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Abstract

Idiopathic  inflammatory  bowel  disease  (IBD)  is  a  complex  set  of  disorders  that
predominantly includes ulcerative colitis and Crohn’s disease. The pathogenesis of IBD
is multifactorial including genetic, infectious, and immunologic factors. MicroRNAs
belong to a class of noncoding small RNAs that posttranscriptionally regulate gene
expression, and they are an emerging class of genetic modifiers of IBD. Here, we focus
on the use of unique microRNA expression patterns as biomarkers to classify and
prognosticate disease severity in both mucosal tissue and serum from patients with
either ulcerative colitis or Crohn’s disease. Furthermore, we discuss specific micro‐
RNAs with respect to their roles in IBD pathogenesis and fibrosis. We also discuss the
role of microRNAs in IBD‐associated carcinogenesis, including their role as biomarkers,
tumor  suppressors,  and  oncogenes.  Finally,  we  discuss  the  emerging  therapeutic
applications of microRNA manipulation to lessen the effect of IBD and its sequelae.
Recent discoveries of the diverse roles of microRNAs in IBD pathogenesis have the
potential to provide new targeted therapeutics for personalized medicine.

Keywords: inflammatory bowel disease, ulcerative colitis, Crohn’s disease, micro‐
RNA, pathogenesis

1. Introduction

Idiopathic inflammatory bowel disease (IBD) is a group of chronic and recurrent inflammatory
disorders that primarily involve the gastrointestinal tract. It predominantly includes ulcerative
colitis (UC) and Crohn’s disease (CD). The pathogenesis of IBD is multifactorial and not
completely understood, but genetic, epigenetic, infectious, physiological, and immunological
factors may all play important roles in the genesis and progression of the diseases [1–3]. A large
number of genes have been linked to IBD susceptibility, pathogenesis, and carcinogenesis, and
recent work has suggested that microRNAs can undertake the same roles.
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MicroRNAs are encoded within the genomes of a wide variety of eukaryotes, and more than
2500 human mature microRNAs have been curated in miRBase database since their discovery
in 1993 [4, 5]. MicroRNAs are evolutionarily conserved, single‐stranded noncoding RNA
molecules of 19–24 nucleotides, which represent a class of regulatory RNAs suppressing gene
expression at a posttranscriptional level. MicroRNAs concurrently modulate the expression
levels of dozens or more messenger RNA (mRNA) targets and any given mRNA sequence may
be targeted by several different microRNAs creating intricate regulatory networks to fine‐tune
a cell’s function [6–8]. At the time of publication, microRNAs are predicted to directly regulate
the expression of at least 30% of the entire mammalian genome [9]. MicroRNAs have been
found to be involved in the normal functioning of multiple pathophysiological networks and
in the pathogenesis of a broad spectrum of human diseases, ranging from neoplastic to
inflammatory conditions [10–15].

In this chapter, we focus on the role of microRNAs in IBD as recent publications have indicated
that microRNAs play critical roles in the pathogenesis of IBD and IBD‐associated carcinogen‐
esis and may serve as critical future targets for personalized medicine.

2. MicroRNAs show a diverse array of aberrant expression in IBD

Extensive literature has shown that microRNAs undergo dysregulation in both tissue and
peripheral blood of patients with IBD with a goal of discovering biomarkers and crucial
initiators of pathogenesis.

2.1. MicroRNAs are differentially expressed in the mucosal tissue in UC

A search for biomarkers in UC in both non‐affected and actively inflamed mucosa has
identified a large number of microRNAs that show aberrant expression (Table 1) [16–28]. When
compared to controls, a large number of microRNAs have been found to be upregulated
including, but not limited to, miR‐let‐7e*, miR‐let‐7f, miR‐7, miR‐7i, miR‐16, miR‐20b, miR‐21,
miR‐23a, miR‐24, miR‐29a, miR‐29b, miR‐31, miR‐98, miR‐125b‐1*, miR‐126, miR‐126*,
miR‐127‐3p, miR‐135b, miR‐142‐3p, miR‐146a, miR‐150, miR‐155, miR‐195, miR‐196a, miR‐206,
miR‐223, miR‐324‐3p, miR‐375, miR‐422b, miR‐548a‐3p, miR‐650, miR‐663, and miR‐4284. The
decreased microRNA profiles include miR‐143, miR‐145, miR‐188‐5p, miR‐192, miR‐194,
miR‐194b, miR‐196b, miR‐200b, miR‐215, miR‐216b, miR‐320a, miR‐346, miR‐375, miR‐489,
miR‐548e, miR‐559, and miR‐630. Seven microRNA candidates have been identified by at least
two independent groups, miR‐21 [16–18, 26, 27], miR‐29a [16, 19], miR‐31 [19, 24], miR‐146a
[23, 24, 27], miR‐155 [17, 23], miR‐192 [16, 27], and miR‐375 [16, 27], making them the most
promising candidates for biomarkers of UC.

However, there are many variables that differ between studies, including anatomical tissue
location, degree of inflammation, prior medication, and platforms used to measure micro‐
RNAs that all may contribute to the high discordance between studies.
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Status Tissue type Control Aberrant microRNA expression Reference

Active UC Sigmoid, n = 15 Healthy Decreased: miR‐192 and 375
Increased: miR‐let‐7f, 16, 21, 23a, 24, 29a,
126, 195, and 422b

Wu [16]

Sigmoid, n = 12 Healthy Increased: miR‐21 and 155 Takagi [17]

Sigmoid, n = 12 Healthy Increased: miR‐21 and 126 Feng [18]

Colon, nonspecific, n = 10 Healthy Decreased: miR‐188‐5p, 215, 320a, and 346
Increased: miR‐7, 31, 135b, and 223

Fasseu [19]

Colon, nonspecific, n = 5 Healthy Increased: miR‐150 Bian [20]

Colon, nonspecific, n = 8 Healthy Decreased: miR‐143 and 145 Pekow [21]

Colon, nonspecific, n = 20 Healthy Increased: miR‐let‐7e, 20b, and 98* Coskun [22]

Colon, n = 10 Healthy Increased: miR‐146a and 155 Beres [23]

Active or inactive
UC

Colon, distal‐most, n = 10 Healthy Decreased: miR‐194b, 216b, 548e, and 559
Increased: miR‐31, 146a, 206, and 663

Lin [24]

Sigmoid, n = 26 Healthy Increased: miR‐4284 Koukos [25]

Inactive UC Sigmoid, n = 15 Healthy Increased: miR‐16, 23a, 24, 29a, 375, and
422b 

Wu [16]

Colon, nonspecific, n = 8 Healthy Decreased: miR‐188‐5p, 215, 320a, and 346
Increased: miR‐29a, 29b, 126*, 127‐3p, 196a,
and 324‐3p

Fasseu [19]

Colon, nonspecific, n = 19 Healthy Increased: miR‐20b and 125b‐1* Coskun [22]

Unknown Colon, nonspecific, n = 15 Healthy Increased: miR‐21 Yang [26]

Colon, nonspecific, n = 12 Healthy Increased: miR‐7i, 21, 142‐3p, and 146a
Decreased: miR‐192, 194, 200b, and 375

Zahm [27]

Active UC Colon, nonspecific, n = 20 Inactive
UC 

Increased: miR‐98 Coskun [22]

Colon, left or sigmoid, n = 9 Inactive UC Decreased: miR‐196b, 489, and 630
Increased: miR‐548a‐3p and 650

Iborra [28]

Table 1. Aberrant microRNA expression in human colonic tissue in ulcerative colitis (UC).

2.2. MicroRNAs are differentially expressed in the mucosal tissue in CD

A search for biomarkers in CD has identified a large number of microRNAs that show aberrant
expression (Table 2) [19, 23, 24, 28–32]. When compared to controls, miR‐9, miR‐9*, miR‐16,
miR‐21, miR‐22, miR‐23b, miR‐26a, miR‐29b, miR‐29c, miR‐30a, miR‐30b, miR‐30c, miR‐31,
miR‐34c‐5p, miR‐106a, miR‐122, miR‐126, miR‐126*, miR‐127‐3p, miR‐130a, miR‐133b,
miR‐141, miR‐146a, miR‐146b‐5p, miR‐150, miR‐155, miR‐181c, miR‐191, miR‐196, miR‐196a,
miR‐206, miR‐223, miR‐324‐3p, miR‐328, miR‐375, miR‐422a, miR‐594, miR‐663, and
miR‐885‐5p have been found significantly upregulated [19, 24, 29, 31, 32]. The downregulated
microRNA profiles include miR‐let‐7b, miR‐7, miR‐18a*, miR‐19b, miR140‐3p, miR‐194b,
miR‐216b, miR‐548e, miR‐559, miR‐629, and miR‐629* [24, 30, 33].
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Status Tissue type Control Aberrant microRNA expression Reference

Active CD Sigmoid, n = 5 Healthy Decreased: miR‐19b and 629

Increased: miR‐23b, 106a, and 191

Wu [29]

Terminal ileum, n = 6 Healthy Increased: miR‐16, 21, 223, and 594 Wu [29]

Colon, nonspecific, n = 16 Healthy Increased: miR‐9, 21, 22, 26a, 29b, 29c, 30b, 31,

34c‐5p, 106a, 126, 126*, 127‐3p, 130a, 133b,

146a, 146b‐5p, 150, 155, 181c, 196a, 324‐3p,

and 375

Fasseu [19]

Colon, nonspecific, n = 8 Healthy Decreased: miR‐7 Nguyen [30]

Colon, nonspecific, n = 120  Healthy Increased: miR‐196 Brest [31]

Colon, nonspecific, n = 15 Healthy Increased: miR‐31 and 141 Huang [32]

Colon, nonspecific, n = 10 Healthy Increased: miR‐146a and 155 Beres [23]

Active and

inactive CD

Colon, distal‐most, n = 9 Healthy Decreased: miR‐194b, 216b, 548e, and 559

Increased: miR‐31, 146a, 206, and 663

Lin [24]

Inactive CD Colon, nonspecific, n = 8 Healthy Increased: miR‐9*, 21, 22, 26a, 29b, 29c, 30a*,

30b, 30c, 31, 34c‐5p, 106a, 126*, 127‐3p, 133b,

146a, 146b‐5p, 150, 155, 196a, 223, and 324‐3p

Fasseu [19]

Unknown Colon, nonspecific, n = 10 Healthy Increased: miR‐122 Beres [23]

Colon, nonspecific, n = 7 Healthy Increased: miR‐21 and 375 Zahm [27]

Active CD Colon, left or sigmoid, n = 9 Inactive

CD

Decreased: miR‐let‐7b,18a*, 140‐3p, and 629*

Increased: miR‐328, 422a, and 885‐5p

Iborra [28]

Table 2. Aberrant microRNA expression in human colonic tissue in Crohn’s disease (CD).

At least two independent groups have found similar dysregulation of miR‐21 [19, 27, 29],
miR‐31 [19, 24, 32], miR‐106a [19, 29], miR‐146a [19, 23, 24], miR‐155 [19, 23], miR‐223 [19, 29],
and miR‐375 [19, 27].

2.3. MicroRNAs are differentially expressed in blood samples in UC

Similar to the findings in tissue, microRNAs are also dysregulated in the peripheral blood of
patients with UC (Table 3) [26, 28, 34–39]. When compared to controls, miR‐let‐7d, miR‐let‐7e,
miR‐let‐7g, miR‐let‐7i*, miR‐plus‐E1271, miR‐15b, miR‐16, miR‐17‐5p, miR‐19a, miR‐20b*,
miR‐21, miR‐22, miR‐22‐3p, miR‐23a‐3p, miR‐24, miR‐27a*, miR‐28‐3p, miR‐28‐5p, miR‐29a,
miR‐30e, miR‐30e‐5p, miR‐31, miR‐92a‐1*, miR‐93, miR‐103, miR‐103‐2, miR‐103‐2*, miR‐128,
miR‐138, miR‐140‐3p, miR‐142‐5p, miR‐143*, miR‐146a‐3p, miR‐148b‐3p, miR‐150*,
miR‐151‐5p, miR‐155, miR‐181b, miR‐188‐5p, miR‐191‐5p, miR‐196b, miR‐199a‐3p,
miR‐199a‐5p, miR‐221, miR‐223, miR‐223a‐3p, miR‐302‐3p, miR‐320e, miR‐330‐3p, miR‐340*,
miR‐345, miR‐362‐3p, miR‐362‐5p, miR‐374b, miR‐378, miR‐378*, miR‐422a, miR‐423‐5p,
miR‐500, miR‐501‐5p, miR‐532‐3p, miR‐532‐5p, miR‐550*, miR‐595, miR‐598, miR‐720,
miR‐760, miR‐769‐3p, miR‐769‐5p, miR‐874, miR‐941, miR‐1246, miR‐1271, miR‐1274b,
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miR‐1296, and miR‐4516 are upregulated in peripheral blood samples of patients with UC [26,
28, 34, 35, 38, 39]. When compared to controls, miR‐150, miR‐188‐5p, miR‐505*, miR‐612, and
miR‐1827 have been shown to be downregulated [28, 34, 38].

Status Tissue type Control Aberrant microRNA expression Reference

Active UC Peripheral blood, n = 13 Healthy Decreased: miR‐505*
Increased: miR‐plus‐E1271, 28‐5p, 103‐2*,
151‐5p, 199a‐5p, 340*, 362‐3p, and 532‐3p

Wu [34]

Peripheral blood, n = 88 Healthy Increased: miR‐16, 21, 28‐5p, 151‐5p, 155, and
199a‐5p

Paraskevi [35]

Peripheral blood, n = 62 Healthy Increased: miR‐595 and 1246 Krissansen [36]

Active and
inactive UC

Peripheral blood, n = 18 Healthy Decreased: miR‐150
Increased: miR‐let‐7d, let‐7e, let‐7g, 15b, 19a,
24, 27a, 28‐3p, 29a, 30e, 93, 103, 128, 142‐5p,
196b, 199a‐3p, 221, 223, 345, 374b, 423‐5P,
532‐5p, 598, and 760

Iborra [28]

Peripheral blood, n = 46 Healthy Decreased: miR‐188‐5p, 612, and 1827
Increased: miR‐17‐5p, 22‐3p, 23a‐3p, 30e‐5p,
148b‐3p, 191‐5p, 223a‐3p, 302‐3p, and 320e

Polytarchou [37]

Active UC Peripheral blood, n = 24 Inactive
UC

Increased: miR‐23a‐3p, 148b‐3p, 320e, and
4516

Polytarchou [37]

Inactive UC Peripheral blood, n = 13 Healthy Decreased: miR‐505*
Increased: miR‐103‐2, 362‐3p, and 532‐3p

Zahm [38]

Peripheral blood, n = 10 Healthy Decreased: miR‐505*
Increased: miR‐103‐2*, 362‐3p, and 532‐3p

Wu [34]

Unknown Peripheral blood, n = 20 Healthy Increased: miR‐let‐7i*, 20b*, 22, 27a*, 31, 92a‐1*,
138, 140‐3p, 143*, 146a‐3p, 150*,181b, 188‐5p,
330‐3p, 362‐5p, 345, 378, 378*, 422a, 500,
501‐5p, 532‐5p, 550*, 720, 769‐3p, 769‐5p, 874,
941,
1271, 1274b, and 1296

Duttagupta [39]

Peripheral blood, n = 15 Healthy Increased: miR‐21 Yang [26]

Table 3. Aberrant microRNA expression in human peripheral blood in ulcerative colitis (UC).

Nine microRNAs have been found by at least two independent groups, miR‐21 [26, 35],
miR‐28‐5p [34, 35], miR‐151‐5p [34, 35], miR‐199a‐5p [34, 35], miR‐345 [28, 39], miR‐362‐3p [34,
38], miR‐505* [34, 38], miR‐532‐3p [34, 38], and miR‐532‐5p [28, 39].

2.4. MicroRNAs are differentially expressed in blood samples in CD

Similar to the findings in tissue, microRNAs are also dysregulated in the peripheral blood of
patients with CD (Table 4) [28, 34–36, 38]. When compared to controls, a large number of
microRNAs have been found to be upregulated in the peripheral blood including miR‐plus‐
E1271, miR‐let‐7b, miR‐16, miR‐20a, miR‐21, miR‐23a, miR‐27a*, miR‐29a, miR‐30e, miR‐93,
miR‐106a, miR‐107, miR‐126, miR‐140, miR‐140‐3p, miR‐140‐5p, miR‐188‐5p, miR‐191,
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miR‐192, miR‐195, miR‐199a‐5p, miR‐200c, miR‐340*, miR‐362‐3p, miR‐484, miR‐532‐3p,
miR‐595, miR‐877, and miR‐1246. The significantly decreased microRNAs consist of miR‐plus‐
F1065, miR‐18a, miR‐128, miR‐140‐5p, miR‐145, miR‐149*, and miR‐877.

Status Tissue type Control Aberrant microRNA expression Reference

Active CD Peripheral blood, n = 14 Healthy Decreased: miR‐plus‐F1065 and 149*

Increased: miR‐plus‐E1271, 199a‐5p, 340*,

362‐3p, and 532‐3p

Wu [34]

Peripheral blood, n = 46 Healthy Increased: miR‐let‐7b,16, 20a, 21, 30e, 93, 106a,

140, 192, 195, and 484

Zahm [38]

Peripheral blood, n = 128 Healthy Increased: miR‐16, 23a, 29a, 106a, 107, 126, 191,

199a‐5p, 200c, 362‐3p, and 532‐3p

Paraskevi [35]

Peripheral blood, n = 57 Healthy Increased: miR‐595 and 1246 Krissansen [36]

Active and

inactive CD

Peripheral blood, n = 18 Healthy Decreased: miR‐877

Increased: miR‐16, 27a*, 140‐3p, 140‐5p,

and 195

Iborra [28]

Inactive CD Peripheral blood, n = 5 Healthy Decreased: miR‐149*

Increased: miR‐340*

Wu [34]

Active CD Peripheral blood, n = 9 Inactive

CD

Decreased: miR‐18a, 128, 140‐5p, and 145

Increased: miR‐188‐5p and 877

Iborra [28]

Table 4. Aberrant microRNA expression in human peripheral blood in Crohn’s disease (CD).

Six microRNAs have been found by at least two independent groups including miR‐16 [28, 35,
38], miR‐106a [35, 38], miR‐195 [28, 38], miR‐199a‐5p [34, 35], miR‐362‐3p [34, 35], and
miR‐532‐3p [34, 35].

2.5. Differential expression of microRNA that distinguishes UC from CD in
indeterminate IBD

Although UC and CD have many overlapping features and symptomatology, they have
distinct clinical, radiographic, endoscopic, surgical, and histologic findings. While most
patients can be definitively classified as either UC or CD, 5–10% of IBD patients have equivocal
features and are best classified as indeterminate colitis [40, 41]. The ability to determine which
patients with indeterminate colitis act like CD would allow for better clinical and surgical
management because patients with CD are much more likely to fail a pouch procedure.

Several microRNAs have been found to be differentially expressed between UC and CD,
although the results have been inconsistent between most studies (Table 5) [19, 27, 34, 42].

In one study, a panel of five microRNAs (miR‐19b, miR‐23b, miR‐106a, miR‐191, and miR‐629)
was evaluated in 16 patients with a clinical diagnosis of indeterminate colitis. They found that
15 of 16 patients demonstrated UC‐like expression patterns and concluded that microRNA
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expression patterns in indeterminate colitis are far more similar to those of UC than CD [42].
These microRNA expression findings are similar to the data from long‐term clinical follow‐
ups where most indeterminate colitis patients act much more like UC patients, rather than CD
patients. The possibility to test microRNA profiles prior to surgery, with the hope of improving
pouch outcome, is promising.

Status Tissue type Control Aberrant microRNA expression Reference

Inactive UC Colon, nonspecific,

n = 8

Inactive CD Decreased: miR‐100a‐3p, 100b‐5p,

150, 196b, 223, and 320a

Fasseu [19]

Active and inactive

UC

Colon, distal‐most,

n = 12

Active and inactive

CD

Increased: miR‐19b, 23b, 106a, 191,

and 629

Lin [42]

Unknown UC Colon, nonspecific,

n = 12

Unknown CD Increased: miR‐24 Zahm [27]

Active UC Peripheral blood,

n = 13

Active CD Increased: miR‐plus‐E1035,

plus‐F1159, and 3180‐3p,

Wu [34]

Table 5. Differential microRNA expression between ulcerative colitis (UC) and Crohn’s disease (CD).

3. MicroRNA as a potential driver of pathogenesis and disease severity

Despite the vast numbers of microRNAs identified as deregulated in IBD, very few microRNAs
are replicated in multiple studies. Here, we focus on the microRNAs with the best evidence as
the driver of pathogenesis.

3.1. MiR-21 has an essential role in IBD development and disease severity

MiR‐21 has been consistently identified as being upregulated in active UC and CD, suggesting
a central role in the pathogenesis of IBD [16–18, 26, 43]. One study showed that the deletion of
critical DNA methyltransferases (DNMT1 and DNMT3b) caused the dysregulation of approx‐
imately 10% of all microRNAs, highlighting the epigenetic regulation of microRNAs by DNA
methylation [44]. The genome‐wide association studies (GWASs) using Illumina CpG meth‐
ylation assays have shown that the miR‐21 locus was hypomethylated, and subsequently
overexpressed, in samples of peripheral blood in patients with active CD [43]. A miR‐21
knockout mouse model has been developed to assess the importance of miR‐21 in IBD
pathogenesis. Similar to human IBD, mice treated with dextran sodium sulfate (DSS) devel‐
oped a chronic colitis causing significant morbidity and mortality with elevated tumor necrosis
factor alpha (TNF‐α) levels and miR‐21 [45]. However, mice with genetic deletion of miR‐21
were resistant to DSS‐induced colitis. These findings strongly support the role of miR‐21 in
IBD pathogenesis, but further work is needed to clarify the mechanism of action.
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The pathogenic effects of miR‐21 in IBD are thought to be mediated through at least three
separate mechanisms. First, miR‐21 is thought to cause increased intestinal permeability in
response to epithelial damage, a factor thought to initiate IBD. Despite no difference at baseline,
treatment with DSS caused increased intestinal permeability in wild‐type mice compared to
miR‐21 knockout mice [45]. Second, miR‐21 is proapoptotic as the DSS‐treated miR‐21
knockout mice had less intestinal epithelial cell apoptosis than controls [45]. Several studies
have indicated a role for miR‐21 in the protection of free radical‐induced apoptosis that linked
the pro‐survival phenotype to the inhibition of phosphatase and tensin homology (PTEN) with
subsequent elevation of PI3K‐Akt‐mTOR activity [46–49]. Additionally, miR‐21 has been
shown to prevent renal tubular apoptosis by directly reducing levels of Rab11 protein [50].
The prevention of epithelial cell apoptosis may help maintain the epithelial cell barrier and
limit intestinal permeability. Third, miR‐21 has been associated with fibrosis in multiple disease
models and has an emerging role in irreversible fibrosis of IBD. Multiple models of cellular
injury have shown to be dependent on increased levels of TNF‐α and subsequent induction of
miR‐21 [51, 52]. Increased serum levels of miR‐21 were seen in human diseases with significant
fibrosis, suggesting a role for miR‐21 as a biomarker for disease activity [52, 53]. Elevated
miR‐21 expression is maintained throughout the development of dysplasia and carcinogenesis,
but more controlled studies are needed to define its role in fibrosis [54].

3.2. MicroRNAs are associated with fibrosis and strictures in CD

Transmural inflammation is a hallmark of CD leading to irreversible fibrosis and stricture
formation that marks disease severity. Several studies have attempted to identify the role of
microRNAs in CD‐related fibrosis. MicroRNA profiling of the serum from patients with CD
with and without strictures has implicated miR‐19a‐3p and miR‐19b‐3p as potential patho‐
genic markers [55]. The authors found that low levels of both miR‐19a‐3p and miR‐19b‐3p were
strongly correlated with stricturing CD and were independent of other potentially confound‐
ing variables such as site, gender, age, disease duration, and activity [55]. The studies in liver
fibrosis have implemented miR‐19b as a negative regulator of the pro‐fibrotic tumor growth
factor‐β (TGF)‐β‐signaling pathway, but these experiments have not been confirmed in the
setting of CD‐associated fibrosis [56].

Several other microRNAs have been associated with TGF‐β‐signaling pathway and fibrosis in
CD. TGF‐β signaling has been shown to promote epithelial‐mesenchymal transition, which
leads to fibrosis in certain contexts. In patients with stricturing CD, the level of miR‐29b was
assessed in the mucosa overlying a stricture by comparing mucosa‐overlying areas not affected
by fibrosis [57]. Furthermore, the overexpression of miR‐29b in fibroblast caused a decrease in
TGF‐β‐mediated collagen deposition [57].

The complex interactions in the microenvironment between the mucosa and underlying
stroma in CD are highlighted by studies of miR‐200b. In IBD, the ability of the mucosa to
withstand damage and remain intact is a crucial mechanism to limit disease severity. Re‐
searchers found that the miR‐200b level was decreased in the mucosa of UC and CD, which
correlated with the extent of damage incurred by the epithelium [58, 59]. MiR‐200b has been
shown to inhibit TGF‐β‐mediated epithelial‐mesenchymal transition through the targeting of
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ZEB1 and SMAD2 expression [59]. Additionally, the overexpression of miR‐200b promoted
the growth of epithelial cells by stimulating cyclin D1 production [59]. These studies support
that miR‐200b can protect against damage from CD in both epithelium and underlying stroma.

These recent observations are laying the foundation for how microRNAs are intricately
involved in the formation of fibrosis and strictures in idiopathic IBD.

4. The role of microRNAs in IBD-associated carcinogenesis

Molecular mechanisms of IBD‐associated carcinogenesis are poorly understood and are an
exciting area of research within the field [60, 61]. Multiple epidemiologic and basic science
studies have shown that the risk of IBD‐associated colon cancer increases as the extent of the
disease, severity of inflammation, and duration increase [62–64]. Colonoscopies with multiple
spatially distinct biopsies are used to assess for IBD‐associated dysplasia. Although histologic
examination can reproducibly identify dysplasia, IBD‐associated dysplasia is difficult to be
distinguished from sporadic adenoma based on histologic appearance alone, but certain
features and patient characteristics can be helpful in suggesting IBD‐associated carcinoma [65].

Molecular alterations have been shown to lead to dysplasia and carcinogenesis and the
abnormalities have been demonstrated in normal‐appearing nondysplastic mucosa from UC
patients who had a remote dysplastic lesion [66–71]. Using microRNA expression microarrays
from tissue with IBD‐associated dysplasia, the dysplastic epithelium revealed that 22 micro‐
RNAs (miR‐31, miR‐31*, miR‐96, miR‐135b, miR‐141, miR‐183, miR‐192, miR‐192*, miR‐194,
miR‐194*, miR‐200a, miR‐200a*, miR‐200b, miR‐200b*, miR‐200c, miR‐203, miR‐215, miR‐224,
miR‐375, miR‐424*, miR‐429, and miR‐552) were upregulated. Ten microRNAs (miR‐122,
miR‐139‐5p, miR‐142‐3p, miR‐146b‐5p, miR‐155, miR‐223, miR‐490‐2p, miR‐501‐5p, miR‐892b,
and miR‐1288) have been found to be downregulated [72].

Studies of microRNAs may elucidate distinct pathways to identify IBD‐associated dysplasia
and subsequent carcinogenesis from sporadic mutations. As such, developing reliable
molecular markers to distinguish sporadic adenoma from IBD‐associated carcinogenesis will
aid in the surgical management of IBD patients who are under consideration for a total
colectomy.

4.1. MiR-31 as an emerging biomarker of IBD-associated dysplasia

An assessment of the different anatomic locations in normal colon showed an equally low
baseline expression of miR‐31 [72]. MiR‐31 is upregulated in both UC and CD, but not in other
inflammatory conditions that have no association with dysplasia or malignancy [73]. Subse‐
quently, the level of miR‐31 was found to be 11‐fold higher in IBD‐associated dysplasia and
carcinoma compared to that of IBD tissue without dysplasia, although no difference was seen
in miR‐31 expression level between IBD‐associated dysplasia and IBD‐associated carcinomas
[72]. However, miR‐31 was also found to be upregulated in sporadic colorectal adenocarcino‐
mas [74–76].

MicroRNA in Inflammatory Bowel Disease
http://dx.doi.org/10.5772/64836

153



The role of miR‐31 in IBD‐associated dysplasia or malignancy has only recently been examined
and it is too early to determine if it is a useful marker of IBD‐associated dysplasia or a
generalized biomarker for carcinoma.

4.2. MiR-214 as an emerging oncogenic driver of IBD-associated carcinogenesis

Recent evidence suggests that microRNAs are not just biomarkers, as they can be crucial for
carcinogenesis. A high‐throughput genomic screen of microRNAs has identified miR‐214 as a
positive regulator of NF‐kB activity [77]. Elevated levels of miR‐214 were found in human
tissue from patients with active UC or CD [77]. Two groups have previously shown that
miR‐214 promotes the growth of malignant osteosarcomas by directly reducing levels of the
tumor suppressor, phosphatase and tensin homology [78, 79]. Using in vitro and in vivo
models, it was displayed that chronic disease activity initiated interleukin‐6 causing STAT3‐
mediated transcription of miR‐214 with subsequent reduction of PTEN, PDZ, and LIM domain
2 (PDLIM2) causing enhanced activity of oncogenic NF‐kB [77]. Furthermore, an inhibitor of
miR‐214 was able to inhibit DSS‐induced carcinogenesis [77]. These data support not only the
role of miR‐214 as an oncogene but also provide insight into the molecular mechanisms of its
carcinogenesis.

4.3. MiR-124a as a tumor suppressor epigenetically inactivated in IBD-associated
carcinogenesis

Chronic inflammation has been shown to cause hypermethylation of CpG islands within the
promoter of genes causing decreased gene expression [80]. Epigenetic silencing of well‐
characterized tumor suppressor proteins, E‐cadherin, p14, and hMLH1, has been documented
in UC‐associated carcinogenesis [81–84].

The role of miR‐124a as a tumor suppressor has been shown by demonstrating the direct
suppression of oncogenic cyclin‐dependent kinase 6 (CDK6) in acute lymphoblastic leukemia,
medulloblastoma, and hepatocellular carcinoma [85–87]. The evaluation of patients with UC
showed a strong correlation between increased miR‐124a‐3 hypermethylation and increased
CDK6 expression [88]. The levels of methylation were highest in patients who had pancolitis
and long‐standing disease, and the individual with the highest value was later found to have
high‐grade dysplasia [88]. These studies are supported by the usage of high‐throughput
genetic screens that identified miR‐124a as a negative regulator of oncogenic STAT3 in human
colonic epithelial cells [89]. The authors demonstrated that miR‐124a was downregulated
through hypermethylation in pediatric patients with UC and strongly correlated with elevated
levels of STAT3 and increased disease severity [89].

In combination, these studies demonstrate that the long‐standing inflammation of IBD has the
power to epigenetically downregulate important microRNA tumor suppressors that alters the
downstream targets of those events. These findings might open up novel pathways that can
be assessed for prognosis and potential personalized medicine.
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5. MicroRNA as potential therapeutic targets for IBD

The unique ability of microRNAs to posttranscriptionally regulate gene expression and affect
multiple biological signaling pathways can lead to the development of antisense oligonucleo‐
tides as potential novel therapeutics in IBD. Multiple studies have shown that antisense
oligonucleotides complementary to microRNAs can target specific microRNAs, abolishing
their function in both in vitro cell models and in vivo animal models. Preclinical cell‐ and
animal‐based models have demonstrated that altering microRNA levels can modify the
expression of either tumor suppressors or oncogenes as such to effect cancer growth [90–93].
Additionally, drug‐induced microRNA changes have been shown to contribute to the thera‐
peutic effect in in vitro models [94, 95].

With specific regards to the field of IBD, potential therapeutic targets consist of three general
strategies: (1) to provide antisense oligonucleotides that inactivate microRNAs that are pro‐
inflammatory; (2) to replace the expression of tumor suppressor microRNAs; and (3) to provide
antisense oligonucleotides that inactivate oncogenic microRNAs.

At the time of publication, no therapeutic manipulation of microRNAs in IBD has been
published in either cell lines or animal models. However, a recent study has shown that the
inhibition of miR‐21, a central driver of IBD pathogenesis, slows the proliferation of a naso‐
pharyngeal carcinoma cell line [96].

Although the delivery of microRNA‐targeted therapeutics is technically challenging, recent
advances in delivery methods suggest that we may soon see an explosion of microRNA‐
targeted therapies being assessed in vivo for the first time [97–99].

6. Conclusions

In summary, the rapidly expanding knowledge of microRNAs in the pathogenesis and
carcinogenesis associated with IBD has created an emerging interest in their potential role for
personalized therapies.
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