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Abstract

Arthur Krener and Roger Brockett pioneered the feedback linearization problem for
control systems, that is,  the transforming of a nonlinear control system into linear
dynamics via change of coordinates and feedback. While the former gave necessary and
sufficient conditions to linearize a system under change of coordinates only, the latter
introduced the concept of feedback and solved the problem for a particular case. Their
work was soon extended in the earlier eighties by Jakubczyk and Responder, and Hunt
and Su who gave the conditions for a control system to be linearizable by change of
coordinates and feedback (full rank and involutivity of the associated distributions). It
turned out that those conditions are very restrictive; however, it was showed later that
systems that fail to be linearizable can still be transformed into two interconnected
subsystems: one linear and the other nonlinear. This fact is known as partial feedback
linearization. For input-output systems with well-defined relative degree, coordinates
can be found by differentiating the outputs. For systems without outputs, necessary and
sufficient geometric conditions for partial linearization have been obtained in terms of
the Lie algebra of the system; however, both results of linearization and partial feedback
linearization lack practicability. Until recently, none has provided a way to actually
compute  the  linearizing  coordinates  and  feedback.  In  this  paper,  we  propose  an
algorithm allowing to find the linearizing coordinates and feedback if the system is
linearizable,  and in  the  contrary,  to  decompose  a  system (without  outputs)  while
achieving the largest linear subsystem. Those algorithms are built  upon successive
applications of the Frobenius theorem. Examples are provided to illustrate.
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1. Introduction

Roger Brockett is considered as the father of feedback linearization, one of the most important
techniques for studying nonlinear systems. The problem of feedback linearization seeks to find
new coordinates in which the system exhibits linear dynamics driven by new control inputs.
The role of linear systems in engineering and mechanical systems has already been demon-
strated in several applications. First, let us consider a linear system

(1)

where ��, �1, ⋯, �� are, respectively, on , Hx a linear vector field on , 

denotes the state of the system, and  the control input. To the linear system
Λ, we attach two geometric objects: one called controllability space  as
a n × (nm) matrix whose columns are those of the matrices Fi−1G for � = 1,   2,⋯, �; the other
called observability space  as a p × (nm) matrix whose columns are those
of the matrices Hi−1F for � = 1,   2,⋯, �. The system Λ is controllable if and only if  and
the system is observable if and only if . By a linear change of coordinates z = Tx and
a linear feedback � = �� + �� where T, K, and L are matrices of appropriate sizes, T and L being
invertible, the system Λ is transformed into a linear equivalent one

(2)

with � = T(F + GK)�−1, � = ���, and C = HT−1.

For the linear system �̇ = �� + �� where A and B are n × n and n × m matrices, respectively, we

denote by �� = [�   ��   ⋯�� − 1�] and �� = dim�� . We define �� = max ��     �� ≥ �  where

n0 = 0 and ni= mi–mi−1 for 1 ≤ i ≤ n. It is straightforward to notice that �1 ≥ ⋯ ≥ �� with�1+⋯+ �� = �. It is a classical result of the linear control theory that a certain choice of the

matrices T, K, and L leads to the Brunovsky canonical form Λ = Λ�� for which� = ����   �1,   �2, ⋯, ��  and � = ����   �1,   �2, ⋯, ��  with (see [1])
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(3)

form a canonical pair of dimension ki. Moreover, � = 1 0 ⋯   0 .

Now let us consider a nonlinear control system (control-affine for simplicity)

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

 = + = + + +

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y h x h x h x

ò ò

(4)

where  denotes the state of the system, and  the control
input., �, �1, ⋯, �� are smooth or analytic vector fields with � 0 = 0, and ℎ1, ⋯, ℎ� analytic
functions on .

The problem of finding new coordinates  in which the system Σ, driven by
new inputs , takes the form Λ is referred as the input-output static state
feedback linearization. For input-output systems, the problem of linearization is equivalent to
achieving a relative degree (see details later). When the relative degree is achieved, finding the
coordinates system in which the system becomes linear is a simple differentiation process. For
systems without outputs, we only refer to static state linearization (Problem 1) or static state
feedback linearization (Problem 2) as follows:

Problem 1: Find new coordinates � = Φ(�) that transform the system Σ   :   �̇ = � � + � � � into
a linear controllable system �̇ = �� + ��.

Problem 2: Find new coordinates � = Φ(�) and an invertible feedback � = � � + � � � that
transform the system Σ   :   �̇ = � � + � � � into a linear controllable system �̇ = �� + ��.

Arthur Krener [2] formulated and completely solved the first problem by showing that the Lie
brackets of some vector fields have to be zero, that is, a certain set of vector fields associated
with the system have to commute. Roger Brockett [3] solved the second problem under the
assumption that m = 1 (single-input), p = 1 (single-output) and β is constant. The general case
of input-output feedback linearization (Problem 2) was solved by Jakubczyk and Respondek
[4] on one side, and independently by Hunt and Su [5] on the other side. Necessary and
sufficient geometric conditions were obtained and showed that there is only a small class of
nonlinear systems that can be linearized by feedback. Indeed, the system should satisfy the
following two strong conditions:

(F1) an involutive distribution,
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(F2) a distribution with full rank equal to the dimension of the system.

Those conditions are very restrictive, thus making the class of nonlinear systems that can be
linearized by static state feedback very small. To enlarge the class of nonlinear systems that
can be analyzed via feedback linearization, several techniques have been introduced including
dynamic feedback linearization, nonregular state feedback linearization, partial feedback
linearization, orbital feedback linearization, and transverse feedback linearization. Dynamic
feedback linearization differs from static state feedback linearization in the sense that a

compensator �̇ = � �,� + � �,� �,��ℜ�, � = � �,� + � �,� � is thought that enlarges the
dimension of the system. This means that one tries to linearize the system

(5)

using an extended state space transformation � = � �,� �ℜ� + � . This problem is referred as
regular feedback linearization (�( . ) is an invertible matrix). More general feedbacks have been
exploited to enlarge the class of linearizable systems by allowing the matrix �( . ) to be
noninvertible, that is, admitting fewer inputs than the original system [6, 7]. In this case, we
talk about nonregular feedback linearization [8]. Orbital feedback linearization, also known
as time scale feedback linearization, introduces a new time scale τ such that �� �� = �(�) is a
positive function (preserve orientation). Hence, in the new time scale τ, the problem becomes
to linearize the time-scaled system (see [9] and references therein)

(6)

Transverse feedback linearization [10] deals with transforming a control-affine system coupled
with a controlled invariant manifold into a system whose dynamics, transversal to the invariant
manifold, are linear and controllable.

The feedback linearization problem has been thoroughly investigated in the past four decades
but have regained interest recently with new algorithms developed to circumvent the solving
of partial differential equations associated to the linearization (see [4, 5, 21–28], and the
references therein). Whenever a system fails to satisfy either condition (F1) or (F2), its dynamics
contain nonlinearities in any given coordinate system. The fundamental question is in which
coordinates does the system exhibit the largest linear subsystem. This question was first
addressed naturally for systems with outputs [6, 7, 11–20]. We propose in this paper an
algorithmic way of transforming a control system into a cascade of two systems: one nonlinear
and one linear with the largest dimension. First, we will recall basics about vector fields and
the Frobenius theorem, then Section 3 deals with linearization of control systems with outputs,
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Section 4 contains the partial linearization algorithm. We end the paper with Section 5 with
few examples as an illustration.

2. Vector fields and Frobenius theorem

The theory of differential equations is one of the most productive and useful contributions of
our modern times. Its applications are widespread in all branches of natural sciences, partic-
ularly, in physics, biology, chemistry, engineering, ecology, and in weather predictions, just to
name few. It plays the role of a connector between abstract mathematical theories and appli-
cations in real world problems. Paraphrasing Newton quoted as saying that ”it is useful to
solve differential equations,” a lot has been deserved in solving differential equations with
various methods and techniques provided in the literature. Existence and uniqueness of
solutions have been addressed in many scientific papers and textbooks. Consider the simplest
expression of a linear partial differential equation

( ) ( )∂ ∂
+ + =

∂ ∂


1

1

( )
n

n

u u
f x f x b x

x x
(7)

where �1 � ,⋯, �� � , and b(x) are smooth or analytic functions in the variable x. This partial
differential equation is referred to as a homogeneous (resp. nonhomogeneous) linear first order
partial differential equation when � � ≡ 0 (resp. . The vector field � �  whose
components are �1 � ,⋯, �� �  is called the characteristic vector field of the homogeneous

equation and the corresponding dynamical system �̇ = �(�), its characteristic equation. The
solutions of the system are the integral curves of the characteristic equation and are often
obtained by solving the so-called Lagrange subsidiary equation (also called characteristic
equation)

( ) ( ) ( )= = =1

1

n

n

dxdx du

f x f x b x
(8)

Several methods have been devoted to the solving of such system among them Euler's method
and Natani’s method. Most of the work on ordinary differential equations have been done
around equilibrium points (nonregular or singular point), that is, a point x0 where (fx0 = 0) .
The reason being that regular points, that is, where � �0 ≠ 0 are not topologically reach,
because in those neighborhoods all trajectories are straight parallel lines (straightening
theorem). Though this fact remains true and hence often neglected, the straightening theorem
has many important applications. Indeed, a solution of the nonhomogeneous partial differ-
ential equation above can be easily found around a regular point x0 of f by simple quadrature
in new coordinates: If � = �(�) is a change of coordinates around x0 that rectifies the vector
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field f, that is, such that �* � = ∂∂�� , then the nonhomogeneous equation simplifies as∂�∂�� = �(�), where � � = �(�(�)) and � � = � � � . A solution � (yielding � = � ∘ �) is given

(9)

The dynamical system �̇ = �(�) takes in this case the canonical form

−

 =
 =

 =
 =









1

2 

1

z  0

0

 

0

 1

n

n

z

z

z

(10)

Theorem 1: (Flow-box) Let f be a vector field defined in a neighbourhood of a nonsingular
point , that is, �(�0) ≠ 0. There exists a local change of coordinates � =  Φ �  in a neigh-

bourhood � of x0 such that Φ* � � = ∂∂��  for all .

The existence and proof of this theorem, as well as its general form, can be found in the
literature. The only difficulty in applying the straightening theorem is in finding the straight-
ening diffeomorphism as one needs to solve the system of highly nonlinear partial differential
equations:

(11)

In earlier work [25], we provided a solution to this problem by giving explicit changes of
coordinates, which will be recalled below. If x0 is a singular point, that is, � �0 = 0, the notion

of linearization, and later of normal form, were introduced by Poincare. Before we recall those
facts, let us remind the reader that dynamical systems are a subclass of a largest class named
control systems. Indeed, a control system can be interpreted as a parameterized family of
dynamical systems �̇ = �(�, �) where for each fixed value of u, ��:� �� � = �(�, �) is a vector

field. When u = 0, we rediscover dynamical systems. Poincare was the first to address the
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problem of linearization for dynamical systems around an equilibrium point. He indeed

showed that when ∂�∂� �0 = � is a matrix whose spectrum � = (�1, ⋯, ��) is not resonant, then

new coordinates � = �(�) exist where the dynamical system takes the linear form �̇ = �� . We
recall that a spectrum � = (�1, ⋯, ��) is called resonant if there are nonnegative integers�1, ⋯,�� with �1+⋯+   �� ≥ 2 such that �1�1+⋯+���� = �� for some 1 ≤ �   ≤ � . He

further showed that, when resonances are present, the dynamical system can be put in a
normal form

(12)

where  is a vector constant whose jth-component is zero when there is no
resonance of order m associated to the eigenvalue λj.

Notations: For a vector field �(�) = (�1 � ,⋯, �� � ) on  and a function h in x-coordinates= (�1, ⋯, ��), we denote by

( ) ( ) ( ) ( )∂ ∂ ∂
= + + +
∂ ∂ ∂


1 2

1 2

f n

n

h h h
h x f x f x f x

x x x
(13)

the Lie derivative of h along the vector field f, and recursively, we define the Lie-derivatives

( ) ( ) ( ) ( )−= = = … ∞    10
, , 1, 2, , 

j j

f f f f
h x h x h x h x j (14)

For another vector field �(�) = (�1 � ,⋯, �� � ) on , we define the Lie bracket [�,   �] between

the two vector fields as a new vector field

( ) ( ) ( ) ( ) ( )( )  = − −     
1 1

, , ,
f g f n g n

f g x g x f x g x f x (15)

and, for simplicity, we denote such vector field as ���� � = �,   � � , and recursively, we

define

( ) ( ) ( ) ( )− = = = … ∞ 
10

, , , 1, 2, ,
j j

f f f
ad g x g x ad g x f ad g x j (16)

Let be a local diffeomorphism with Φ 0 = 0, giving rise to new coordinates� =  Φ � . The vector field f is transported by Φ into a new vector field, denoted� z ≜ Φ*�(�), whose components � z = �1 � , …, �� �  are given for all 1 ≤ j ≤ n by
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(17)

Below we recall the method we provided in [25] to solve the problem of straightening a vector
field around a nonsingular point. Without loss of generality, we will assume the nonsingular
point to be .

Theorem 2: Let � = �1, …,   ��  be aanalytic vector field on and � � = 1��(�) .

i. Define � =  Φ �  by its components as following

(18)

The local diffeomorphism Φ satisfies Φ* � � = 0,…, 0, 1, 0, …, 0 ≜ ∂∂�� .

ii. The local diffeomorphism � = Ψ(�) whose components are given by

(19)

is the inverse of � = Φ(x), that is, Φ Ψ z = z and Ψ Φ � = � such that ∂Ψ∂�� = �(Ψ � ).
The series proposed above are not Taylor series or series in the variable xk (resp. zk). Indeed,

the coefficients ℒ��� − 1 ��� �  and ℒ��� − 1 � �  are functions that depend on the variables xk

(resp. zk). Above, the notation ∂��� ℎ means the ith-derivative of h about the variable zk. We refer

to [tall-adjm] for more details and the generalization of Frobenius theorem to the straightening
of a set of vector fields as stated below.

Theorem 3: Let �1 � ,…, �� �  be a set of analytic vector fields on  such that the distribution� � = �1 � ,…, �� � 1 is involutive and of maximal rank m ≤ n in a neighborhood  of

the origin. There exist an open neighborhood  and a change of coordinates � = Φ(�)
such that Φ* �� � = ∂∂��  for all  and � = 1,   …,   � .
We proposed a constructive way to find the diffeomorphism Φ through successive applications
of Frobenius theorem.
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3. Control systems and feedback linearization

Let us reconsider the control-affine nonlinear system with outputs

(20)

The input-output feedback linearization as stated earlier is to find new coordinates system
 and new inputs  under which the system Σ has linear

dynamics and linear outputs. This problem has been connected directly to the notion of relative
degree. Indeed, one needs to differentiate the outputs repeatedly until the inputs appear.

Formally, if there exists �� > 0 such that  for all 1   ≤ �   ≤ � and0   ≤ �   ≤   ��− 2 with  for some j, we say that γi is the relative degree of the

jth output. In other words, γi is the smallest integer k for which the kth-derivative ��(�) of

yidepends explicitly on the input u. The set �1, ⋯, ��  is called vector relative degree associated

to the outputs of Σ. It is well known that taking  for 1 ≤ � ≤   �� and completing

the coordinates with ��� + 1� . ⋯, ��� , the system can be expressed into m-subsystems of the form

( ) ( ) ( )

( ) ( ) ( )

γ γ

γ γ γ γ
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z f z g z v g z v

y z

(21)

for 1 ≤ i ≤ m with �1+⋯+ �� = � . Thus, the system becomes a connection between a linear

and nonlinear systems and this has been known as partial feedback linearization. A necessary
and sufficient condition for exact linearization, that is, for a multi-input multi-output system
to be transformed into a chain of integrators
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(22)

is that it has a vector relative degree �1, ⋯, ��  such that �1+⋯+ �� = � .
Obviously, different outputs will lead to different cascade systems: A system can be linearized
with respect to some outputs and fail to be linearizable with respect to a different set of outputs.
If we consider a control-affine system without outputs, then the linearization problem
(Problem 2) is equivalent to solving a system of partial differential equation. Indeed, two affine
control systems

(23)

and

(24)

are feedback equivalent via static state transformations � = Φ(�) and feedback � = � � + � � �
if and only if

(25)

In particular, the control-affine system Σ is static state feedback equivalent to a controllable
linear system if and only the system of partial differential equations

(26)

is solvable in Φ, α, and β with Φ a diffeomorphism around the origin, and β invertible. A
geometric characterization of feedback linearization was obtained by Jakubczyk and Respon-
dek [4] and independently by Hunt and Su [5]

Theorem 4: The system Σ is feedback equivalent to a controllable linear system Λ around an
equilibrium point x0 = 0 if and only if the following two conditions are satisfied
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(F1) 

(F2) 

Above  stand for distributions defined recursively by

( ) ( ) ( ) ( ){ }−= … ≤ ≤ 1
 , , , , 1

j j

i f i f i
x span g x ad g x ad g x i m (27)

and  as the distribution spanned by all Lie brackets of the two distributions. The first
condition (F1) stands for the rank condition while the second (F2) is referred as the involutivity
condition.

Thus, to find the largest linear subsystem, the outputs need not to be predefined.

In this paper, we consider only systems without outputs and look to find such largest linear
subsystem. First, an affine system  is said to be partially
static state feedback linearizable if there exists a coordinate system � = (�1, ⋯, ��) and feedback

in which the system takes the form

(28)

where �1 = (�1, ⋯, ��) and �2 = �� + 1, ⋯, �� .
Remark 1: Notice that the form above is also equivalent to

( ) ( )


= +


 = +

 

1

1

2

1 2 1 2
, ,

dz
Az Bv

dt

dz
f z z g z z v

dt

(29)

by reordering the variables accordingly. In the sequel, we will refer more to the former form.
The following result can be found in [17]

Theorem 5: Consider a control affine system Σ.

i. If Σ is locally state space equivalent at x0 to a partially linear system Λp then dim
 in a neighbourhood of x0.

ii. Assume that Σ satisfies dim  and that dim  in a neighbourhood of x0.
Then, Σ is locally state space equivalent at x0 to a partially linear system Λp, such that
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the dimension of the linear subsystem is dim�2 = � − �, and moreover, the linear
subsystem is controllable.

We will provide a step-by-step procedure to write the system as a cascade of a nonlinear
subsystem and a linear subsystem with highest dimension. Notice that a geometrical approach
has been used in [14, 16] where the characterization depends on controllability indices
associated to some lie algebras.

4. Algorithm for partial feedback linearization

We first consider a single-input control system

(30)

and we assume that its linear approximation �̇ = �� + �� is controllable with � = ∂�∂�(0) and� = �(0). Without loss of generality, we can also assume that the pair (F, G) is in Brunovsky
canonical form.

Step 0: We apply the Frobenius theorem to find coordinates � = φ(�) that rectifies the vector
field g, that is, such that φ* � = 0,…, 0, 1 ≜ � and transform the system as

(31)

Completing this step with the push-forward transformation
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− −

−

− − −
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n n n
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z y

z y

z f y

f f f
v f y f y u

y y y

(32)

the system is transformed as

(33)

where
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(34)

Step 1: We reset the original notation, that is, replace the variable z by x, and � �  by � � . Then,

we decompose � �  as following

( )
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     
     
     
     
     = = + +
     
     
     

     
      

 
 

   
 

1 1 1 1 1 1 1 1

2 2 1 1 2 1 1 2

2

2 2 1 1 2 1 1 2

, , , , 

, , , , 

, , , , 

0 1 0

0 0 0 0

n

n n

n

n n

n n n

n n n n n n

n

f x f x x g x x G x

f x f x x g x x G x

f x x x
f x f x x g x x G x

x










 


(35)

If �� − 2� �1, ⋯, �� ≠ 0, then the algorithm stops. This means that the dimension of the largest

linear subsystem is 2. In case �� − 2� �1, ⋯, �� =0, we define �� the largest j such that��� �1, ⋯, �� ≠ 0. If ��� �1, ⋯, �� = 0 for all 1 ≤ � ≤ � − 2, then we put �� = 0. We then apply the

Frobenius theorem to straighten the vector field

( )

( )
( )

( )

−

−

− −

 
 
 
 
 =
 
 
 
 
 






1 1 1

2 1 1

2 1 1

, , 

, , 

, , 

1

0

n

n

n n

g x x

g x x

g x
g x x

(36)

by defining coordinates � = φ(�) such that φ* � = 0,…, 0, 1, 0 ≜ ��. Notice that, because g

depends only on the variables �1, ⋯, �� − 1, so do the first (n–1) components of the diffeomor-

phism φ. Thus, the system is transformed as

Feedback and Partial Feedback Linearization of Nonlinear Systems: A Tribute to the Elders
http://dx.doi.org/10.5772/64689

33



(37)

We thus apply the push-forward transformation

( )

( ) ( )

( ) ( )

− −

− − −

− − −
−

− −

−
−

 =


 =


=


∂ ∂ ∂ = + + + ∂ ∂ ∂


∂ ∂ ∂ = + + + ∂ ∂ ∂









 

 

1 1

2 2

1 2 1 1

1 1 1

1 2

1 2 1

1 1

1 1

, , 

n n

n n n

n n n
n n n

n n

n n n
n

n n

z y

z y

z f y y

z z z
z f y f y y

y y y

z z z
v f y f y u

y y y

(38)

to bring the system into the form

(39)

or in much compact form

(40)

with �� = max �, 1 ≤ � ≤ � − 2, ��� �1, ⋯, �� ≠ 0 . Moreover, and more importantly, we also

have

(41)
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Remark 2

1. Please notice that the vector field ���� �  contains all nonlinearities including terms that

are linear in zn but whose coefficient depends on the variables �1, …, �� − 1 .
2. The Frobeinus theorem applied to the vector field g could have been restricted by taking

the first �� components of vector field g equal zero. This is due to the fact that, by applying

the push-forward transformation above, we regenerate those terms as yn depends on all
variables �1, …, �� .

Step 2: We reset the original notation, that is, replace the variable z by x. Then, we decompose� �  as following

(42)

If �� − 3� �1, ⋯, �� ≠ 0, then the dimension of the largest linear subsystem is less or equal to 3.

We denote by �� − 1 the largest j such that ��� �1, ⋯, �� ≠ 0. If ��� �1, ⋯, �� = 0 for all1 ≤ � ≤ � − 3, then we put �� − 1 = 0. We define �� − 1 = max �� − 1,   ��  as the updated

largest component that cannot be cancelled or, equivalently, such that the dimension of the
largest linear subsystem is less or equal to � − �� − 1.

We then apply the Frobenius theorem to straighten the vector field

( )

( )
( )

( )

−

−

− −

 
 
 
 
 
 =
 
 
 
 
 
 






1 1 2

2 1 2

3 1 2

, , 

, , 

, , 

1

0

0

n

n

n n

g x x

g x x

g x g x x
(43)
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by defining coordinates � = φ(�) such that φ* � = 0,…, 0, 1, 0, 0 ≜ �2�. Notice that, because g

depends only on the variables �1, ⋯, �� − 2, so do the first (� − 2) components of the diffeomor-

phism φ. Thus, the system is transformed as

(44)

We thus apply the push-forward transformation

( )

( ) ( )

( ) ( )

( ) ( )

− −

− − −

− − −
− − −

− −

− − −
−

− −

−
−

 =


 =


=
 ∂ ∂ ∂

= + + +
∂ ∂ ∂

 ∂ ∂ ∂
 = + + +

∂ ∂ ∂
 ∂ ∂ ∂ = + + +
 ∂ ∂ ∂









 

 

 

1 1

3 3

2 3 1 2

2 2 2

1 1 3 1

1 3 2

1 1 1

1 2

1 2 1

1 1

1 1

, , 

n n

n n n

n n n
n n n

n n

n n n
n n n

n n

n n n
n

n n

z y

z y

z f y y

z z z
z f y f y y

y y y

z z z
z f y f y y

y y y

z z z
v f y f y u

y y y

(45)

to bring the system into the form
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(46)

or in much compact form

(47)

with �� − 1 0 = �� 0 = 0 and either 
∂��� − 1�∂�� ≠ 0 or 

∂��� − 1� − 1∂�� − 1 ≠ 0.

General step: Let us assume that the system has been transformed such that it takes the form

(48)

where �� + 1 0 = 0 for all � ≤ � ≤ � − 1 and 
∂��� + 1∂�� + 1 ≠ 0 for some �,   � ≤ � ≤ � − 1 with ρ being

the largest nonzero component among those of the vector fields �� + 1, …, ��. We will write

(49)
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Then, we decompose the vector field f as follows

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

− −

− −

− − − −−

    
    
    
    
    
    = + +
    
    
    
    

   
   

  
  
  
  

 

*

1 1 1 1 1 1 1 1

2 1 1 2 1 1 2 1

2

1 1 2 1 1 2 12

, , , , , , 

, , , , , , 

, , , , , , 

1 00

0 00

k k k

k k k

k kk k k k kk

f x x g x x G x x

f x x g x x G x x

f x x xf x x g x x G x x














(50)

If the largest nonzero component of the vector field �(�) is less or equal to ρ, then move to the
next step. If that largest component is greater than ρ, then update ρ as this component and
apply Frobenius theorem to straighten the vector field g(x) and follow by a push-forward
transformation. Any time in the process the value of � = � − 2, the algorithm will stop; if not
until, we reach the last step.

5. Examples

In this section, we consider few examples to illustrate the partial feedback linearization
algorithm.

Example 1: Consider a simplified model of a VTOL with dynamics [29] (see Figure 1).

Figure 1. Forces acting on a VTOL aircraft.
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(51)

where M, J, l, and g denote the mass, moment of inertia, distance between wingtips and
gravitational acceleration. The control inputs are the thrust T, and the rolling moment due to
the torque F, whose direction forms a fixed angle α with the horizontal body axis. The position
of center mass and the roll angle with respect to the horizon are (x,y), and θ, while (�̇,   �̇) and
θ˙ stand for their respective velocities.

Let �1 = �,   �2 = �̇,   �3 = �,   �4 = �̇,   �5 = �,   �6 = �̇ with control inputs

α=
1

2
cos

lF
u

J
(52)

and

(53)

The system rewrites in the form

(54)

with

(55)

where

( ) αη
 −

=   
 

2 2

3 3

3

3

 tan

cos

cos x sin xJ
x

Ml x
(56)

We showed in [25] that the change of coordinates
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( )

( )η

ϕ

 =
 = − −
 == 

=
 =


=



1 1

2 2 4 3 6 3

3 3

4 4

5 5

6 6

tan

z x

z x x x x x

z x
z x

z x

z x

z x

(57)

transformed the system into  where

(58)

The distribution generated by g1 and g2 is involutive and constant. A simple feedback

=− − + − + + = − − + +2 2

1 1 3 5 6 6 1 2 2 4 5 4 5 2
 2 2 2  and v vx x x x x u u x x x x u (59)

transforms the system so as

(60)

We then decompose the vector field f as

( )

      + − + + −
      

− −      
      
      = = + +
      
      
      

      + − + −      

2 2

41 2 4 4 5 1 2 4

2 2

3 6 6

3 5

5

2 2

4 5 6 4 5 6

0 2  2

1 0

0 00 0
    
0 1 0

0 00 0

0 0

xx x x x x x x x

x x x

f x x x
x

x x x x x x

(61)

Here, we rectify the two vector fields (affine in x3 and x5) and find the change of coordinates
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 = −


=
 =


=
 =


=

2

1 1 4

2 2

3 3

4 4

5 5

6 6

y x x

y x

y x

y x

y x

y x

(62)

to transform the system into

 = +
 = −
 =
 =
 =


= − +









1 1 2

2

2 3 6

3 1

4 5

5 5

2

6 4 6 5

y y y

y y y

y u

y y

y u

y y y y

(63)

If we apply the push-forward transformation given by �3 = �3− �62,   �� = ��,   � ≠ 3, and the

feedback �1 = �1− 2�6 �4+ �52− �6 ,   �2 = �2, we take the system into

(64)

with ρ = 4 being the dimension of the largest linear subsystem.
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