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Abstract

Gut flora is the largest reservoir of human flora. It is an essential factor in certain
pathological disorders, including multisystem organ failure, colon cancer and
inflammatory bowel diseases and extraintestinal disorders, such as allergy, asthma and
even obesity. Prebiotics and probiotics are known to have a role in prevention or
treatment of some diseases. Nevertheless, bacteria have been found to be useful for
treating disease and thus promoting human health in a safe and natural way.
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1. Introduction

The endogenous gastrointestinal microbial flora plays a fundamentally important role in
normal health and disease [1]. According to recent advances in microbiome research, the
infectious, inflammatory and functional bowel diseases are closely associated with the
pathologic changes in gut microbiota. Recent discovery of the fact that disbalance of gut
microbiome has a profound impact on the function of the liver through microbiota liver axis
[2]. There has been a re-emergence of interest in the relationship between gastrointestinal flora
and gut function with the recognition that prebiotics, probiotics and other means of modifying
gut flora may function as therapeutic modalities.

2. The normal flora

The human intestine is colonized by millions of bacteria, primarily anaerobic bacteria,
comprising approximately 1000 species. The bacterial distribution varies greatly at different
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levels of the gastrointestinal tract (GIT) [2] ranging from <103 colony-forming units/ml
(CFU/ml) in the stomach to 10"-10"? CFU/ml within the colon, where anaerobes outnumber
aerobes by a ratio of 1000:1.

2.1. Types of flora

2.1.1. Commensal flora

The intestinal flora includes Bifidobacteria, Lactobacillus, Propionobacteria, Peptostreptococci
and Enterococci. The commensal flora produces antibiotic-like substances that are anti-fungal,
anti-viral and reduce pH near the wall of the gut forming a protective barrier, which is
uninhabitable for the pathogenic bacteria to colonize [3].

2.1.2. Opportunistic flora

This includes intestinal flora like Bacteroides, Peptococci, Staphylococci, Streptococci, Bacilli,
Clostridia, Yeasts, Enterobacteria, Fusobacteria, Eubacteria, Catenobacteria and others. In a
healthy person, their numbers are limited and controlled by commensal flora.

2.1.3. Transitional Flora

The flora which enters the body through food and drink constitutes the transitional flora. In a
healthy gut microbiome, it does not cause disease however any harm to the commensal flora
will enable them to cause the disease.

3. Role of gut flora in the treatment of disease

3.1. Cancer

Indiscriminate use of antibiotics not only makes the problem of antibiotic resistant bacterial
strains even worse, but also kills many commensal bacteria that promote homeostasis and
protect against carcinogenesis. It has been seen that changes in the bacterial community occur
in the gut microbiome of colon cancer patients, with tumors harboring increased bacterial
diversity and an abundance of pathogenic bacteria compared to surrounding healthy tissue [4].
Lactobacillus and Bifidobacteria are known to prevent tumor formation by suppressing the
growth factors like MyD88 (an adaptor molecule necessary for most toll-like receptors (TLR)
signaling) was found to be essential in the development of the carcinomas [5, 6].

A number of in vitro and animal studies provide evidence that consuming probiotics sup-
presses colon rectal cancer. These studies have also proposed multiple pathways by which
probiotics could inhibit colon cancer by influencing innate immune pathways and apoptosis,
reducing oxidative stress and modulating intestinal bacteria and their metabolism [7].
Lactobacillus johnsonii reduced the concentration of Enterobacters and modulated immune
response in colon rectal cancer patients, whereas Bifidobacterium longum did not have any effect.
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In another study, L. casei suppressed colorectal tumor growth in patients, after 2—4 years of
treatment. However, these clinical trials are limited by the small number of subjects and their
short duration [8]. Mice experimentally colonized with Helicobacter hepaticus and enterotoxi-
genic Bacteroides fragilis exhibit colonic Th17 inflammatory infiltrates that appear to have a
beneficial role in human ovarian cancer [9], murine melanoma, pancreatic and colon cancer
[10-12]. It has also been found that Helicobacter pylori can alter stomach pH and acid reflux,
which could protect against Barrett’s esophagus and esophageal cancer [13].

4. Probiotics and prebiotics in cancer prevention

Fecal microbiota transplantations (FMT) are effective in maintaining a healthy gut microbiome
particularly in patients with severe Clostridium difficile infections. A recent study transplanted
a culture of six phylogenetically diverse gut microbes into mice. With C. difficile infections, this
restored a normal microbial community, displaced the Clostridium difficile and resolved the
disease [14].

Probiotics are live microorganisms present in foods as dietary supplement that confer a health
benefit. Lactobacilli in yoghurt improved digestion of dairy products in individuals who are
lactose intolerant [15]. Probiotics can be improved upon by supplementing food with bacteria
engineered to have more beneficial effect. Oral administration of a strain of Lactobacillus
acidophilus (having phosphoglycerol transferase gene deleted) to APC floxed mice resulted in
the reduction in polyps [16]. A protein elafin produced by engineered strains of Lactobacillus
casie and Lactococcus lactis diminished inflammation in a mouse model of colitis [17]. Another
example is a strain of Lactobacillus gasseri, which was engineered to overexpress the antioxidant
superoxide dismutase and decreased colitis in interleukin (IL)-10 knockout mice [18]. The
introduction of genetically engineered organisms to produce and deliver cytokines or other
biologically relevant molecules to the mucosa offers further potential to the probiotics.

Prebiotics are the non-digestible food ingredient that beneficially affects the host by stimulat-
ing the growth or activity of a genus of bacteria. A number of prebiotics have been implicated
in cancer prevention [19]. Prebiotics include dietary fiber sources such as inulin that promote
the growth of bifidobacteria. Dietary polyphenols include flavonoids, phenolic acids, lignins
present in tea, wine, fruits, nuts and vegetables. Ellagic acid is polyphenol present in certain
berries and nuts that is an antioxidant with cancer preventive properties [20]. Epidemiological
studies have reported correlations between equol or equol-producing bacteria and diminished
breast cancer risk in women and diminished prostate cancer in men in Asian populations [21].

However, further studies are needed to determine whether probiotics can be used as protective
agents for the prevention of human colon cancer. It is possible that a microbiota favoring
commensal bacteria could alter the immune response to tumors at extraintestinal as well as
intestinal sites.
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5. Treatment of inflammatory bowel disease and colitis

Bacterial species isolated from inflammatory bowel disease (IBD) patients have shown to be
capable of inducing intestinal inflammation (e.g., enterotoxigenic B. fragilis, Bacteroides
vulgates). Intestinal inflammation was seen in germ-free SCID mice colonized with individual
or combinations of strains of Enterococcus faecalis, Fusobacterium mortiferum, Bacteroides distaso-
nis and segmented filamentous bacteria (SFB) [22]. SFB also play a role in the development of
experimental autoimmune encephalomyelitis (EAE) [23] and Rheumatoid arthritis(RA) [24].
Because of the potentially harmful role of these bacteria, antibiotics are frequently prescribed
to treat IBD [25].

A probiotic nonpathogenic strain of E.coli has been shown to be effective in patients diagnosed
with ulcerative colitis [26]. More recently, a probiotic product called VSL#3 which is a combi-
nation of eight probiotics: Bifidobacterium breve, B. longum, Bifidobacterium infantis, L. acidophilus,
Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus bulgaricus and Streptococcus thermo-
philus have demonstrated efficacy for inducing remission in ulcerative colitis [27].

6. Fecal microbiota transplantation and IBD

The results of fecal microbiota transplantation (FMT) show very promising but discrepant
results. A meta-analysis recently conducted by Colman et al. showed that 45% of patients
achieved clinical remission and reduced some anti-inflammatory drugs after FMT [28-30]. A
recently conducted randomized trial in patients with ulcerative colitis showed that the clinical
remission was not statistically significant with FMT due to small study numbers but in all the
responders a shift in the microbiota composition was observed supporting the role of micro-
biota manipulation in the treatment of IBD [31, 32].

7. Helminth: induced suppression of IBD

Novel treatment strategies for IBD and celiac disease are being developed using parasitic
nematodes particularly Trichuris spp. and Necator americanus [33, 34].

Studies of the impact of parasite colonization on the human gut microbiota have shed light on
the potential role of the gut microbiota in whipworm-mediated suppression of inflammation.
The therapeuticability of T. trichura whipworms to improve clinical symptoms of inflammation
associated with significant changes in the composition and relative abundance of different gut
bacterial species has been shown [35]. A significant decrease in the bacterial phylum cyano-
bacteria accompanied by an expansion of Bacteroidetes and Tenericutes was seen in Trichuris-
infected ICD macques. In another study, the administration of a single dose of T. suis ova was
able to alter the composition of the gut microbiota of infected pigs with IBD, including a
reduction in the abundance of Fibrobacter and Ruminococcus expansion of Campylobacter
[36].
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Another study involving experimental infection with Heligmosomoides polygyrus bakeri in a
mouse model of IBD revealed a significant expansion of the bacterial family Lactobacillaceae
in the ileum of infected mice, which correlated with disease outcome [37].

8. Therapeutic potential of Hookworms

While heavy burdens of hookworm parasites are associated with pathological effects, experi-
mental infections with small numbers of N. americanus are safe and well tolerated. When
administered in a mouse model of IBD, hookworm excretory/secretory products protect
against inflammation and weight loss [38]. A pilot study done to explore the impact of
experimental infections with N. americanus on the human gut microbiota has shown increased
bacterial richness at 8 weeks post infection in the volunteer subjects [39]. A higher species
richness of the gut microbiota has been associated with healthier homeostasis.

9. Role of microbiota in allergic diseases

Allergic disease development has been associated with alterations in the intestinal microbiota.
Infants with food allergies were found to exhibit lower lactobacilli and bifidobacteria species
while coliforms and Staphylococcus aureus were higher [40]. Bifidobacteria was decreased while
increase in clostridia was found in infants with atopic dermatitis [41]. Administration of L. casei
GG to the mothers before and after delivery prevents atopic eczema, which develop later in
children at risk [42]. A number of studies have been performed using probiotics to treat the
severity of various allergic diseases, including atopic eczema, atopic dermatitis and food
allergy in these children [43, 44]. Oral administration of optimal combinations of probiotic
Lactobacilli and Bifidobacteria in murine models is able to reduce allergic diseases. This could
be due to lower Th2 cytokine secretion on innate exposure [45, 46].

Environmental exposures in early infancy are thus a deciding factor of the composition of gut
microbiota which decides the development of immune function in an individual. These
differences in immune function link to the development of allergy and asthma [47].

A possible interpretation is that the bacteria ingested or inhaled served as a kind of tolerance
inducing adjuvant for allergens ingested or inhaled as reported recently that commensal
bacteria protect against food allergen sensitization [48]. The bacteria associated with protection
were largely members of the Bacteriodetes and Firmicutes phyla (e.g., Rickenellaceae, Por-
phyromonadaceae, Lachnospiraceae, Prevotellaceae, etc.).

Several associations exist between commensal microbiota and the development of allergic
diseases. In prospective studies, early fecal samples of infants who go on to develop allergies,
compared to those who remain healthy, grew less Enterococci, Bifidobacteria, Bacteroides,
Clostridia and Staphylococci [49]. Japanese infants developing early allergy have different
bifidobacteria spp compared to nonallergic infants [50]. In an experimental animal model of food
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allergy, the gut microbiota and its stimulatory action on innate immune system by toll-like
receptors (TLR), particularly TLR4, have been found. Mice susceptible to food allergies have
a mutation in TLR4 blocking its signaling [51].

10. Mode of action of probiotics to treat/prevent allergy

Probiotics have been suggested to act by reducing the permeability of intestine [52]. Probi-
otics induce low grade inflammation characterized by increases in CRP, total IgA, total IgE
and IL-10 levels. They can interact with the host immune system and modify the natural
course of allergic disease [53]. Recent data indicate that probiotics could modulate the pro-
duction of cytokines by monocytes and lymphocytes [54]. The dendritic cells may be stimu-
lated by probiotic bacteria in the intestinal lumen and express TLR-2 and inflammatory
cytokines [55]. Therefore, the stimulation of innate immunity may be the cause of the ob-
served inflammatory signs and beneficial clinical effects.

11. Role of microflora in obesity

The microbes occupying the human gut are in direct relation to obesity. The obese have more
Firmicutes and fewer Bacteroidetes. The more Bacteroidetes, the more weight loss by an obese
person [56]. An opportunistic pathogen isolated from the gut of obese human causing obesity
in germ-free mice has been identified [57].

Housing mice with obese microbiota with those of lean microbiota suppresses the obesity
factor in the former mice [58]. These data indicate clearly that microbiota can influence
metabolic parameters or even obesity [59, 60].

12. Regulation of obesity by gut flora

12.1. Extraction of addition calories from ingested food

The intestinal flora of obese individuals has been suggested to undergo changes that would
increase the extraction of calories from nutrients. An animal study, using germ-free mice
observed that these mice despite ingesting greater amounts of food than conventionally raised
mice, presented a lower amount of body fat [61]. Another study has shown that obese mice
had a reduced number of Bacteroides and a proportional increase in Firmicutes when com-
pared to lean mice [62]. They also proposed that flora of obese mice favored a greater capacity
of extracting calories from food, as the feces of these mice were observed to have less calories
and a greater amount of fermentation end products.
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12.2. Induction of subclinical inflammation

A correlation between obesity and intestinal flora has been proposed in type 2 diabetes. The
inflammation that leads to diabetes in obesity has been proposed to be triggered by LPS of
Gram-negative bacteria, which compose the intestinal flora [63]. Also it has been seen that in
humans, individuals with type 2 diabetes presented lower levels of serum lipopolysacchar-
ide than patients with type 2 diabetes by age [64]. Also in animal studies, it has been seen
that mice treated with a high fat diet were observed to present a reduction in intestinal per-
meability and in serum LPS levels, in addition to a decrease in inflammation of adipose tis-
sue and macrophage infiltration, after the modification of gut flora by antibiotics [65].

13. Conclusion

The endogenous gastrointestinal flora plays a fundamentally important role in health and
disease. The characterization of this diverse ecosystem fuelled by the recognition of the
potential value of probiotics and other means of modifying gut flora can be used as future
therapeutic modalities. It may hence be possible to establish profiles of the microbiota in
humans based on the bacterial species composition of the enterotypes [66].
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