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1. Introduction     

 

There are a lot of applications that are better performed by a multi-robot team than a single 
agent. Multi-robot systems may execute tasks in a faster and more efficient way and may 
also be more robust to failure than a single robot. There are even some applications that can 
not be achieved by only one robot and just by a group of them (Parker, 2003; Cao et al., 
1997). Another known advantage of multi-robot systems is that instead of using one 
expensive robot with high processing capacity and many sensors, sometimes one can use a 
team of simpler and inexpensive robots to solve the same task. 
Some examples of tasks that are well performed by cooperative robots are search and rescue 
missions, load pushing, perimeter surveillance or cleaning, surrounding tasks, mapping and 
exploring. In these cases, robots may share information in order to complement their data, 
preventing double searching at an already visited area or alerting the others to concentrate 
their efforts in a specific place. Also the group may get into a desired position or 
arrangement to perform the task or join their forces to pull or push loads. 
Although multi-robot systems provide additional facilities and functionalities, such systems 
bring new challenges. One of these challenges is formation control. Many times, to 
successfully perform a task, it is necessary to make robots get to specific positions and 
orientations. Within the field of robot formation control, control is typically done either in a 
centralized or decentralized way. 
In a centralized approach a leader, which can be a robot or an external computer, monitores 
and controls the other robots, usually called followers. It coordinates tasks, poses and 
actions of the teammates. Most of the time, the leader concentrates all relevant information 
and decides for the whole group. The centralized approach represents a good strategy for 
small teams of robots, specially when the team is implemented with simple robots, only one 
computer and few sensors to control the entire group. In (Carelli et al., 2003) a centralized 
control is applied to coordinate the movement of a number of non-holonomic mobile robots 
to make them reach a pre-established desired formation that can be fixed or dynamic. There 
are also the so called leader-follower formation control as (Oliver & Labrosse, 2007; 
Consolini et al., 2007), in which the followers must track and follow the leader robot. The 
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approach in (Oliver & Labrosse, 2007) is based on visual information and uses a set of 
images of the back of the leader robot that will be tracked by the follower robot. In 
(Consolini et al., 2007), a leader-follower formation control is introduced in which follower's 
position is not rigidly fixed but varies in suitable cones centered in the leader reference 
frame. 
On the other hand, when considering a team with a large number of robots under a 
centralized control, the complexity significantly rises, demanding a greater computational 
capacity besides a larger communication system. In this case, a decentralized approach 
would be preferred. Usually in a decentralized control there is no supervisor and each robot 
makes its decisions based on its own duties and its relative position to the neighbouring 
teammates. Some researchers propose decentralized techniques for controlling robots' 
formation (Desai et al., 2001; Do, 2007) or cooperation on tasks such as exploration and 
mapping (Franchi et al., 2007; Correl & Martinoli, 2007; Rekleitis et al., 2005). There are also 
scalable approaches to control a large robotic group maintaining stability of the whole team 
control law (Feddema et al., 2002). Moreover some models are based on biologically-
inspired cooperation and behaviour-based schemes using subsumption approach (Kube & 
Zhang, 1993; Balch & Arkin, 1998; Fierro et al., 2005). In these behaviour-based cases 
stability is often attained because they rely on stable controls at the lower level while 
coordination is done at a higher level. 
The work presented in this chapter addresses the issue of multi-robot formation control 
using a centralized approach. Specifically, the principal concern is how to achieve and 
maintain a desired formation of a simple and inexpensive mobile robot team based only on 
visual information. There is a leader robot responsible for formation control, equipped with 
the necessary computational power and suitable sensor, while the other teammates have 
very limited processing capacity with a simple microcontroller and modest sensors such as 
wheel encoders for velocity feedback. Therefore, the team is composed of one leader and 
some simple, inexpensive followers. This hierarchy naturally requires a centralized control 
architecture. The leader runs a nonlinear formation controller designed and proved to be 
stable through Lyapunov theory. A nonlinear instead of linear controller was chosen 
because it provides a way of dealing with intrinsic nonlinearities of the physical system 
besides handling all configurations of the teammates, thus resulting in a more reliable 
option. It joins a pose controller with a compensation controller to achieve team formation 
and take the leader motion into account, respectively. 
To control team formation it is necessary to estimate the poses of the robots that form the 
group. Computer vision has been used in many cooperative tasks because it allows 
localizing teammates, detecting obstacles as well as getting rich information from the 
environment. Besides that, vision systems with wide field of view also become very 
attractive for robot cooperation. One way of increasing the field of view is using 
omnidirectional images (360° horizontal view) (Nayar, 1997) obtained with catadioptric 
systems, which are formed by coupling a convex mirror (parabolic, hyperbolic or elliptic) 
and lenses (cameras) (Baker & Nayar, 1999). Such systems can really improve the perception 
of the environment, of other agents and objects, making task execution and cooperation 
easier. 
Interesting works on cooperative robotics using omnidirectional images can be found in 
(Das et al., 2002; Vidal et al., 2004) and (Zhu et al., 2000). In (Das et al., 2002), all the robots 
have their own catadioptric system, allowing a decentralized strategy and eliminating the 
need for communication between the robots. The authors propose a framework in which a 
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robot can switch between controllers to follow one or two leaders, depending on the 
environment. However, all the processing is done on an external computer and the use of 
many omnidirectional systems (one for each robot) makes the team expensive. In (Vidal et 
al., 2004), a scenario is developed in which each follower uses optical flow for estimating the 
leaders relative positions, allowing the group to visually mantain a desired formation. The 
computational cost for optical flow calculations is high and results are shown only through 
simulations. The work in (Zhu et al., 2000) proposes a cooperative sensing strategy through 
distributed panoramic sensors on teammate robots to synthesize virtual stereo sensors for 
human detection and tracking. The main focus is the stereo composing and it does not 
address team formation. 
Now, in this work, we propose a formation controller based on omnidirectional vision and 
nonlinear techniques that runs onboard the leader robot. To drive all followers to a specific 
formation, the controller considers the desired formation parameters, the leader's linear and 
angular velocities and current followers' poses. The desired parameters and leader velocities 
are assumed to be known from a higher level controller that drives the leader robot to an 
appropriate trajectory. The followers' poses are estimated to feedback the controller using an 
omnidirectional vision system, formed by a hyperbolic mirror combined with a color camera 
and mounted on the leader, which allows it to see all followers by acquiring just one image. 
It is worth mentioning that although omnidirectional vision was used to estimate followers' 
positions and orientations, the proposed controller is independent of which sensor is used to 
implement the feedback. 
Followers are identified by rectangles of different colors placed on the top of their platforms. 
Through a set of image processing techniques such as motion segmentation and color 
tracking, followed by Kalman filtering combined with Least Squares and RANSAC 
algorithm for optimization, followers' poses are reliably estimated. These poses are then 
used by the nonlinear controller to define followers' linear and angular velocities to achieve 
and maintain the desired formation. Notice that we focus on team formation during robot 
motion, while obstacle avoidance and task coordination are not addressed at this stage. 
Simulations and real experiments were carried out with different team formations. Current 
results show that the system performs well even with noisy and low resolution images.  
The main contribution of this work is that stable formation control is achieved based solely 
on visual information totally processed onboard the leader. Also, there is no need for an 
absolute reference frame or a limited working area, since the vision system is carried by the 
leader and measurements are taken relative to it. Related works usually have an expensive 
robot team, use a fixed camera to observe the environment or even make all computations 
using an external computer. 
This chapter is organized as follows. Section 2 describes the formation controller. Section 3 
presents a method for estimating followers' poses based on omnidirectional images. One of 
the simulations carried out is presented in Section 4. In Section 5, some experiments with 
real robots are shown and the results are discussed. Finally, Section 6 concludes this chapter 
and outlines the next steps. 

2. The controller  

To make a mobile robot team (formed by one leader and n followers) navigate in an 
environment keeping a specific formation, a controller to command the follower robots was 
designed. The leader robot coordinates group navigation using an omnidirectional system, 
localizing each one of the followers on its own reference frame. 
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2.1 Definition  
A nonlinear instead of linear controller was chosen because it provides a way of dealing 

with intrinsic nonlinearities of the physical system besides handling all configurations of the 

teammates, thus resulting in a more reliable option. This controller must provide the desired 

values for the follower velocities based on their coordinate and orientation errors. It 

integrates the functions of a pose controller, that brings the team to a desired formation, and 

a second controller, that compensates leader's linear and angular velocities. The generated 

velocities are considered as reference velocities for the followers and may be sent to the 

robots through different means of communication. Controller stability is proved using the 

Lyapunov method. 

This controller is similar to that found in (Roberti et al.,2007), but differs in the saturation 

functions for the errors, which were adapted to fit our specific problem. 

2.2 The pose controller   
According to Figure 1, a vector containing the followers' coordinates can be defined as 

Equation 1. 

 
 

Fig. 1. Followers' pose representation on leader's reference frame. 
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where ξi = (xi   yi)T stands for the real world coordinates of the i-th follower. To find a 

generic solution, the coordinate vector ξ can be considered as ǒ(ξ). This approach is 

interesting for the cases in which it is necessary to apply some coordinate transformation 

such as for vision systems (e.g. image coordinates) or define parameters associated to the 

formation (e.g. geometric parameters, baricenters, etc.). However, it is important to note that 

in our case ǒ(ξ) = ξ, i. e., ǒ(ξ) is simply a vector containing the real world positions of the 

followers. We decided to keep the ǒ notation for generality. By differentiating ǒ(ξ) with 

respect to time, we obtain Equation 2. 

 ( )ξξJǒ $$ =  (2) 

where J(ξ) is the Jacobian of ξ. 
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From Equation 2, it is possible to define a formation control law given by Equation 3. The 

vector 
frξ$ represents the desired formation velocities, i. e., the velocities, given at the leader 

reference frame, that the follower robots must have for achieving formation. 

 ( ) ( )( ) ǒǒǒ~withǒ~fǒξJξ dǒ~d
1

fr −=+= − $$  (3) 

where ǒ~  is the vector of formation errors for the followers (Kelly et al., 2004) , ǒd is the 

vector of desired formation parameters and ǒ is the vector of the current formation 
parameters. Function ( )ǒ~fǒ~ is a saturation function for the error and defined as Equation 4. 

 ( ) ( ) ( ) ( )f j

ρ f j f1 f2 j

j

k ρ
f ρ diag ρ      with        k ρ k k tanh ρ

a ρ

⎡ ⎤
= = +⎢ ⎥

+⎢ ⎥⎣ ⎦
#

#
# # # #

#
 (4) 

where kf1 + kf2 represents the saturation value and the gain for small errors is given by kf1/a. 
This saturation function avoids applying velocities that might saturate the robots' motors. 

In Equation 3, J-1(ξ) is the inverse Jacobian of ξ. Computation of inverse matrices is 
unattractive from the point of view of efficiency. Here it becomes clear why ǒ(ξ) was chosen 
to be equal to ξ: the Jacobian of ξ is simply an identity matrix and so is the inverse Jacobian. 

Then 
frξ$  is obtained through the direct sum of vectors 

dǒ$ and ( )ǒ~fǒ~ , reducing the 

associated computational cost. 

The action of the Pose Controller is illustrated in Figure 2, where it can be seen that 
frξ$  does 

not have the orientation it would if the function ( )ǒ~fǒ~  were not used. It is due to the 

saturation of the formation error imposed by ( )ǒ~fǒ~  which makes the sum ǒ~ǒd +$ , 

represented in Figure 2 by 
frξ′$ , different from 

dǒ$  + ( )ǒ~fǒ~ = 
frξ$ in both norm and orientation. 

However, this deviation does not affect this controller's stability because as the follower 

approximates a desired pose, 0ǒ~ →  and, therefore, 
dfr ǒξ $$ → . 

 

Fig. 2. Resulting 
frξ$  after applying the Formation Controller. 

Hence, the main idea for the Pose Controller is to generate velocity signals for all followers 
in order to bring them into formation, but taking the leader coordinate frame as reference, 
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which means it does not consider the leader motion. This is done by the Compensation 
Controller, which works in parallel with the Pose Controller. 
It is known that the leader has its own linear and angular velocities, defined according to an 
absolute reference frame. These velocities must be considered when computing the follower 

velocities. In Equation 5, 
frξ$  is added to 

compξ$ , a vector containing the compensations for the 

leader velocities. The resulting vector 
rξ$  provides the follower velocities needed to achieve 

at the same time the desired formation and compensate for the leader's motion. 

 
compfrr ξξξ $$$ +=  (5) 

2.3 The compensation controller    

The values of the elements of 
compξ$  are computed to eliminate/overcome the effects caused 

by the leader's linear and angular velocities. Figure 3 shows an example in which the leader 
moves with linear (vl) and angular (ωl) velocities and the i-th follower is considered to be 
already at the desired position (xi   yi)T. 
Once vl and ωl are known, r and ri, the circles radii described by the leader and the follower, 
are given by Equation 6. 

 ( ) ( )2i

2
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l

l yxrrand
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v

r ++==  (6) 

 

Fig. 3. Leader's velocities compensation. 

Equations 7 - 9 describe the way compensation velocity is calculated for the i-th follower. 
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where vix and viy are the follower compensation velocity components 
compξ$ (vix, viy) in the 

leader reference frame.  It is also important to mention that when the leader robot has no 

angular velocity (ωl = 0), 
compξ$  equals the leader linear velocity with vix = 0  and viy = vl. 

2.4 Generating commands  

After obtaining 
rξ$ , the linear and angular velocities to be sent to the i-th robot are defined 

by Equations 10 and 11. 

 ( )irici α~cosξv $=  (10) 

 ( ) liα~rici ωα~fαω ++= $  (11) 

where 
riξ$ is the desired velocity norm for the i-th follower and 

riα$ is the change in its 

orientation during time. The term 
iα~ , defined as 

iα~ = αri - αi, is the angular error, with αri 

and αi representing the reference angle and the robot current orientation, all represented in 
the leader frame, as shown in Figure 4. Notice that, for simplifying Figure 4 in order to help 
understanding, we considered the leader angular velocity (ωl) equal to zero. 
The function ( )iα~ α~f , as before, is a saturation function for the error given by Equation 12. 

 ( ) ( )iω2
3

ω1iα αktanhkαf ~~
~ =  (12) 

where kω1 represents the saturation value of the orientation error and kω2 controls how fast 
this function reaches its saturation value. ( )iα~ α~f  has an interesting characteristic: its 

derivative tends to zero as the orientation error approaches zero, which means that 
transitions between positive and negative values are smooth, as can be seen in Figure 5.  In 
practice, it avoids oscilations in the followers' trajectories. 

 

Fig. 4. Angles related to the linear and angular velocities sent to the followers. 
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Fig. 5. Shape of ( )iα~ α~f  for kω1 = 0.5 and kω2 = 1. 

The objective of ( )iα~ α~f  is to prevent initial orientation errors causing high angular velocity 

commands which would compromise control stability and submit robot motors to abrupt 
voltage variations. 

2.5 Proof of stability  
2.5.1 Proof for the pose controller  
Due to their dynamics, the followers are not able to immediately achieve the desired 
formation velocities. However, these velocities are asymptotically achieved, represented by 
Equation 13, as it will be proved in Section 2.5.2. 

 
frξξ $$ →  (13) 

where ξ$  is the vector of current velocities and 
frξ$  is the vector containing the reference 

velocities for attaining formation. Equation 13 can also be written as Equation 14. 

 0ǈwithǈξξ fr →+= $$  (14) 

where ǈ is the difference between the desired and current velocities. The control law for the 
Pose Controller is given by Equation 15, repeated here for convenience. 

 ( ) ( )( )ǒfǒξJξ ǒd
1

fr
~

~+= − $$  (15) 

Equation 16 is obtained by the substitution of 14 in 15. 

 ( ) ( )( )ǒfǒξJǈξ ǒd
1 ~

~+=+ − $$  (16) 

Multiplying Equation 16 by J(ξ) results in Equation 17. 

 ( ) ( ) ( )ǈξJǈwhereǒ~fǒǈξξJ 1ǒ~d1 =+=+ $$  (17) 

As known from Equation 2, ǒ$ = ( )ξξJ $ , which leads to Equation 18. 

 ( )ǒ~fǒǈǒ ǒ~d1 +=+ $$  (18) 
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The temporal derivative of ǒ~  produces Equation 19. 

 ǒǒǒǒǒǒ dd
$$$$$$ +=⇒−= ~~  (19) 

The substitution of 19 in 18 gives Equation 20. 

 ( )ǒfǈǒ ǒ1
~~

~−=$  (20) 

Then the following Lyapunov candidate function is proposed: 

 ǒǒ
2

1
V T ~~=  (21) 

whose temporal derivative is 

 ( )ǒ~fǒ~ǈǒ~ǒ~ǒ~V ǒ~
T

1
TT −== $$  (22) 

For V$  to be definite negative it is necessary that: 

 ( )
ǒ~ǈǒ~

ǒ~ a

ǒ~k
1

2f >
+

 (23) 

where ( )ǒ~k f
 is simply 

 ( ) ( ) ( )ǒtanhkkǒkǒk f2f1ff
~~~ +==  (24) 

Hence, the following condition must be satisfied: 

 
( ) 1f2f1

1

ǈǒ~tanhkk

ǈa
ǒ~

−+
>  (25) 

As the followers achieve the desired velocities, ║ǈ║ → 0; and so ║ǈ1║ → 0. Then the 

condition of Equation 25 will be satisfied for some finite time, which means that 

( ) 0tǒ~ → with t → ∞. 

2.5.2 Proof for the generated commands  
The temporal variation of the followers' orientations is expressed by 

 
lc ωωα −=$  (26) 

where the generated angular velocity ωc, is given by 

 ( ) lαrc ωαfαω ++= ~
~$  (27) 

Putting 27 into 26 results in Equation 28. 

 ( )α~fαα α~r += $$  (28) 
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Deriving α~  respect to the time gives 

 αααααα rr
$$$$$$ +=⇒−= ~~  (29) 

Then Equation 28 can be rewritten as 

 ( ) 0αfα α =+ ~~
~

$  (30) 

Thus, the following Lyapunov candidate function is proposed 

 αα
2

1
V T ~~=  (31) 

whose temporal derivative is 

 ( )α~fα~α~α~V α~
TT −== $$  (32) 

As ( )α~fα~  is an odd function, ( ) 0α~fα~ α~
T > for 0α~ ≠ , which means that V$ is definite negative 

( 0V<$ ). Hence ( ) 0tα~ →  for t → ∞. Finally, since ( ) 1α~cos i → , we have 
rici ξv $→ , 

concluding this proof. 

3. Image processing and pose estimation  

As said before, the leader robot is equipped with an omnidirectional vision system. 
Although omnidirectional images suffer from typical problems like loss of resolution and 
distortion, their wide field of view allows the leader to visualize all the region around itself, 
which facilitates localizing the teammates, avoiding obstacles and mapping the 
environment. 
Each follower robot is identified by a colored rectangle placed on its platform. Their poses 
are estimated through color segmentation and Kalman filtering. Usually two colors are used 
on the top of the robots, so the orientation can be easily calculated (Santos-Victor et al., 
2002). Because of the distortion of omnidirectional images, we decided to use just one color 
per robot. If two colors were used, each colored area would be reduced to half of the area 
seen on the image. Also image distortion increases as the robot moves away from the leader 
and could compromise robot localization if just a small part or none of the color of interest is 
seen on the image. 
As discussed in the previous section, the leader must know the pose of each cellular robot 
belonging to the team in order for the team to navigate in formation. However, at the 
beginning, the leader does not know the follower's initial poses and colors. So it then needs 
to detect the initial position, color and orientation of each cellular robot. Once that is done 
the leader can start moving. 
The image processing can then be divided into three main steps: 

• Initial position detection; 

• Tracking for initial orientation detection; 

• Tracking for formation control. 
In order to make the controller independent of image measurements (pixels), robot positions 
were converted to meters. One way of doing this and also eliminating image distortion is to 
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remap those images to bird's eye view (Vassallo et al., 2004; Pereira et al., 2005). 
Unfortunately this remapping depends on system calibration and requires more steps on 
image processing. 
Instead a transform ƥ, composed of a set of polynomial functions, was defined to recover 
robot world positions from image coordinates. The process of determining ƥ is simple: first 
the region around the leader is divided into n sectors, each one defining a matching table 
relating distances on the image plane (pixels) and the real world (meters). Then each table is 
used to interpolate a polynomial function that estimates the follower positions. 
Although the number of functions composing ƥ can be high, it was decided to use just four, 
as illustrated in Figure 6, since they are enough for this application. It is important to note 
that this approach is much faster than using bird's eye view remapping. 
 

 

Fig. 6. Sectors used to define the ƥ transform. 

The polynomial functions obtained are plotted in Figure 7. 

3.1 Detecting initial positions  
Before starting to detect the followers' initial positions, the leader robot must focus its 
attention on a working area, the region around it in which all followers should be to be seen 
by the leader. That is because the distortion caused by omnidirectional images, which makes 
object detection impractical at some distance from the visual system. This region is defined 
by the mask exhibited in Figure 8-(a), which is applied to the omnidirectional image 
providing the result shown on Figure 8-(b), where a cellular robot is seen close to the leader. 
This first step is accomplished by means of movement detection. Then it is not necessary to 
use color images, but only their grayscale version. In this work, movement detection is done 
based on a robust version of the background subtraction technique: instead of simply 
comparing a captured image with a previously constructed background, the leader 
compares two backgrounds. This procedure is necessary because of noise and the  low 
resolution of omnidirectional images. 
The leader starts by constructing the first background, called the base background -- Figure 9 
-(a), while all robots are standing by. When that is finished, Follower 1 executes a short 
forward displacement and as soon as it stops another background is constructed, the 
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discriminant background -- Figure 9-(b). Then the leader compares both backgrounds and the 
result is thresholded, producing a blob as shown in Figure 9-(c), which represents the 
follower displacement and is used for estimating its initial position and color. After that the 
rectangle encompassing the blob -- Figure 9-(d) -- must be found because it will be used in 
the following steps by a tracking algorithm to estimate robot positions. 

 
(a) (b) 

 
(c) (d) 

Fig. 7. Shape of each function composing the ƥ transform. 

  
(a) (b) 

Fig. 8. (a) Binary mask applied to omnidirectional image (b) Resulting working area. 
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(a) (b) (c) (d) 

Fig. 9. (a) Base background (b) Discriminant background (c) Blob obtained after 
thresholding the difference between the constructed backgrounds (d) Resulting 
encompassing rectangle.  

Often, after executing its displacement, a cellular robot generates more than one blob, as 
shown by Figure 10-(a). So a filter algorithm had to be developed: it checks each blob's color; 
if it is the same and they are sufficiently close to each other, the encompassing rectangles are 
combined into a single encompassing rectangle; if not, only the larger one is retained – 
Figure 10-(b). 
 

  
(a) (b) 

Fig. 10. (a) Image with more than one blob (b) Filtered image.  

The above procedure is executed to detect the initial position of just one follower. However, 
it is not necessary to construct two new backgrounds for the next follower to be detected, 
since the discriminant background related to the previous robot can be used as the base 
background for the next one. Then, for n followers n+1 backgrounds are constructed, instead 
of 2n. 

3.2 Detecting initial orientations  
Once the color and the initial position of each follower is known, a tracking algorithm can be 
used for further estimate of robot positions. The CAMSHIFT (Continuously Adaptive Mean-
SHIFT) algorithm, from OpenCV library, is attractive for this kind of application. Given a 
color histogram and an initial search window (both determined in the previous image 
processing step) it returns a new search window for the next image based on color 
segmentation. Such window is found using the dimensions of the segmented area and its 
centroid. This provides a fast and robust online performance for the tracking algorithm. 
CAMSHIFT and ƥ transform taken together allow the leader to estimate with adequate 
precision all follower positions. Then the procedure for finding the initial orientations is as 
follows: at the same time, all cellular robots execute again a forward displacement. While 
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they are moving, the leader saves the trajectory described by each follower, as illustrated by 
Figure 11. Then the leader has, for each follower, a sequence of points describing a straight 
line, with its angular parameter corresponding to the relative orientation α0. However, due 
to measurement noises, it is necessary to apply an algorithm like RANSAC (Fischler & 
Bolles, 1981) to eliminate outliers. After that, a Least Squares algorithm is used to find each 
follower orientation thus completing the initial pose estimation. 
 

 

Fig. 11. Capturing a follower trajectory in order to determine its initial orientation α0. 

3.3 Tracking for formation control  
Once the leader knows all followers' initial poses the logical next step would be to start 
moving and drive the team to the desired formation. However, there is a question that must 
be answered first: given a desired position, which follower should be driven to there? When 
a desired pose is achieved, because of the non-holonomic restriction, the respective follower 
must be aligned to the leader, i. e., its relative orientation must be 90°. This means that all 
final orientations are already known, but the final position that each follower should have is 
not known yet. 
To solve this problem, a cost matrix C was defined - Equation 33 - where n is the number of 
cellular robots, cij represents the cost for the i-th follower to reach the j-th position. In other 
words, the i-th row of C is a vector containing the costs of the i-th follower relative to all 
desired positions. 
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There are many ways of defining how to calculate the costs cij. In this work, it was decided to 
use the square of the euclidian distance between current and desired positions. Each possible 
followers-desired positions configuration can be viewed as a combination of n costs, taking 
each one from a different row and column of C. The associated cost is simply the sum of the n 
costs that compose such configuration. An advantage of this approach is that it permits an 
analogy with the energy spent by each follower to reach some desired position. Then, it is easy 
to see that the ideal configuration is that having the least associated cost. 
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After defining the ideal configuration, the leader starts to move. To drive the cellular robots 

into formation it is necessary to estimate their poses, which is based on the CAMSHIFT 

algorithm: robot positions are estimated using the centroids of the detected colored areas 

and passed to the Formation Controller. However, due to measurement noises, it is very 

difficult to have reliable orientation values if they are estimated on every acquired image. 

One way of doing that using just one color per robot is shown in (De La Cruz et al., 2006). 

Instead, it was decided to define a simpler method, based on the geometry of the robot 

trajectories, as shown in Figure 12. Each follower orientation is calculated after the robot has 

moved at least a minimum displacement Ʀsmin, defined in Equation 34 (these values were 

chosen empirically), whose objective is to reduce noise influence caused by image low 

resolution, mirror distortion and illumination changes. 
 

 

Fig. 12. Follower trajectory while its pose and velocities are not updated. 

 ( )ǒ20.03tanh0.02Ʀsmin
~+=  (34) 

The orientation α is estimated considering that, between two control signal updates, the 
robot maintains the previous linear and angular velocities and performs a curve trajectory. 
From Figure 12, the straight line s can be defined by Equation 35. 
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The distance d is obtained from the displacement Ʀs and the angle ǉ, using the follower's 
angular velocity ω and the time interval Ʀt spent to move from P1(x1, y1) to P2(x2, y2). 
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Then d, the line s and the circle equation are used to find O(x0, y0),  which is used to 
calculate the angle α. 
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A special case is considered when x2 = x1: if y1 > y2, α = -Ǒ/2, if not, α = Ǒ/2. Then a Kalman 
Filter was applied to α, resulting in more stable estimates and reducing the errors for the 
next loop control. Kalman filtering was chosen because of its performance and low 
computational cost. 
Figure 13 shows follower motion detection for the first pose estimation and the further 
tracking software running. White outlines involve the colorful rectangles segmented from 
an omnidirectional image. 
 

   

Fig. 13. Robots detection and the tracking software. 

From the above equations it is clear that Ʀs must be known in order to determine robot 

orientations. It is computed while the team is moving and this is done based on a 2D 

geometric transformation, which is defined by composing a translation and a rotation, since 

the leader has, in general, both linear and angular velocities. The idea is to define two 

reference frames: the first corresponds to where the previous image was captured – S0 – and 

the second to where the current image has been captured – S1 – according to Figure 14, with 

dx and dy standing for x and y leader displacements and γ its rotation. 

Then, knowing x0, y0, dx, dy and γ, Equation 38 shows how to obtain x1 and y1. It is 

important to note that (x1   y1)T do not mean the current follower position, but the previous 

position represented in the most recent frame S1. Ʀs can now be calculated through the 

euclidian distance between the current position and (x1   y1)T. 
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Due to the projection geometry of omnidirectional visual systems, robot orientations are not 

affected by the translation of the coordinate system, only by its rotation. Figure 15 shows 

this effect, where α0 and α1 stand for a robot orientation on previous and current reference 
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frame, respectively. Hence, it is easy to see that α1 = α0 - γ. Every time a follower presents a 

Ʀs greater than Ʀsmin its pose should be updated and passed to the controller in order to 

generate new control signals. 

 

Fig. 14. Effects of leader's frame translation and rotation on a follower position 
representation. 

 

 

Fig. 15. Effect of leader's frame rotation over a follower orientation. 
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4. Simulation  

Before testing on real robots, some simulations were carried out to evaluate the behavior of 

the proposed controller while varying some parameters, although not considering the team 

dynamics. Without loss of generality, the initial position of the leader is chosen to be 

coincident with the world frame origin. Several simulations were carried out with the same 

controller parameters used in the experiments.  

The idea of the presented simulation is to reproduce an obstacle avoidance maneuver while 

maintaining formation, a common situation in navigation tasks. Figure 16 shows the 

trajectories described by the team during this simulation. The leader had a linear velocity of 

60 mm/s and an angular velocity according to the function in Equation 39, which is the 

same function used in the last experiment shown in this chapter. 

 ( ) ( )( )
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⎨
⎧ ≤≤−

=
otherwise                                0

100st10forttktanhk
tf 121

ωl
 (39) 

where k1, k2 and t1 are auxiliary parameters used to control the desired shape of the leader's 
trajectory. For this simulation k1 = 1.5°/s, k2 = 0.2 and t1 = 55 s, which means that for 10 < t < 
100 s the leader's angular velocity varied from -1.5°/s to 1.5°/s, reaching zero at t = t1 = 55 s. 
The middle blue line indicates the leader's trajectory. The dashed outer lines represent the 

desired trajectories for the followers, that must stay on positions ǒd1 = (-0.50   -0.30)T and ǒd2 

= (0.50   -0.30)T relative to the leader. The solid lines indicate the followers' trajectories that 

started from initial positions ǒ01 = (-0.70   -0.80)T and ǒ02 = (0.30   -0.90)T. The red triangles 

indicate how the team gets into formation. Followers' initial orientations were 135° and 120°, 

respectively. The followers achieve their desired positions and successfully maintain the 

formation, describing the proposed trajectory. 
 

 

Fig. 16. Trajectory described by the team during this simulation. 

Figure 17 exhibits the effect of the leader's angular velocity variation on followers' poses, in 

which (a) and (b) indicate followers' position errors while (c) shows their orientations. It is 
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possible to see that abrupt variations or sign changes of the leader's angular velocity disturb 

the system, thus causing perturbations on followers' poses just after they happen. Since such 

perturbations are common during robot navigation, the controller must drive all followers 

to the desired poses regardless of that, which is shown by Figures 16 and 17. 
 

 
(a) (b) 

 
(c) 

Fig. 17. Simulation results: position errors for (a) Follower 1 (b) Follower 2. (c) Followers 
orientations. 

5. Experiments and results  

The experiments presented here were performed with a robot team composed of a Pioneer 
2DX (Pentium II, 266 MHz, 128 MB RAM) as leader and two cellular robots as followers. 
They are shown in Figure 18.  
The leader has an omnidirectional system with a perspective color camera and a hyperbolic 
mirror. The two cellular robots were assembled in our lab and have about the size of 15 x 25 
cm and 10 cm height. They are differential robots equipped with the MSP430F149 
microcontroller and H-bridges TPIC0108B from Texas Instruments to drive the motors. 
Initially communication between leader and followers was accomplished by cables for serial 
communication, substituted later by a radio link. 
Several experiments were also carried out. We decided to present three of them because 
they show the key features of the proposed controller. 
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Fig. 18. Robots used for the experiments. 

5.1 Experiment 1  
In this first experiment, the idea was to execute a simple translation in order to show the 
controller behaviour in a free corridor, for example. Then the leader has developed a 
straight line with 60 mm/s of velocity. Followers' initial positions were estimated at ǒ01 = (-
0.50     -0.40)T, ǒ02 = (0.35   -0.50)T, while the desired positions were ǒd1 = (-0.60   0.30)T, ǒd2 = 
(0.60   0.30)T, that is, an isoceles triangle with followers in front of the leader. Initial 
orientations were approximately 135° and 60°, respectively. 
Figure 19 shows the position errors for both followers, while Figure 20 gives the behaviour 
of their orientations. The error related to the x-coordinate is plotted in blue, while the red 
line indicates the error for the y-coordinate. In Figure 20, the calculated values for 
orientation are indicated in blue and the resultant values after Kalman Filtering are in red. 
 

 
(a) (b) 

Fig. 19. Experiment 1: position errors  (blue) x and (red) y for (a) Follower 1 (b) Follower 2. 

From Figure 20 it is possible to see that after the transient stage, both orientations stay close 
to 90°. This result, together with the position errors shown in Figure 19, means that both 
followers achieve the desired poses and keep them until the end of the experiment. 
The trajectory described by the group is illustrated in Figure 21, in which it is clear that it is 
not actually straight. The reason is a disalignment on the leader's left wheel, which affects 
encoder readings. As a result, the robot is unable to perform exactly the required linear and 
angular velocities. This effect is present in all experiments shown, but becomes more visible 
when the trajectory should be a straight line. 
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(a) (b) 

Fig. 20. Experiment 1: orientation behaviour (blue) before and (red) after filtering of (a) 
Follower 1 (b) Follower 2. 
 

 

Fig. 21. Experiment 1: trajectory performed by the group. 

5.2 Experiment 2  
As has been shown in the first experiment, the leader navigated with fixed orientation. Now, 
the idea is to evaluate the controller behaviour when the reference frame is always changing its 
orientation. This second experiment was run with this purpose. Once again, leader's linear 
velocity was 60 mm/s, but its angular velocity was constant and equal to 1,5 °/s. 
The followers were detected at positions given by ǒ01 = (-0.70   0.0)T, ǒ02 = (0.0   -0.90)T and 
their desired positions were ǒd1 = (0.0   0.70)T, ǒd2 = (0.0   -0.70)T, which means that one 
follower should stay in front of the leader and the other behind it, as shown by Figure 22. 
Initial orientations were both estimated as being 85°. 
Figure 22 serves also to see that the radii described by the followers are greater then that 
described by the leader and they are related by                      , with i = 1, 2. The position 
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errors obtained are depicted in Figure 23 and Figure 24 shows the evolution of both 
followers' orientations.  
 

 

Fig. 22. Expected geometry formation for the second experiment. 

Here it is worth mentioning the reason for the negative peak relative to the second 

follower's x-error (Figure 23-(b)) after about 60 seconds of experiment: this robot got stuck 

for a moment and could not follow the leader. But as soon as it could move again, the 

controller brought it back to the desired pose. We decided to present this particular 

experiment also because it shows the robustness of the controller on dealing with 

disturbances. 
 

 
(a) (b) 

Fig. 23. Experiment 2: position errors (blue) x and (red) y for (a) Follower 1 (b) Follower 2. 

Another important observation can be done with respect to the orientations presented by 

the cellular robots. According to Figure 24 the followers' orientations did not achieve the 

www.intechopen.com



Nonlinear Stable Formation Control using Omnidirectional Images 

 

93 

steady state around 90°, but close to 100° and 80°, respectively. This fact was already 

expected and can be easily explained by Figure 22, where it can be seen that for a 

counterclockwise rotation the robot that is going in front of the leader must have an angle 

greater than 90° relative to the leader frame, while the other robot must present an 

orientation less than 90°. As might be expected, the relation between these angles is inverted 

for a clockwise rotation. 

 

 
(a) (b) 

Fig. 24. Experiment 2: orientation behaviour before (blue) and after filtering (red) of (a) 
Follower 1 (b) Follower 2. 

The resulting trajectory is illustrated in Figure 25 in which the team was moving 

counterclockwise, since leader's angular velocity was positive. It should be noted that the 

robots rapidly achieved the desired formation and maintained it until closing the circle, as 

shown by the triangle representing team formation, almost becoming a straight line. 

 

 

Fig. 25. Experiment 2: trajectory performed by the group. 
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5.3 Experiment 3  
The simulation presented above, although not considering robots' dynamics, illustrates the 
controller behaviour in a common situation in which the team needs to get into formation 
and avoid an obstacle at the same time. The objective of this last experiment was to evaluate 
the controller in the same situation, but using real robots. 
Hence, in this experiment the leader navigated with the same velocities it had in the 
simulation and followers' initial positions were approximately ǒ01 = (-0.40   -0.80)T and ǒ02 = 
(0.25   -0.85)T, while their desired positions were ǒd1 = (-0.50   -0.30)T and ǒd2 = (0.50   -0.30)T. 
Initial orientations were estimated as being 105° and 80°, respectively. Figure 26 gives the 
position errors and Figure 27 shows the followers' orientations obtained with this 
experiment. 
 

 
(a) (b) 

Fig. 26. Experiment 3: position errors (blue) x and (red) y for (a) Follower 1 (b) Follower 2. 

 
(a) (b) 

Fig. 27. Experiment 3: orientation behaviour before (blue) and after filtering (red) of (a) 
Follower 1 (b) Follower 2. 

As in the simulation, followers' poses suffered from leader's angular velocity variations, but 

the controller successfully drove the robots to the desired formation. Figure 28 shows the 

performed trajectory, which is not exactly the same of that obtained in the simulation 

because of the disalignment on the leader's left wheel. 
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Fig. 28. Experiment 3: trajectory performed by the group. 

5.4 Remarks  
The experiments shown demonstrate that the robot team has achieved the desired formation 
and maintained it until the end of the respective experiment, even suffering the influence of 
image noise, low resolution of the camera and reduced useful image area. Position errors 
were limited to 10 cm in most experiments. 
The use of Kalman Filter provided more reasonable orientation values, thus significantly 
improving the controller performance through better robot's pose estimation. As a result, 
the generated commands are smoother than those obtained without filtering. 

6. Conclusion and future work  

 

This chapter has presented a multirobot formation control strategy based on nonlinear 
theory and omnidirectional vision. The objective is to drive a team of simple and 
inexpensive mobile robots to a desired formation using only visual information. Because of 
the limitations of the celular robots they must be led by a leader robot having the necessary 
processing capacity and equipped with an adequate sensor. Thus, the formation control is 
done using a centralized approach. 
Group formation is accomplished by a stable nonlinear controller designed to drive the 
followers into formation during navigation regardless of which sensor is used to implement 
the feedback. In this work, feedback was implemented using a single omnidirectional vision 
system because it allows the leader to localize all followers by acquiring just one image. 
An important advantage of our approach is that the working area is not limited since the 
vision system is attached to the leader and so is the reference frame, which means all 
measurements are taken relative to the leader. Besides that, all computations are carried out 
onboard the leader, discarding the use of an external computer. 
Through a set of image processing techniques followers' poses are reliably estimated. That 
includes motion segmentation, morphological filtering and color tracking, complemented by 
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Kalman filtering combined with Least Squares and RANSAC algorithm for optimization.  
Followers' positions and orientations are then used by the controller to define desired 
velocities for the robots to attain formation. 
Simulations and experiments were carried out to evaluate the controller performance and 
current results show that the system performs well even with noisy and low resolution 
images. As future work, the controller shall be improved and obstacle avoidance will be 
included. Optical flow on omnidirectional images might play an important role on obstacle 
avoidance, and time to collision can be used to provide a safe team navigation. 
Finally, this work may represent a good step towards applications that require using a large 
number of robots while keeping costs within reason. Combining centralized and 
decentralized strategies could be used to make a large robot group divide itself into smaller 
teams each having one leader. Leaders would negociate navigation and task execution 
among themselves while controlling the follower teammates. This approach would provide 
stable formation control and robustness against the failure of a leader. In this case, other 
leaders could adopt the “orphan” followers and the task in charge would be handled with 
reduced impact. 
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