump, i.e., ���ℎ(��−) + (1 − ��)�ℎ(��+). By choosing

special values of ��, one can obtain the original DG scheme of LeSaint and Raviart [9] and

Euler's explicit, improved, and implicit schemes. Delfour and Dubeau [27] introduced a family
of discontinuous piecewise polynomial approximation schemes. They presented a more
general framework of one-step methods such as implicit Runge-Kutta and Crank-Nicholson
schemes, multistep methods such as Adams-Bashforth and Adams-Moulton schemes, and
hybrid methods. Later, Johnson [8] proved new optimal a priori error estimates for a class of
implicit one-step methods for stiff ODEs obtained by using the discontinuous Galerkin method
with piecewise polynomials of degree zero and one. Johnson and Pitkaränta [29] proved a rate
of convergence of (hp+1/2) for general triangulations and Peterson [19] confirmed this rate to be
optimal. Richter [30] obtained the optimal rate of convergence (hp+1) for some structured two-
dimensional non-Cartesian grids. We also would like to mention the work of Estep [28], where
the author outlined a rigorous theory of global error control for the approximation of the IVP
(1). In [6], Adjerid et al. showed that the DG solution of one-dimensional hyperbolic problems
exhibit an (hp+2) superconvergence rate at the roots of the right Radau polynomial of degree� + 1. Furthermore, they obtained a (2� + 1)th order superconvergence rate of the DG approx-
imation at the downwind point of each element. They performed a local error analysis and
showed that the local error on each element is proportional to a Radau polynomial. They
further constructed implicit residual-based a posteriori error estimates but they did not prove
their asymptotic exactness. In 2010, Deng and Xiong [31] investigated a DG method with
interpolated coefficients for the IVP (1). They proved pointwise superconvergence results at
Radau points. More recently, the author [12, 15, 26, 32–39] investigated the global convergence
of the several residual-based a posteriori DG and local DG (LDG) error estimates for a variety
of linear and nonlinear problems.

This chapter is organized as follows: In Section 2, we present the discrete DG method for the
classical nonlinear initial-value problem. In Section 3, we present a detailed proof of the optimal
a priori error estimate of the DG scheme. We state and prove our main superconvergence results
in Section 4. In Section 5, we present the a posteriori error estimation procedure and prove that
these error estimates converge to the true errors under mesh refinement. In Section 6, we
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propose an adaptive algorithm based on the local a posteriori error estimates. In Section 7, we
present several numerical examples to validate our theoretical results. We conclude and
discuss our results in Section 8.

2. The DG scheme for nonlinear IVPs

The error analysis of nonlinear scalar and vector initial-value problems (IVPs) having smooth
solutions is similar. For this, we restrict our theoretical discussion to the following nonlinear
initial-value problem (IVP)

′ ∈
0

= ( , ), [0, ], (0) = ,u f t u t T u u (2)

where �(�, �): [0,�] × ℝ ℝ is a sufficiently smooth function with respect to the variables � and�. More precisely, we assume that ��(�, �) ≤ �1 on the set � = [0,�] × ℝ ⊂ ℝ2, where �1 is a
positive constant. We note that the assumption ��(�, �) ≤ �1 is sufficient to ensure that �(�, �)
satisfies a Lipschitz condition in � on the convex set � with Lipschitz constant �1

− ≤ − ∈
1

| ( , ) ( , )| | |, for any (t,u) and (t,v) D.f t u f t v M u v (3)

Next, we introduce the DG method for the model problem (2). Let 0 = �0 < �1 < ⋯ < �� = �
be a partition of the interval � = [0,�]. We denote the mesh by �� = [�� − 1, ��], � = 1,…,�. We
denote the length of �� by ℎ� = ��− �� − 1. We also denote ℎ = max1 ≤ � ≤ �ℎ� andℎmin = min1 ≤ � ≤ �ℎ� as the length of the largest and smallest subinterval, respectively. Here,

we consider regular meshes, that is, ℎℎmin ≤ �, where � ≥ 1 is a constant (independent of ℎ)

during mesh refinement. If � = 1, then the mesh is uniformly distributed. In this case, the
nodes and mesh size are defined by �� = � ℎ, � = 0, 1, …, �, ℎ = �/� .
Throughout this work, we define �(��−)  and �(��+)  to be the left  limit and the right limit

of  the  function  �  at  the  discontinuity  point  ��,  i.e.,  �(��−) = lim� 0−�(��+ �)  and

�(��+) = lim� 0+�(��+ �).  To simplify the notation,  we denote by [�](��) = �(��+) − �(��−)  the

jump  of  �  at  the  point  ��.
If we multiply (2) by an arbitrary test function �, integrate over the interval ��, and integrate
by parts, we get the DG weak formulation
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- -
¢ + - +ò ò 1 1

( , ) ( ) ( ) ( ) ( ) = 0.
j j j jI I

j j

v udt f t u vdt u t v t u t v t (4)

We denote by �ℎ� the finite element space of polynomials of degree at most � in each interval��, i.e.,
∈ K= { : | ( ), = 1, , },p p

h I j
j

V v v P I j N

where ��(��) denotes the set of all polynomials of degree no more than � on ��. We would like
to emphasize that polynomials in �ℎ� are allowed to have discontinuities at the nodes ��.
Replacing the exact solution �(�) by a piecewise polynomial �ℎ(�) ∈ �ℎ� and choosing � ∈ �ℎ�,

we obtain the DG scheme: Find �ℎ ∈ �ℎ� such that ∀ � ∈ �ℎ� and � = 1,…,�,

1 1ˆ ˆ( , ) ( ) ( ) ( ) ( ) = 0,h h h j j h j jI Ij j
v u dt f t u vdt u t v t u t v t- +

- -¢ + - +ò ò (5a)

where �ℎ(��) is the so-called numerical flux which is nothing but the discrete approximation� at the node � = ��. We remark that �ℎ is not necessarily continuous at the nodes.

To complete the definition of the DG scheme, we still need to define �ℎ on the boundaries of��. Since for IVPs, information travel from the past into the future, it is reasonable to take �ℎ
as the classical upwind flux

0 0ˆ ˆ( ) = , and ( ) = ( ), = 1, , .h h j h ju t u u t u t j N- K (5b)

2.1. Implementation

The DG solution �ℎ(�) can be efficiently obtained in the following order: first, we compute �ℎ(�)
in the first element �1 using (5a) and (5b) with � = 1 since �ℎ(�0−) = �0 is known. Then, we can
find �ℎ(�) in �2 since �ℎ(�) in �1 is already available. We can repeat the same process to compute�ℎ(�) in �3, …, ��. More specifically, �ℎ(�) can be obtained locally for each �� using the following
two steps: (i) express �ℎ(�) as a linear combination of orthogonal basis ��, �(�), � = 0,…, �, where��, � is the �th degree Legendre polynomial on ��, i.e., �ℎ(�) = ∑� = 0� ��, ���, �(�), � ∈ ��, where
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��, �(�) � = 0� = � is a local basis of ��(��), and (ii) choose the test functions � = ��, �(�), � = 0,…, �.

Thus, on each ��, we get a (� + 1) × (� + 1) system of nonlinear algebraic equations, which can

be solved for the unknown coefficients �0,�, …, ��, � using, e.g., Newton's method for nonlinear

systems. Once we obtain the DG solution on all elements ��, � = 1,…,�, we get the DG solution

which is a piecewise discontinuous polynomial of degree ≤ �. We refer to [7–9] for more details
about DG methods for ODEs as well as their properties and applications.

2.2. Linear stability for the DG method

Let us now establish a stability result for the DG method applied to the linear case, i.e.,�(�, �) = ��. Taking � = �ℎ in the discrete weak formulation (5a), we get

λ
− +

− − +
− −+ − ∫

2 2

1 2

1 1

( ) ( )
( ) ( ) = ,

2 2

h j h j

h j h j hI
j

u t u t
u t u t u dt

which is equivalent to

( ) λ
− −

− − +
− −− + − ∫

2 2
2

1 2

1 1

( ) ( ) 1
( ) ( ) = .

2 2 2

h j h j

h j h j hI
j

u t u t
u t u t u dt

Summing over all elements, we get the equality

( ) λ
−

− +
− − Ω

− + −∑ ∫
2 2

2
20

1 1
=1

( ) 1
( ) ( ) = .

2 2 2

N
h

h j h j h
j

u T u
u t u t u dt

Consequently, 
�ℎ2(�−)2 − �022 ≤ �∫��ℎ2��, which gives the stability result �ℎ2(�−) ≤ �02 provided

that � ≤ 0.

3. A priori error analysis

We  begin  by  defining  some  norms  that  will  be  used  throughout  this  work.  We

define  the  �2  inner  product  of  two  integrable  functions,  �  and  �,  on  the  interval�� = [�� − 1, ��]  as  (�, �)�� =∫���(�)�(�)��.  Denote  � 0,�� = (�, �)��1/2  to  be  the  standard

�2  norm  of  �  on  ��.  Moreover,  the  standard  �∞  norm  of  �  on  ��  is  defined  by
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� ∞, �� = sup� ∈ �� �(�) .  Let  ��(��),  where  � = 0, 1, …,  denote  the  standard  Sobolev  space

of  square  integrable  functions  on  ��  with  all  derivatives  �(�), � = 0, 1, …, �  being  square

integrable  on  ��,  i.e.,  ��(��) = � :∫�� |�(�)(�) 2�� < ∞, 0 ≤ � ≤ � ,  and  equipped  with

the  norm  � �, �� = ∑� = 0� �(�) 0,��2 1/2 .  The  ��(��)  seminorm  of  a  function  �  on

��  is  given by � �, �� = �(�) 0,��.  We also define the norms on the whole computational

domain  �  as  follows:

Ω ∞ Ω ∞ Ω≤ ≤

   
= = =      
   
∑ ∑

1/2 1/ 2

2 2

0, 0, , , , ,
1=1 =1

, , .max

N N

I I s s I
j Nj j jj j

u u u u u u

The seminorm on the whole computational domain � is defined as � �, � = ∑� = 1� � �, ��2 1/2 .
We note that if � ∈ ��(�), � = 1, 2, …, then the norm � �, � on the whole computational domain

is the standard Sobolev norm ∑� = 0� �(�) 0,�2 1/2 . For convenience, we use � �� and �
to denote � 0,�� and � 0,�, respectively.

For � ≥ 1, we consider two special projection operators, �ℎ±, which are defined as follows: For

a smooth function �, the restrictions of �ℎ+� and �ℎ−� to �� are polynomials in ��(��) satisfying

1( ) = 0, ( ), and ( )( ) = 0,p
h j h jI j
P u u vdt v P I P u u t- - - -- " Î -ò (6a)

1
1( ) = 0, ( ), and ( )( ) = 0.p

h j h jI j
P u u vdt v P I P u u t+ - + +

-- " Î -ò (6b)

These two particular Gauss-Radau projections are very important in the proofs of optimal �2
error estimates and superconvergence results. We note that the special projections �ℎ±� are

mainly utilized to eliminate the jump terms at the cell boundaries in the error estimate in order
to achieve the optimal order of accuracy [22].
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For the projections mentioned above, it is easy to show that for any � ∈ �� + 1(��) with� = 1,…,�, there exists a constant � independent of the mesh size ℎ such that (see, e.g., [40])

+± ±

+
′- ≤ - ≤1

1, ,
, ( ) .

p p

h j h jp I p II Ij jj j

u P u Ch u u P u Ch u (7)

Moreover, we recall the inverse properties of the finite element space �ℎ� that will be used in

our error analysis: For any �ℎ ∈ �ℎ�, there exists a positive constant � independent of �ℎ andℎ, such that, ∀ � = 1,…,�,

( ) 1/ 2
1|| || , 1, ( ) ( ) || || .- + - -
-≤ ³ + ≤k k

h j h I h j h j j h II j jj
v Ch v k v t v t Ch v (8)

From now on, the notation �, �1, �2, etc. will be used to denote generic positive constants

independent of ℎ, but may depend upon the exact solution of (1) and its derivatives. They also
may have different values at different places.

Throughout this work, let us denote � = � − �ℎ to be the error between the exact solution of (2)

and the DG solution defined in (5a) and (5b), � = � − �ℎ−� to be the projection error, and� = �ℎ−� − �ℎ to be the error between the projection of the exact solution �ℎ−� and the DG

solution �ℎ. We observe that the actual error can be written as� = (� − �ℎ−�) + (�ℎ−� − �ℎ) = � + � .
Now, we are ready to prove our optimal error estimates for � in the �2 and �1 norms.

Theorem 3.1. Suppose that the exact solution of (2) is sufficiently smooth with bounded derivatives,

i.e., � � + 1,� is bounded. We also assume that ��(�, �) ≤ �1 on � = [0,�] × ℝ. Let � ≥ 0 and �ℎ
be the DG solution of (5a) and (5b), then, for sufficiently small ℎ, there exists a positive constant �
independent of ℎ such that,

+≤ 1
,

pe C h (9)

Ω
′ ≤ ≤∑ 2 2

1,
=1

, .
N

p p

I
jj

e Ch e Ch (10)
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Proof. We first need to derive some error equations which will be used repeatedly throughout

this and the next sections. Subtracting (5a) from (4) with � ∈ �ℎ� and using the numerical flux

(5b), we obtain the following error equation: ∀ � ∈ �ℎ�,

− + − −
− −

′ + − + −∫ ∫ 1 1
( ( , ) ( , )) ( ) ( ) ( ) ( ) = 0.

h j j j jI I
j j

v edt f t u f t u vdt e t v t e t v t (11)

By integration by parts, we get

( ) +
− −

′ − − +∫ ∫ 1 1
( , ) ( , ) [ ]( ) ( ) = 0.

h j jI I
j j

e vdt f t u f t u vdt e t v t (12)

Applying Taylor's series with integral remainder in the variable � and using the relation� − �ℎ = �, we write

θ θ θ− − = + − = −∫ ∫
1 1

0 0
( , ) ( , ) = ( ) = , where ( , ( )) ( , ) .

h h u h u
f t u f t u u u e f t u s u u ds f t u se ds (13)

Substituting (13) into (12), we arrive at

( )θ +
− −

′ − + ∀ ∈∫ 1 1
[ ]( ) ( ) = 0, .p

j j hI
j

e e vdt e t v t v V (14)

To simplify the notation, we introduce the bilinear operator ��(�; �) as

θ +
− −

′ − +∫
1 1

( ; ) = ( ) [ ]( ) ( ).
j j jI

j

e V e e Vdt e t V t (15)

Thus, we can write (14) as

∀ ∈ ( ; ) = 0, .p
j h
e v v V (16)

A direct calculation from integration by parts yields

θ − − − +
− −

′− − + −∫
1 1

( ; ) = ( ) ( ) ( ) ( ) ( ).
j j j j jI

j

e V V V edt e t V t e t V t (17)
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On the other hand, if we add and subtract �ℎ+� to � then we can write (15) as

+ +− +  ( ; ) = ( ; ) ( ; ).
j j h j h
e V e V P V e P V (18)

Combining (18) and (16) with � = �ℎ+� ∈ ��(��) and applying the property of the projection�ℎ+, i.e., (� − �ℎ+�)(�� − 1+ ) = 0, we obtain

θ θ+ + + +
− −

′ ′− − + − − −∫ ∫
1 1

( ; ) = ( )( ) [ ]( )( )( ) = ( )( ) .
j h j h j hI I

j j

e V e e V P V dt e t V P V t e e V P V dt (19)

If � is a polynomial of degree at most � then �′ is a polynomial of degree at most � − 1. Therefore,

by the property of the projection �ℎ+, we immediately see

+′ − ∀ ∈∫ ( ) = 0, ( ).p

h jI
j

v V P V dt v P I (20)

Substituting the relation � = � + � into (19) and invoking (20) with � = �, we get

ε θ ε θ+ + +′ ′− − + − − −∫ ∫ ∫ ( ; ) = ( )( ) '( ) = ( )( ) .
j h h hI I I

j j j

e V e V P V dt e V P V dt e V P V dt (21)

Now, we are ready to prove the theorem. We construct the following auxiliary problem: find� such that

ϕ θϕ ϕ′− − ∈= , [0, ] subject to ( ) = 0.e t T T (22)

where � = �(�) =∫01��(�, �(�) − ��(�))��. Clearly, the exact solution to (22) is given by the

explicit formula

( )ϕ θΘ Θ −
Θ ∫ ∫

1
( ) = ( ) ( ) , where ( ) = exp ( ) .

( )

T T

t t
t y e y dy t s ds

t
(23)

Next, we prove some regular estimates which will be needed in our error analysis. Using the

assumption ��(�, �) ≤ �1, we see that �(�), � ∈ [0, �] is bounded by �1
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1 1

1 10 0
| ( ) | | ( , ( ) ( )) | = , [0, ].ut f t u t se t ds M ds M t Tθ £ - £ " ∈ò ò (24a)

Using the definition of � and the estimate (24a), we have

( ) ( ) ( )1 1 10 0
0 ( ) exp | ( ) | exp = exp = .

T T
t s ds M ds M T Cθ£ Θ £ £ò ò (24b)

Similarly, we can easily estimate 1�(�)  as follows

( ) ( ) ( ) ( )1 1 10 0

10 = exp ( ) exp | ( ) | exp = exp = .
( )

T T T

t
s ds s ds M ds M T C

t
θ θ£ £ £

Θ ò ò ò (24c)

Applying the estimates (24b), (24c), and the Cauchy-Schwarz inequality, we get

j £ Θ £ £ £ ∈
Θ ò ò ò2 2 1/2

1 1 1 10

1
( ) ( )| ( )| | ( )| | ( )| , [0, ].

( )

T T T

t t
t y e y dy C C e y dy C e y dy C T e t T

t

Squaring both sides and intergrading over � yields

2 2 24 2
1 2= .C T e C ej £ (25a)

We also need to obtain an estimate of � 1,�. Using (22) and (24a) gives

j θj j¢ = + £ + ∈
1

| | | | | | | |, [0, ].e M e t T

Squaring both sides, applying the inequality (� + �)2 ≤ 2�2+ 2�2, integrating over the
computational domain �, and using (25a), we get

2 2 2 2 22 2 2
1 1 2 31, 0

= | | 2( ) 2( 1) .
T

dt M e M C e C ej j j
W

¢ £ + £ + £ò (25b)

Applying the projection result and the estimate (3.20b) yields

4 51,
.hP C h C h ej j j+

W
- £ £ (25c)
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Now, we are ready to show (9). Using (17) with � = � and (22), we obtain

ϕ ϕ θϕ ϕ ϕ ϕ ϕ− − − −
− − − −

′− − − + − +∫ ∫ 2

1 1 1 1
( ; ) = ( ) ( ) ( ) ( ) ( ) = ( ) ( ) ( ) ( ).
j j j j j j j j jI I

j j

e edt e t t e t t e dt e t t e t t

Summing over the elements and using the fact that �(�) = �(�0−) = 0 yields

ϕ ϕ ϕ− − − −− +∑ 2 2

0 0
=1

( ; ) = ( ) ( ) ( ) ( ) = .
N

j
j

e e e t t e T T e (26)

On the other hand, if we choose � = � in (21) then we get

ϕ ε θ ϕ ϕ+′ − −∫ ( ; ) = ( )( ) .
j hI

j

e e P dt (27)

Summing over all elements and applying the Cauchy-Schwarz inequality, we get

ϕ ε ϕ ϕ+′≤ + −∑ 1
=1

( ; ) ( ) .
N

j h
j

e M e P

Using the estimate (25c), we deduce that

ϕ +

+ Ω
≤ + ≤ +∑ 1

0 1 11,
=1

( ; ) ( ) ( ) .
N

p p

j p
j

e C h u M e C h e C h h e e (28)

Combining (26) and (28), we conclude that

+≤ +1
.

pe Ch Ch e (29)

Thus, (1 − �ℎ) � ≤ � ℎ� + 1, where � is a positive constant independent of ℎ. Therefore, for

sufficiently small ℎ, e.g., ℎ ≤ 12� , we obtain 12 � ≤ (1 − �ℎ) � ≤ � ℎ� + 1, which yields� ≤ 2� ℎ� + 1 for ℎ small. Thus, we completed the proof of (9).

To show (10), we use � = � + �, the classical inverse inequality (8), the estimate (9), and the
projection result (7) to obtain
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( )ε ε ε− −′ ′ ′+ ≤ + ≤ + ≤ + + ≤ + ≤1 1

1 2 1 2 3 2
= ' ' .p p p p pe e e C h e C h C h e C h C h C h Ch

We note that � 1,�2 = � 2+ �′ 2 . Applying (9) and the estimate �′ ≤ �ℎ� yields� 1,�2 ≤ �1ℎ2� + 2+ �2ℎ2� = (h2p), which completes the proof of the theorem.

4. Superconvergence error analysis

In this section, we study the superconvergence properties of the DG method. We first show a(2� + 1)th order superconvergence rate of the DG approximation at the downwind point of
each element. Then, we apply this superconvergence result to show that the DG solution

converges to the special projection of the exact solution �ℎ−� at (hp+2). This result allows us to

prove that the leading term of the DG error is proportional to the (� + 1) degree right Radau
polynomial.

First, we define some special polynomials. The �th degree Legendre polynomial can be defined
by Rodrigues formula [41]

( )ξ ξ ξ
ξ

− − ≤ ≤ 21
( ) = ( 1) , 1 1.

2 !

p
p

p p p

d
L

p d

It satisfies the following important properties: ��(1) = 1, ��( − 1) = ( − 1)�, and the orthogon-

ality relation

ξ ξ ξ δ δ
− +∫  1

1

2
( ) ( ) = , where  is the Kronecker symbol.

2 1p q pq pq
L L d

p
(30)

One can easily write the (� + 1) degree Legendre polynomial on [ − 1,1] as

ξ ξ ξ+
+ +

+
+ ∈ −

+
  1

1 1 2

(2 2)!
( ) = ( ), where ([ 1,1]).

2 (( 1)!)

p p

p p pp

p
L q q P

p

The (� + 1) degree right Radau polynomial on [ − 1,1] is defined as�� + 1(�) = �� + 1(�) − ��(�). It has � + 1 real distinct roots, −1 < �0 < ⋯ < �� = 1.
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Mapping �� into the reference element [ − 1,1] by the linear transformation

� = �� + �� − 12 + ℎ�2 �, we obtain the shifted Legendre and Radau polynomials on ��:
− −

+ + + +

   − − − −
   
   
   

 1 1

1, 1 1, 1

2 2
( ) = , ( ) = .

j j j j

p j p p j p

j j

t t t t t t
L t L R t R

h h

Next, we define the monic Radau polynomial, �� + 1,�(�), on �� as

ψ
+

+
+ + +

+ +
+ +

1 2 2
1

1, 1, 1,

[( 1)!] (( 1)!)
( ) = ( ) = ( ), where = .

(2 2)! (2 2)!

p

j p

p j p j p j p j p

h p p
t R t c h R t c

p p
(31)

Throughout this work the roots of �� + 1,�(�) are denoted by

��, � = �� + �� − 12 + ℎ�2 ��, � = 0, 1, …, � .
In the next lemma, we recall the following results which will be needed in our error analysis
[32].

Lemma 4.1. The polynomials ��, � and �� + 1,� satisfy the following properties

ψ ψ ψ+ +
+ + +
′ − +

+ ∫
2 2

2 2 2 3

, 1, 1, 1 1, 2
= , = , = (2 2) ,
2 1

j p p

p j p j p j j p j jII Ijj j

h
L dt k h p k h

p
(32)

where �1 = 2��2, �2 = �1(2� + 1)(2� + 3) , and �� = ((� + 1)!)2(2� + 2)! .

Now, we are ready to prove the following superconvergence results.

Theorem 4.1. Suppose that the assumptions of Theorem 1 are satisfied. Also, we assume that �� is

sufficiently smooth with respect to � and � (for example, ℎ(�) = ��(�, �(�)) ∈ ��([0, �]) is enough.).

Then there exists a positive constant � such that

+− ≤ 2 1( ) , = 1, , ,p

k
e t Ch k N (33)

+− ≤ 2 1( ) , = 1, , ,p

k
e t Ch k N (34)
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+′ ≤ 1 ,pe C h (35)

+≤ 2 .pe C h (36)

Proof. To prove (33), we proceed by the duality argument. Consider the following auxiliary
problem:

θ′ + ∈= 0, [0, ] subject to ( ) = 1,
k k

W W t t W t (37)

where 1 ≤ � ≤ � and � = �(�) =∫01��(�, �(�) − ��(�))��. The exact solution of this problem is

�(�) = exp ∫� ���(�)�� , � ∈ �� = [0,��] . Using the assumption ℎ(�) = ��(�, �(�)) ∈ ��([0, �])
and the estimate (24a), we can easily show that there exists a constant � such that

+ Ω
≤

1,
.

p
k

W C (38)

Using (17) and (37), we get

θ − − − −
− − − −

′− − + − + − +∫
1 1 1 1

( ; ) = ( ) ( ) ( ) ( ) ( ) = ( ) ( ) ( ) ( ).
j j j j j j j j jI

j

e W W W edt e t W t e t W t e t W t e t W t

Summing over the elements ��, � = 1,…, �, using �(��) = 1, and the fact that �(�0−) = 0, we

obtain

− − −− +∑ 0 0
=1

( ; ) = ( ) ( ) ( ) ( ) = ( ).
k

j k k k
j

e W e t W t e t W t e t (39)

Now, taking � = � in (21) yields

ε θ +′ − −∫ ( ; ) = ( )( ) .
j hI

j

e W e W P W dt

Summing over all elements ��, � = 1,…, � with � = 1,…,� and applying (39), we arrive at
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ε θ− +′ − −∑∫
=1

( ) = ( )( ) .
k

k hI
jj

e t e W P W dt

Using (24a) and applying the Cauchy-Schwarz inequality, we obtain

ε ε− + +

Ω Ω Ω Ω
′ ′≤ + − ≤ + −

1 10, 0, 0, 0,
( ) ( ) ( ) .
k h h

k k k k

e t M e W P W M e W P W

Invoking the estimates (7), (9), and (38), we conclude that

+ + + + +−

+ Ω + Ω
≤ + ≤ + 1 1 1 1 2 1

0 1 1 21, 1,
( ) ( ) ( ) = ( ),p p p p p p p

k p p
k

e t C h u M C h C h W C h h h h (40)

for all � = 1,…,�, which completes the proof of (33).

In order to prove (34), we use the relation � = � + �, the property of the projection �ℎ−, i.e.,�(��−) = 0, and the estimate (33) to get

ε +− − − −−  2 1( ) = ( ) ( ) = ( ) = ( ).p

k k k k
e t e t t e t h

Next, we will derive optimal error estimate for �′ . By the property of �ℎ−, we have

ε ε −′ ∀ ∈∫ = 0, ( ), and ( ) = 0, = 1, , .p

j jI
j

v dt v P I t j N (41)

Using the relation � = � + �, applying (41) and (11) yields

− + − −
− −

′ + − + −∫ ∫ 1 1
( ( , ) ( , )) ( ) ( ) ( ) ( ) = 0.

h j j j jI I
j j

v edt f t u f t u vdt e t v t e t v t

By integration by parts on the first term, we obtain

( ) +
− −− + +∫ 1 1

' ( , ) ( , ) [ ]( ) ( ) = 0.
h j jI

j

e f t u f t u vdt e t v t (42)
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Choosing �(�) = �′(�) − ( − 1)��′(�� − 1+ )��, �(�) ∈ ��(��) in (42), we have, by the property��( − 1) = ( − 1)� and the orthogonality relation (30), �(�� − 1+ ) = 0 and

+ +
− −

+
−

− + − − −

− − −

∫ ∫ ∫

∫

2

1 , 1 ,

1 ,

( ') = ( 1) '( ) ' ( ( , ) ( , ))( ' ( 1) '( ) )

= ( ( , ) ( , ))( ' ( 1) '( ) ) .

p p

j p j h j p jI I I
j j j

p

h j p jI
j

e dt e t L e dt f t u f t u e e t L dt

f t u f t u e e t L dt
(43)

Using (3) and applying the Cauchy‐Schwarz inequality gives

( ) ( )+ +
− −

+
−

′ ′ ′ ′ ′≤ − + ≤ +

 
′ ′≤ + 

 

∫ ∫
2

1 , 1 1 ,

1 1 ,

( , ) ( , ) ( ) ( )

( ) .

h j p j j p jI I Ij j j

j p jI I Ij j j

e f t u f t u e e t L dt M e e e t L dt

M e e e t L
(44)

Combining (44) with (8) and (32), we obtain

−
    ′ ′ ′ ′ ≤ + ≤   +   

1/2
2 1/2

1 1 1/2
.

(2 1)

j

jI I I I I I
j j j j j j

h
e M e e C h e C e e

p

Consequently, �′ �� ≤ � � ��. Taking the square of both sides, summing over all elements, and

using (9), we conclude that

+≤ ≤
2 2 2 2' .pe C e Ch (45)

Finally, we will estimate � . Using the fundamental theorem of calculus, we write

− −′ ′+ ≤ + ∀ ∈∫ ∫| ( )|=| ( ) ( ) | | ( )| | ( )| , .
t

j j jt I
j j

e t e t e s ds e t e s ds t I

Taking the square of both sides, applying the inequality (� + �)2 ≤ 2�2+ 2�2, and applying the

Cauchy‐Schwartz inequality, we get
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- - - 
′ ′ ′≤ + ≤ + + 

 
∫ ∫

2
22 2 2 2 2| ( )| 2| ( )| 2 | ( )| 2| ( )| 2 | ( )| = 2| ( )| 2 .

j j j j j II I jj j

e t e t e s ds e t h e s ds e t h e

Integrating this inequality with respect to � and using the estimate (34), we get

+- ′ ′≤ + ≤ +
2 2 24 32 2 22 | ( )| 2 2 2 .p

j j j j jI I I
j j j

e h e t h e Ch h e

Summing over all elements and using the estimate (35) and the fact that ℎ = maxℎ�, we obtain

+ + + +≤ + ≤ + 
2 24 2 4 2 2 4 2 42

1 1 2
2 ' 2 = ( ),p p p pe C h h e C h C h h (46)

where we used 4� + 2 ≥ 2� + 4 for � ≥ 1. This completes the proof of the theorem.

The previous theorem indicates that the DG solution �ℎ is closer to �ℎ−� than to the exact

solution �. Next, we apply the results of Theorem 2 to prove that the actual error � can be split
into a significant part, which is proportional to the (� + 1) degree right Radau polynomial, and

a less significant part that converges at (hp+2) rate in the �2 norm. Before we prove this result,
we introduce two interpolation operators � and �. The interpolation operator � is defined as

follows: For smooth � = �(�), �� �� ∈ ��(��) and interpolates � at the roots of the (� + 1) degree

right Radau polynomial shifted to ��, i.e., at ��, �, � = 0, 1, …, �,. The interpolation operator �
satisfies �� �� ∈ �� + 1(��) and �� �� interpolates � at ��, �, � = 0, 1, …, �, and at an additional point� � in �� with � � ≠ ��, �, � = 0, 1, …, �. The choice of the additional point is not important and can

be chosen as � � = �� − 1.

Next, we recall the following results from [12] which will be needed in our analysis.

Lemma 4.2. If � ∈ �� + 2(��), then interpolation error can be split as

= , ,j j ju u on Ip f g- + (47a)

where

1, 1, ,
=0

ˆ( ) = ( ), ( ) = ( ), = ,
p

j j p j p j j i j
i

t t t t t u uf a y y g p+ + - -Õ (47b)
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and �� is the coefficient of �� + 1 in the (� + 1) degree polynomial ��. Furthermore,

1
1,,

, = 0, , ,p s
j j p Is I jj

Ch u s pf + -
+

£ K (47c)

2
2,,

, = 0, , 1.p s
j j p Is I jj

Ch u s pg + -
+

£ +K (47d)

Finally,

p +-

+
- £ 2

2,
.

p

h j p II jj

u P u Ch u (48)

Proof. The proof of this lemma can be found in [12], more precisely in its Lemma 2.1.

The main global superconvergence result is stated in the following theorem.

Theorem 4.2. Under the assumptions of Theorem 2, there exists a constant � independent of ℎ such

that

p +- £ 2
.

p

h
u u Ch (49)

Moreover, the true error can be divided into a significant part and a less significant part as

1,( ) = ( ) ( ), ,j p j j je t t t on Ia y w+ + (50a)

where

= ,j j hu uw g p+ - (50b)

and

2 22( 2) 2( 1)

=1 =1
, .

N N
p p

j jI Ij jj j
Ch Chw w+ +

¢£ £å å (50c)
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Proof. Adding and subtracting �ℎ−� to �ℎ− ��, we write�ℎ− �� = �ℎ− �ℎ−� + �ℎ−� − �� = − � + �ℎ−� − �� . Taking the �2 norm and using the triangle

inequality, we get

π π−− ≤ + − .
h h
u u e P u u

Applying the estimates (36) and (48), we deduce (49). Next, adding and subtracting �� to �,
we write � = � − �� + �� − �ℎ. Moreover, one can split the interpolation error � − �� on �� as

in (47a) to get

φ γ π φ ω ω γ π+ + − + + −= = , where = .
j j h j j j j h

e u u u u (51)

Next, we use the Cauchy-Schwarz inequality and the inequality �� ≤ 12(�2+ �2) to write

( ) ( )ω γ π γ π γ γ π π

γ π

+ − + − + − + −

 
≤ + − 

 

2 2 2

2 2

= , = 2 ,

2 .

j j h j h j j h h II II I jj jj j

j h II jj

u u u u u u u u

u u

Summing over all elements and applying (47d) with � = 0 and (49) yields the first estimate in
(50c).

Using the Cauchy-Schwarz inequality and the inequality �� ≤ 12(�2+ �2), we write

( )ω γ π γ π γ π′ ′ ′ ′

 
′ ′ ′+ − + − ≤ + − 

 

2 2 2
= ( ) , ( ) 2 ( ) .

j j h j h j h II II jj jj

u u u u u u (52)

Using the inverse inequality (8), i.e., (�� − �ℎ)′ �� ≤ � ℎ−1 (�� − �ℎ) ��, we obtain the

estimate

ω γ π−
′ ′

 
≤ + − 

 

2 2 22 .
j j h II I jj j

C h u u

Perusal of the Finite Element Method50



Summing over all elements and applying (49) and the estimate (47d) with � = 1, we establish
the second estimate in (50c).

5. A posteriori error estimation

In this section, we use the superconvergence results from the previous section to construct a
residual-based a posteriori error estimator which is computationally simple, efficient, and
asymptotically exact. We will also prove its asymptotic exactness under mesh refinement. First,
we present the weak finite element formulation to compute a posteriori error estimate for the
nonlinear IVP (2).

In order to obtain a procedure for estimating the error �, we multiply (2) by arbitrary
smooth function � and integrate over the element �� to obtain

′∫ ∫= ( , ) .
I I
j j

u vdt f t u vdt (53)

Replacing � by �ℎ+ � and choosing � = �� + 1,�(�), we obtain

( )y y+ +
′ ′+ −∫ ∫1, 1,

= ( , ) .
p j h h p jI I

j j

e dt f t u e u dt (54)

Substituting (50a), i.e., �(�) = ���� + 1,�(�) + ��(�), into the left-hand side of (54) yields

( )α y y ω y+ + +
′ ′ ′+ − −∫ ∫1, 1, 1,

= ( , ) .
j p j p j h h j p jI I

j j

dt f t u e u dt (55)

Using (32) and solving for ��, we obtain

( )α ω y ++
′ ′− + − −∫ 1,2 2

1

1
= ( , ) .

j h h j p jp I
jj

f t u e u dt
k h

(56)

Our error estimate procedure consists of approximating the true error on each element �� by

the leading term as

1,( ) ( ) = ( ), ,j p j je t E t a t t Iy +» Î (57a)
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where the coefficient of the leading term of the error, ��, is obtained from the coefficient ��
defined in (56) by neglecting the terms �� and �, i.e.,

( ) 1,2 2
1

1= ( , ) .j h h p jp I jj

a f t u u dt
k h

ψ¢ ++− −ò (57b)

We remark that our a posteriori error estimate is obtained by solving local problems with no
boundary condition.

The  global  effectivity  index,  defined  by  � = �� ,  is  an  important  criterion  for  eval-

uating  the  quality  of  an  error  estimator.  The  main  results  of  this  section  are  stated
in  the  following  theorem.  In  particular,  we  prove  that  the  error  estimate  �,  in  the�2  norm,  converges  to  the  actual  error  �.  Moreover,  we  show  that  our  a  posterior
error  estimate  is  asymptotically  exact  by  showing  that  the  global  effectivity  index� 1  as  ℎ 0.

Theorem 5.1. Suppose that the assumptions of Theorem 2 are satisfied. If �(�) = ���� + 1,�(�), � ∈ ��,
where ��, � = 1,…,�, are defined in (57b), then

+− ≤
2 2 4

.
pe E C h (58)

Thus, the post‐processed approximation �ℎ+ � yields �(ℎ� + 2) superconvergent solution, i.e.,

ψ +
+− + − + ≤∑

22 2 4

1,
=1

( ) = ( ) .
N

p

h h j p j I
jj

u u E u u a C h (59)

Furthermore, then there exists a positive constant � independent of ℎ such that

+− ≤
2 2 2 4

.
pe E C h (60)

Finally, if there exists a constant � = �(�) > 0 independent of ℎ such that

+≥ 1
,

pe Ch (61)

then the global effectivity index in the �2 norm converges to unity at (h) rate, i.e.,
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+= 1 ( ).
E

h
e

(62)

Proof. First, we will prove (58) and (59). Since � = ���� + 1,�+ �� and � = ���� + 1,� on ��, we

have

α ψ ω α ψ ω+ +− − + ≤ − +
2 2 22 2

1, 1,
= ( ) 2( ) 2 ,

j j p j j j j p j jI I I Ij j j j

e E a a

where we used the inequality (� + �)2 ≤ 2�2+ 2�2. Summing over all elements yields

α ψ ω+− − ≤ − +∑ ∑ ∑
2 22 2 2

1,
=1 =1 =1

= 2 ( ) 2 .
N N N

j j p j jI I Ij j jj j j

e E e E a (63)

Next, we will derive upper bounds for ∑� = 1� (��− ��)2 �� + 1,� ��2 . Subtracting (56) from (57b),

we obtain

( )α ω ψ′ ++
− + − −∫ 1,2 2

1

1
= ( , ) ( , ) .

j j h h j p jp I
jj

a f t u e f t u dt
k h

(64)

Thus,

( )α ω ψ ++
′− ≤ + − +∫ 1,2 2

1

1
( , ) ( , ) .

j j h h j p jp I
jj

a f t u e f t u dt
k h

(65)

Using the Lipschitz condition (3) and applying the Cauchy-Schwarz inequality yields

( )
ψ

α ω ψ ω
+

++ +

 
′ ′− ≤ + ≤ + 

 
∫

1,

1 1, 12 2 2 2

1 1

1
.

p j I
j

j j j p j jp p II Ijj jj j

a M e dt M e
k h k h

(66)

Applying the inequality (� + �)2 ≤ 2(�2+ �2), we obtain
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ψ
α ω

+

+

 
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2
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p j I

j

j j jp I Ij jj

a M e
k h

(67)

Multiplying by �� + 1,� ��2  and using (32), i.e., �� + 1,� ��2 = (2� + 2)�2ℎ�2� + 3 yields

ψ
α ψ ω ω

+

+ +

   
′ ′− ≤ + ≤ +   

   

4

1,
2 2 22 22 2 2

1, 1 34 42

1

2

( ) ,
p j I

j

j j p j j j jp I II I Ij jj j jj

a M e k h e
k h

(68)

where �3 = 2(2� + 2)2�22�12 max(�12, 1) is a constant independent of the mesh size.

Summing over all elements and using ℎ = max1 ≤ � ≤ �ℎ�, we arrive at

α ψ ω+

 
′− ≤ + 

 
∑ ∑

2 222 2

1, 3
=1 =1

( ) .
N N

j j p j jI I
j jj j

a k h e

Combining this estimate with (9) and (50c), we establish

( )α ψ +
+− ≤∑

2 2
2 4

1,
=1

.
N

p

j j p j I
jj

a Ch (69)

Now, combining (63) and the estimates (50c) and (69) yields

+ + +− ≤ +
2 2 4 2 4 2 4

1 2
2 2 = ,

p p pe E C h C h Ch

which completes the proof of (58). Using the relation � = � − �ℎ and the estimate (58), we obtain

ψ +
+− + − + − ≤∑

2 2 2 2 4

1,
=1

( ) = ( ) = .
N

p

h j p j hI
jj

u u a u u E e E Ch

Next, we will prove (60). Using the reverse triangle inequality, we have
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,− ≤ −E e E e (70)

which, after applying the estimate (58), completes the proof of (60).

In order to show (62), we divide (70) by �  to obtain |� − 1| ≤ � − �� . Applying the estimate

(58) and the inverse estimate (61), we arrive at

σ − ≤| 1| .Ch

Therefore, � = �� = 1 + (h), which establishes (62).

Remark 5.1. The previous theorem indicates that the computable quantity �  converges to�  at (hp+2) rate. This accuracy enhancement is achieved by adding the error estimate � to the
DG solution �ℎ.

Remark 5.2. The performance of an error estimator � is typically measured by the global
effectivity index which is defined as the ratio of the estimated error �  to the actual error� . We say that the error estimator is asymptotically exact if � 1 as ℎ 0. The estimate (62)

indicates that the global effectivity index in the �2 norm converge to unity at (h) rate. There-
fore, the proposed estimator �  is asymptotically exact. We would like to emphasize that � is
a computable quantity since it only depends on the DG solution �ℎ and �. It provides an

asymptotically exact a posteriori estimator on the actual error � . Finally, we would like to
point out that our procedure for estimating the error � is computationally simple. Furthermore,
our DG error indicator is obtained by solving a local problem with no boundary condition on
each element. This makes it useful in adaptive computations. We demonstrate this in Section
6.

Remark 5.3. Our proofs are valid for any regular meshes and using piecewise polynomials

of degree � ≥ 1. If � = 0 then (46) gives � = (h) which is the same as � = (h). Thus, our
superconvergence results are not valid when using � = 0. Also, our error estimate procedure
does not apply.

Remark 5.4. The assumption (61), which is used to prove the convergence of � to unity at (h),
requires that terms of order (hp+1) are present in the error. If not, � might not be a good
approximation of �. We note that the exponent of ℎ in the estimate (9) is optimal in the sense
that it cannot be improved. In fact, for the ℎversion finite element method one may show that
provided that the (� + 1)th order derivatives of the exact solution � do not vanish identically

The Discontinuous Galerkin Finite Element Method for Ordinary Differential Equations
http://dx.doi.org/10.5772/64967

55



over the whole domain, then an inverse estimate of the form � ≥ �(�)ℎ� + 1 is valid for some
positive constant �(�) depending only on � [42–44].

Remark 5. Our results readily extend to nonlinear systems of ODEs of the form

∈
    

0
= ( , ), [0, ], (0) = ,

du
f t u t T u u

dt

where � = [�1, …, ��]�: [0, �] ℝ�, � 0 ∈ ℝ�, and � = [�1, …, ��]�: [0, �] × ℝ� ℝ�. The DG

method for this problem consists of finding � ℎ ∈ � ℎ� = � : � �� ∈ (��(��))�, � = 1,…,�  such

that: ∀ � ∈ � ℎ� and � = 1,…,�,

− − + −
− −+ − +∫ ∫

       
1 1

( ') ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) = 0.t t t t

h h j j j jI I
j j

v u dt v f t u dt v t u t v t u t

6. Application: adaptive mesh refinement (AMR)

A posteriori error estimates play an essential role in assessing the reliability of numerical
solutions and in developing efficient adaptive algorithms. Adaptive methods based on a
posteriori error estimates have become established procedures for computing efficient and
accurate approximations to the solution of differential equations. The standard adaptive FEMs
through local refinement can be written in the following loop

→ → →SOLVE ESTIMATE MARK REFINE.

The local a posteriori errors estimator of Section 5 can be used to mark elements for refinement.

Next, we present a simple DG adaptive algorithm based on the local a posteriori error estimator
proposed in the previous section. The adaptive algorithm that we propose has the following
steps:

1. Select a tolerance ��� and a maximum bound on the number of interval (say�max = 1000). Put � = 1.

2. Construct an initial coarse mesh with � + 1 nodes. For simplicity, we start with a uniform
mesh having � = 2 elements.

3. While � + 1 ≤ �max and � ≥ ��� do
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(a) Solve the DG scheme to obtain the solution �ℎ as described in Section 2.

(b) For each element, use (57a) and (57b) to compute the local error estimators� ��, � = 1,…,� as described in Section 5 and the global error estimator

� = ∑� = 1� � ��2 1/2
.

(c) For all elements ��
i. Choose a parameter 0 ≤ � ≤ 1. If the estimated global error� �� < � max� = 1,…,� � �� then stop and accept the DG solution on the element��.
ii. Otherwise, reject the DG solution on �� and divide the element �� into two

uniform elements by adding the coordinate of the midpoint of �� to the list
of nodes.

4. Endwhile.

Remark 6.1. There are many possibilities for selecting the elements to be refined given the local error
indicator � ��. In the above algorithm, we used the most popular fixed‐rate strategy which consists of

refining the element �� if � �� > � max� = 1,…,� � ��, where 0 ≤ � ≤ 1 is a parameter provided by the

user. Note that the choice � = 0 gives uniform refinement, while � = 1 gives no refinement. Also, there
are other stopping criteria that may be used to stop the adaptive algorithm.

7. Computational results

In this section, we present several numerical examples to (i) validate our superconvergence
results and the global convergence of the residual-based a posteriori error estimates, and (ii)
test the above local adaptive mesh refinement procedure that makes use of our local a posteriori
error estimate.

Example 7.1. The test problem we consider is the following nonlinear IVP

′ − − ∈2= , [0,1], (0) = 1.u u u t u

Clearly, the exact solution is �(�) = 12�� − 1 . We use uniform meshes obtained by subdividing
the computational domain [0,1] into � intervals with � = 5, 10, 20, 30, 40, 50. This example is
tested by using �� polynomials with � = 0 − 4. Figure 1 shows the �2 errors �  and �  with
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log-log scale as well as their orders of convergence. These results indicate that � = (hp+1) and� = (hp+2). This example demonstrates that our theoretical convergence rates are optimal.

Figure 1. Log-log plots of �  (left) and �  (right) versus mesh sizes ℎ for Example 7.1 on uniform meshes having� = 5, 10, 20, 30, 40, 50 elements using ��, � = 0 to 4.

Figure 2. Log-log plots of � * (left) versus ℎ for Example 7.1 using � = 5, 10, 20, 30, 40, 50 and ��, � = 0 to 4. Log-

log plots of � * (right) versus ℎ using � = 5, 10, 20, 30 elements using ��, � = 0 to 3.

Next, we compute the maximum error at the shifted roots of the (� + 1) degree right Radau
polynomial on each element �� and then take the maximum over all elements. For simplicity,

we use � * to denote max1 ≤ � ≤ � max0 ≤ � ≤ � �(��, �− ) , where ��, � are the roots of�� + 1,�(�). Similarly, we compute the true error at the downwind point of each element and

then we denote � * to be the maximum over all elements ��, � = 1,…,�, i.e.,

Perusal of the Finite Element Method58



� * =max1 ≤ � ≤ � �(��−) . In Figure 2, we present the errors � *, � * and their orders of

convergence. We observe that � * = (hp+2) and � * = (h2p+1) as expected. Thus, the error at right
Radau points converges at (hp+2). Similarly, the error at the downwind point of each element
converge with an order 2� + 1. This is in full agreement with the theory.

Next, we use (57a) and (57b) to compute the a posteriori error estimate for the DG solution. The

global errors � − �  and their orders of convergence, using the spaces �� with � = 1 − 4, are

shown in Figure 3. We observe that � − � = (hp+2). This is in full agreement with the theory.
This example demonstrates that the convergence rate proved in this work is sharp. Since� − � = � − (�ℎ+ �) = (hp+2), we conclude that the computable quantities �ℎ+ � converges

to the exact solution � at (hp+2) rate in the �2 norm. We would like to emphasize that this
accuracy enhancement is achieved by adding the error estimate � to the DG solution �ℎ only

once at the end of the computation. This leads to a very efficient computation of the postpro-
cessed approximation �ℎ+ �.

Figure 3. The errors � − �  and their orders of convergence for Example 1 on uniform meshes having � = 5, 10, 20,

30, 40, 50 elements using ��, � = 1 to 4.

In Table 1, we present the actual L2 errors and the global effectivity indices. These results
demonstrate that the proposed a posteriori error estimates is asymptotically exact.
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� � = 1 � = 2 � = 3 � = 4� � � � � � � �
5 4.7637e-03 1.0362 2.7867e-04 1.0531 1.6847e-05 1.0637 1.0386e-06 1.0705

10 1.2750e-03 1.0179 3.7805e-05 1.0271 1.1742e-06 1.0326 3.7481e-08 1.0363

20 3.2849e-04 1.0089 4.8747e-06 1.0136 7.6227e-08 1.0164 1.2290e-09 1.0182

30 1.4736e-04 1.0059 1.4568e-06 1.0090 1.5201e-08 1.0109 1.6369e-10 1.0122

40 8.3262e-05 1.0044 6.1698e-07 1.0068 4.8296e-09 1.0082 3.9026e-11 1.0091

50 5.3429e-05 1.0035 3.1660e-07 1.0054 1.9827e-09 1.0066 1.2820e-11 1.0073

Table 1. The errors �  and the global effectivity indices for Example 7.1 on uniform meshes having � = 5, 10, 20, 30,

40, 50 elements using ��, � = 1 to 4.

In Figure 4, we show the errors �� = |‖� − �‖| and �� = � − 1 . We see that �� = (hp+2) and�� = (h) as the theory predicts.

Figure 4. Convergence rates for �� (left) and �� (right) for Example 1 on uniform meshes having � =5, 10, 20, 30, 40,

50 elements using ��, � = 1 to 4.

Example 7.2. In this example we test our error estimation procedure presented in Section 6 on
adaptively refined meshes. We consider the following model problem

β′ ∈= , [0,5], (0) = 1,u u t u

where the exact solution is simply �(�) = ���. We apply our adaptive algorithm using � = 1
(unstable), � = − 1 (stable), and � = − 20 (stiff). The DG solutions and the sequence of meshes

obtained by applying our adaptive algorithm with ��� = 10−2 for � = 1 − 4 are shown in
Figures 5–7 for � = 1, � = − 1, and � = − 20, respectively. As can be expected, the adaptive
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algorithm refines in the vicinity of the endpoint � = 5 with coarser meshes for increasing
polynomial degree �. Furthermore, we observe that, when � is closer to 0, we get more uniform
refinement near the portion with high approximation error. When � is near 1, we get less
uniform refinement near the portion with high approximation error. We also observed that,
both for � = 0.2 and � = 0.9, the optimal convergence rates are achieved asymptotically and
that the global effectivity indices converge to unity with increasing polynomial degree �.
Furthermore, we tested our adaptive algorithm on other problems and observed similar
conclusions. These results are not included to save space.

Figure 5. �, �ℎ, and final meshes for Example 7.2 with � = − 20 using ��, � = 1 to 4, and ��� = 10−2.

Figure 6. u, uh, and final meshes for Example 7.2 with β = −1 using Pp, p = 1 to 4, and Tol = 10−2.

The Discontinuous Galerkin Finite Element Method for Ordinary Differential Equations
http://dx.doi.org/10.5772/64967

61



Figure 7. u, uh, and final meshes for Example 7.2 with β = −20 using Pp, p = 1 to 4, and Tol = 10−2.

8. Concluding remarks

In this chapter, we presented a detailed analysis of the original discontinuous Galerkin (DG)
finite element method for the approximation of initial-value problems (IVPs) for nonlinear
ordinary differential equations (ODEs). We proved several optimal error estimates and
superconvergence results. In particular, we showed that the DG solution converges to the true
solution with order � + 1, when the space of piecewise polynomials of degree � is used. We
further proved the (2� + 1)th superconvergence rate at the downwind points. Moreover, we
proved that the DG solution is (hp+2) superconvergent toward a particular projection of the
exact solution. We used these results and showed that the leading term of the DG error is
proportional to the (� + 1) degree right Radau polynomial. This result allowed us to construct
computationally simple, efficient, and asymptotically exact a posteriori error estimator. It is
obtained by solving a local residual problem with no boundary condition on each element.
Furthermore, we proved that the proposed a posteriori error estimator converges to the actual

error in the �2 norm. The order of convergence is proved to be � + 2. All proofs are valid for

regular meshes and for �� polynomials with � ≥ 1. Finally, we presented a local adaptive
procedure that makes use of our local a posteriori error estimate. Future work includes the study
of superconvergence of DG method for nonlinear boundary-value problems.

Abbreviations

Symbols

AMR Adaptive mesh refinement
DG Discontinuous Galerkin
FEM, FEMs Finite element method, finite element methods
IVP, IVPs Initial-value problem, initial-value problems
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ODE, ODEs Ordinary differential equation, ordinary differential equations
PDE, PDEs Partial differential equation, partial differential equations
RKDG Runge-Kutta discontinuous Galerkinℝ Set of real numbersℝ� Real �-dimensional vector space(�, �), [�, �] � ∈ ℝ: � < � < � , � ∈ ℝ: � ≤ � ≤ ��(�) Set of all functions continuous on ���(�) Set of all functions having � continuous derivatives on ��∞(�) Space of functions infinitely differentiable on �� Typical vector in ℝ� of the form � = [�1, �2, …, ��]���� Kronecker symbol�′, �′′ First and second derivatives of � with respect to ��(�) �th derivative of � with respect to �

“big oh” asymptotic bound��− � = (hm) The sequence ��  converges to � with order ��1 Lipschitz constant�� Interval [�� − 1, ��], � = 1,…,�ℎ� Length of interval ��, ℎ� = ��− �� − 1ℎ Maximum of ℎ�, ℎ = max1 ≤ � ≤ �ℎ��(��−) Left limit of the function � at the point ���(��+) Right limit of the function � at the point ��[�](��) Jump of � at the point ��� Degree of a polynomial (integer)��(��) Set of all polynomials of degree no more than � on ���ℎ� Finite element space of polynomials of degree at most � in the interval ��∀ For all(�, �)�� �2 inner product of � and � on the interval ��, (�, �)�� =∫���(�)�(�)��� 0,�� and � �� Standard �2-norm of � on ��
� 0,� and � �2-norm of � on � = ∪� = 1� ��� ∞, ��, � ∞ Standard �∞-norm of � on �� and �, respectively
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��(��) Sobolev space ��(��) = � :∫�� |�(�)(�) 2�� < ∞, 0 ≤ � ≤ �
� �, �� Norm of ��(��)� �, �� ��(��)-seminorm of � on ��� �, � and � � ��(��)-seminorm of � on ��ℎ±� Gauss-Radau projections of � onto �ℎ��, �1, �2, etc Generic positive constants independent of ℎ�(�) Exact solution at time ��ℎ(�) DG solution at time ��ℎ(��) �ℎ(��) = �ℎ(��−)� True error, � = � − �ℎ� Projection error, � = � − �ℎ−�� Error � = �ℎ− �ℎ−�.��(�), � = 0, 1, …, � �th degree Legendre polynomial on [ − 1,1]��(�), � = 0, 1, …, � �th degree right Radau polynomial on [ − 1,1]��, �(�), � = 0, 1, …, � �th degree Legendre polynomial on ����, �(�), � = 0, 1, …, � �th degree right Radau polynomial on ����, �(�), � = 0, 1, …, � �th degree monic Radau polynomial on ����, � = 0, 1, …, � Roots of �� + 1(�)��, �, � = 0, 1, …, � Roots of �� + 1,�(�)�� Interpolant, interpolates �(�) at ��, �, � = 0, 1, …, �,�� Interpolant, interpolates �(�) at ��, �, � = 0, 1, …, �, and at an additional point � � in ��

with � � ≠ ��, �, � = 0, 1, …, ��� � − ����(�) ���� + 1,�(�), where �� is the coefficient of �� + 1 in the (� + 1) degree polynomial ���� ��+ �� − �ℎ�, �� Global effectivity index, �� = � − 1���, ���� Tolerance, maximum bound on the number of interval� * Maximum error at Radau points� * Maximum error at the downwind points
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