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Abstract

This chapter proposes an evaluation and extension of the UniGrow model to predict the
fatigue crack propagation rate, based on a local strain-based approach to fatigue. The
UniGrow model, classified as a residual stress-based crack propagation model, is here
applied to derive probabilistic fatigue crack propagation fields (p-da/dN-ΔK-R fields)
for P355NL1 pressure vessel steel,  covering distinct stress R-ratios.  The results are
compared with available experimental data. The required strain-life data are experi-
mentally achieved and evaluated. The material representative element size, ρ*, a key
parameter in the UniGrow model, is assessed by means of a trial-and-error procedure
of inverse analysis. Moreover, residual stresses are computed for varying crack lengths
and minimum-to-maximum stress ratios. Elastoplastic stress fields around the crack
apex are evaluated with analytical relations and compared with elastoplastic finite-
element  (FE)  computations.  The  deterministic  strain-life  relations  proposed  in  the
original  UniGrow model  are  replaced by the probabilistic  strain-life  fields  (p-ε-N)
proposed  by  Castillo  and  Canteli.  This  probabilistic  model  is  also  extended  by
considering  a  damage  parameter  to  allow for  mean stress  effects.  In  particular,  a
probabilistic Smith-Watson-Topper field (p-SWT-N), alternatively to the conventional
p-ε-N  field,  is  proposed  and  applied  to  derive  the  probabilistic  fatigue  crack
propagation fields.

Keywords: fatigue crack propagation, fracture mechanics, local fatigue approaches,
probabilistic models, P355NL1 steel

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

Research about the fatigue behaviour of materials and structures has engaged both academia
and industry. Fatigue has been investigated since the industrial revolution and remains an
unsolved research topic due to the lack of reliable predictive models and the continuous
emergent materials and applications [1]. The knowledge on fatigue crack propagation is not
fully accomplished, despite the great advances achieved in the last decades. In particular,
probabilistic approaches are still lacking.

Paris et al. [2] were the first to establish a correlation between the fatigue crack propagation
rates and the stress intensity factor, suggesting the well-known and widely accepted Paris’ law.
Since this contribution, the pioneer Paris’ law has been used extensively to model fatigue crack
growth under constant amplitude loading but also under random loading. However, Paris’
law shows some limitations, as it only models the stable crack propagation regime, excluding
near threshold and near unstable fatigue crack propagation phases, and the stress ratio effects
are not accounted for. Further, it is a deterministic approach for fatigue crack propagation.
Many other fatigue crack propagation relations have been suggested in the literature to solve
the shortcomings of the Paris’ law including enhanced prediction of fatigue crack growth
under variable amplitude loading [3]. The assortment of fatigue crack propagation models
available in the literature differs in the number of variables and parameters involved and the
application domains. However, their use requires the evaluation of expensive time-consuming
fatigue crack propagation tests in order to identify their constants.

Local fatigue strain-based approaches [4–7] represent an alternative to the fracture mechanics
fatigue crack propagation once the former being very often applied to model the fatigue crack
initiation on notched components [8]. They are usually complemented with fracture mechanics
models to allow full fatigue life assessments.

Figure 1. Crack discretization according to the UniGrow model: (a) crack and discrete elementary material blocks and
(b) crack shape at the tensile maximum and compressive minimum loads [11].
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Some authors, as Glinka [9], Peeker and Niemi [10], Noroozi et al. [11–13] and Hurley and
Evans [14], have applied local strain-based fatigue models to represent fatigue crack propa-
gation. Glinka was one of the precursors of modelling fatigue crack propagation using a strain-
based fatigue relation [9]. The crack was assumed to have a notch with a tip radius, ρ*, and the
material ahead of the crack tip was assumed to be divided into elemental blocks of finite linear
dimension, ρ* (see Figure 1). The crack growth was assumed as the failure of the successive
elemental blocks, the fatigue crack growth rate being defined by the following relation:

(1)

where �� represents the number of cycles to fail the elemental block of dimension, ρ*. This

approach allowed the fatigue crack growth rate to be directly expressed by the strain-life
relation constants.

Figure 2. Crack discretization with elements according to the model proposed by Peeker and Niemi [10].

Similarly, the model proposed by Peeker and Niemi [10] allowed the near threshold fatigue
crack propagation data and the stable crack growth to be described (see Figure 2). For the near
threshold fatigue crack propagation, the authors derived the following analytical relation
functions of the strain-life constants:

(2)

For the stable crack growth, the above authors derived the following alternative relations that
use the cyclic stress-strain constants besides the elastoplastic strain-life constants:
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(3)

The superposition of the two previous relations leads to the following analytical expression
for the fatigue crack propagation law covering both fatigue propagation regimes I and II:

(4)

The application of the local approaches to fatigue on fatigue crack growth simulation requires
the definition of a crack path discretization. The size of the elements used to discretize the crack
path should account for two criteria: (a) the size must be large enough to represent the local
material properties by their mean values using continuous variables and (b) its size should be
related to micro-structural material parameters, such as the material grain size. For structural
steels, and according to reference [10], the criteria result in an average element size of 0.1 mm
= 100 μm.

In general, elastoplastic stress analysis at the crack vicinity is required and very often analytical
approaches are applied. Nonetheless, Hurley and Evans [14] proposed the use of elastoplastic
finite-element analysis. The fatigue life of the process zone was computed using the Walker
strain that was correlated directly with the fatigue life from the experimental data using a
power relation. This Walker strain is defined according to the following relation:

(5)

where σmax is the maximum stress, E is the Young modulus, Δ� is the strain range and w is a

constant varying between 0 and 1. These authors applied the following definition of the cyclic
plastic zone that is assumed equal to the fatigue process damage zone under plane strain
conditions:

(6)

where �0 is the cyclic yield stress and Δ� is the stress intensity factor range computed from

the numerical model. The resulting approach is much simpler than those proposed by previous
authors. It is supported by numerical models disregarding analytical aspects that allowed
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previous authors to verify the relation between these local approaches to fatigue and the
fracture mechanics approaches for fatigue crack propagation.

In all previous studies, the fatigue crack growth process has been modelled as a continuous
damaging process consisting of successive failure of material elements along the assumed
crack path. These crack propagation approaches have provided accurate correlations of crack
propagation data from several sources that included the stress ratio or mean stress effects.
These crack propagation approaches are local fatigue approaches, where the stress-strain fields
ahead of the crack tip are computed supported by elastoplastic stress-strain analyses. The
resulting elastoplastic stress-strain fields are used in fatigue damage analysis performed for
each material element in the crack path. Analytical methods such as the ones proposed by
Neuber [15] and Moftakhar et al. [16] may be applied to perform the elastoplastic analysis
taking into account the elastic stress-strain fields computed around the crack tip, using
available linear elastic fracture mechanics solutions [11, 16, 17].

This chapter proposes an evaluation and extension of the model proposed by Noroozi et al.
[11–13] to predict the fatigue crack propagation rates, based on a local strain-life fatigue
approach. This model denoted that the UniGrow model is a residual stress-based crack
propagation model [18]. The model is adapted in this work to derive probabilistic fatigue crack
propagation fields (p‐da/dN‐ΔK‐R fields) for P355NL1 pressure vessel steel, covering distinct
stress R-ratios. The procedure proposed has been already applied to other available experi-
mental data [19–21]. The required strain-life data is experimentally evaluated and can be found
in the literature [21]. The material representative element size, ρ*, a key parameter in the
UniGrow model, is assessed by means of a trial and error process. The residual stress field at
crack tip vicinity is investigated for various crack lengths and minimum-to-maximum stress
ratios. The elastoplastic stress-strain fields evaluated at the vicinity of the crack tip, using
analytical solutions, are compared with the stress-strain fields computed using nonlinear
elastoplastic finite-element analyses of the tested compact tension (CT) specimens considered
in a fatigue crack propagation experimental program.

Deterministic strain-life relations proposed in the UniGrow model are replaced by the
probabilistic strain-life fields (p‐εa‐N) proposed by Castillo and Canteli [22]. This probabilistic
model is also extended by considering a damage parameter able to account for mean stress
effects. In particular, a probabilistic Smith-Watson-Topper field (p‐SWT‐N) is proposed
alternatively to the p‐εa‐N and applied to derive the probabilistic crack propagation fields.

2. Overview of the deterministic UniGrow model

The UniGrow model, originally developed by Noroozi et al. [11], rest on the following
premises:

• A continuous material is discretized into elementary finite particles (dimension ρ*), below
which material continuity is no longer assured, (Figure 1a).
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• The fatigue crack tip geometry exhibits a finite radius equivalent to a round notch of radius
ρ*, (Figure 1b).

• The fatigue crack growth is decomposed into successive crack increments, each one of equal
size—the material elementary finite particle size. Therefore, this damaging process can be
assumed as a continuous crack initiation process occurring at the material element levels
characterized by the size ρ*.

• The fatigue crack growth rate can then be computed using Eq. (1) and the number of cycles
required to completely crack the material elementary particles can be computed by a local
fatigue relation such as the ones based on a strain-life approach.

Noroozi et al. [11] proposed the application of the Smith, Watson and Topper fatigue damage
parameter (SWT damage parameter) [7] in the form of the following fatigue life relation:

(7)

Peeker and Niemi [10] propose, alternatively, the use of the Morrow's equation [6] to compute
the failure of the material's representative element:

(8)

The Morrow's equation is derived from the following Coffin-Manson relation [4, 5] of the
material, in order to include mean stress effects:

(9)

In particular, Eq. (7) is derived by the multiplication of the Coffin-Manson Eq. (9) by the Basquin
relation [23], for a fully reversal stress ratio, i.e. R (σmin/σmax) = –1, given by

(10)

In the previous two equations, ��′  and b represent, respectively, the fatigue strength coefficient

and exponent; ��′  and c represent, respectively, the fatigue ductility coefficient and exponent

and E is the Young modulus. The maximum stress, σmax, mean stress, σm, and the strain range,
Δε, are computed and averaged over the material elementary size ρ* using an elastoplastic
analysis. According to Noroozi et al. [11, 12], the elastoplastic analysis can be performed,
following the steps below, in order to estimate the stresses and strains at the elementary
material elements placed along the crack path:
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i. Application of the Creager-Paris solution [24] to evaluate the elastic stresses in the
material region surrounding the crack tip.

ii. Application of analytical elastoplastic formulae such as the Neuber's [15] or Glinka's
approaches [25] to transform the elastic stress field into actual elastoplastic stresses
and strains ahead of the crack tip. Procedures by Moftakhar et al. [16] and Reinhard
et al. [17] may also be applied to perform multi-axial elastoplastic stress-strain
analysis.

iii. Determination of the residual stresses along the y-axis direction (normal to crack face)
and along the crack path direction (line ahead of the crack tip), using the actual
elastoplastic stresses computed at the end of the first load reversal and subsequent
cyclic elastoplastic stress range, that is

(11)

iv. Assuming the residual stress distribution computed ahead of the crack tip to be
applied on the crack faces, behind the crack tip, in a symmetric way with respect to
the crack tip (x = 0), the loading process generates a plastic zone at the crack tip that
does not vanish completely during unloading, leading to a cyclic plastic zone, which
is controlled by compressive stresses ahead of the crack tip and to some amount of
crack opening displacement just behind the crack tip (crack faces does not close
completely just behind the crack tip). One way to model crack opening consists in
assuming that the compressive residual stress field acting ahead of the crack tip is
applied in a symmetrical way, behind the crack tip, directly on crack faces. This
compressive stress distribution acting on crack faces is equivalent to a residual stress
intensity factor being used to correct the applied stress intensity factor range leading
to a total (effective) stress intensity factor range that excludes the effects of the
compressive stresses. It is proposed by Noroozi et al. [11, 12] to calculate the residual
stress intensity factor, Kr, using the weight function method [26]:

(12)

where � �, �  is the weight function and �� is the residual stress field.

v. The applied stress intensity factor values (maximum and range) are corrected using
the calculated residual stress intensity, resulting the total Kmax,tot and ΔKtot values [11,
12]. For positive stress R-ratios, which corresponds to the range covered by the
experimental data used in this research, Kmax,tot and ΔKtot may be computed as follows:

(13)
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where Kr assumes a negative value corresponding to the compressive stress field. For
high stress R-ratios, the compressive stresses ahead of the crack tip may be neglected
and the applied stress intensity factor range is assumed fully effective and for low
stress R-ratios, the compressive stresses increase and the effectiveness of the applied
stress intensity factor range decreases.

vi. Using the total values of the stress intensity factors, the first and second steps (steps
(i) and (ii)) are repeated to determine the corrected values for the maximum actual
stress and actual strain ranges at the material's representative elements. Then, Eq. (7)
is applied together with Eq. (1) to compute the fatigue crack growth rates in the
original UniGrow model proposition.

The above fatigue crack propagation methodology does not provide close-form expressions
for the fatigue crack propagation rates. Nevertheless, considering the material to behave
according to dominant elastic or plastic behaviours at the crack tip, close-form solutions for
the fatigue crack propagation rates are viable, leading to fatigue crack propagation relations
based on two crack-driven parameters with the following form [11, 12]:

(14)

where C, p, q and γ are constants that can be related with the ones characterizing the cyclic
elastoplastic behaviour of the material at the crack tip and the plasticity or elasticity dominance.
The dependency of the fatigue crack propagation rates with both the maximum and range of
stress intensity factors, Kmax and ΔK, allows the mean stress effects to be conveniently accounted
on fatigue crack propagation rates. This type of fatigue crack propagation model based on the
combination of two parameters crack driving force has recently being proposed by several
authors [27, 28].

In this chapter, the methodology proposed by Noroozi et al. [11] is followed with some
variations. Material cyclic/fatigue properties are required. In addition, the UniGrow model
introduces the material element size, ρ*, which consists in an additional model parameter that
in most of the situations needs to be computed by means of a trial and error iterative approach,
in order to result in a good fitting of available experimental fatigue crack propagation data.
The analytical elastoplastic analysis, supported by the Creager-Paris [24] elastic solutions and
the Neuber's multi-axial approach [15–17], is applied to evaluate the elastoplastic stress-strain
field at the first material element at the crack tip. Concerning the residual stresses along the
crack path line, it is computed using a nonlinear elastoplastic finite-element analysis over-
coming discrepancies verified in the analytical residual stress distributions, as demonstrated
later in the chapter.
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3. Modelling cyclic plasticity

In the following an elastoplastic constitutive model based on the von Mises yield criterion (J2
plasticity) and associative flow rule is selected to model compact tension specimen's elasto-
plastic behaviour and particularly to compute the residual stresses at the fatigue crack region.
Multi-linear kinematic hardening is used, which is crucial for the cyclic plasticity simulation
and in particular the Bauschinger effect description. The von Mises yield criterion points out
a yield function, f, defined as follows:

(15)

where Sij is the deviatoric stress tensor defined as

(16)

Xij is the back-stress tensor that defines the translation of the yield surface, �� is the yield stress

of the material, ��� is the stress state of the material, �ℎ is the pressure or hydrostatic stress

state and ��� is the Kronecker delta operator. The plastic flow occurs according to the associative

flow rule, which means that the plastic strain increment can be computed from the derivatives
of the yield function with respect to the stress tensor:

(17)

where � is the plastic multiplier related to the amount of plastic deformation. The adopted
kinematic hardening rule is based on the Besseling model that is a sub-layer or overlay model
[29] with the material behaviour, being composed of various portions (or sub-volumes), all
subjected to the same total strain but each sub-volume having a different yield stress. Despite
each sub-volume shows a simple stress-strain response, when combined, the model can
represent multi-linear stress-strain curves. The following phases are performed in the plasticity
calculations [30]:

i. The portion of total volume (the weighting factor) for each sub-volume and its
corresponding yield stress are computed.

ii. For each sub-volume, the respective increment of the plastic strain is determined,
assuming that each one is subjected to the same total strain.

iii. The individual increments in the plastic strain are summed up using the weighting
factors determined in step (i) to result the total or apparent increment in plastic strain.

iv. The plastic strain is updated and the elastic strain is evaluated.
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The weighting factor and yield stress for each sub-volume are determined by fitting the
material response to the uniaxial stress-strain curve. A perfectly plastic material based on von
Mises criterion is assumed. The weighting factor for sub-volume k given by

(18)

where �� is the weighting factor for sub-volume k and is evaluated sequentially from 1 to the

number of sub-volumes Nsv and ��� is the slope of the kth segment of the uniaxial cyclic stress-

strain curve. The yield stress for each sub-volume is given by

(19)

where (��,��) is the breakpoint in the uniaxial multi-linear cyclic stress-strain curve. The

number of sub-volumes corresponds to the number of breakpoints specified for the definition
of the multi-linear stress-strain material relation. Each sub-volume follows the von Mises yield
criterion with the associative flow rule and the plastic strain increment for the entire volume
is computed according to

(20)

In the plastic computation algorithm, if the equivalent (von Mises) stress predicted using an
elastic trial exceeds the material yield stress given the yield function, then plastic strains will
occur. Then a plastic correction will be required, which means that plastic strains reduce the
stress state so that it satisfies the yield criterion (return to mapping procedures). The followed
scheme for the integration of the elastoplastic constitutive equations consisted of an elastic trial
and a return mapping procedure, as proposed by Simo and Taylor [31]. ANSYS commercial
code was used in this study with the cyclic plasticity model being already part of the software
capabilities [30]. The stabilized cyclic stress-strain curve of the material under consideration
in this study is used for the identification of the plasticity constants. In particular, the cyclic
stress-strain curve was replaced by a multi-linear representation, the resulting breakpoints
being inputted in the model built in the ANSYS commercial code.

4. Probabilistic fatigue damage models

The application of the UniGrow model requires a fatigue damage relation to compute the
number of cycles to fail the elementary material blocks. In this section, probabilistic fatigue
damage models are proposed rather than the deterministic SWT‐N, Coffin-Manson or Morrow
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models. The probabilistic εa‐N model proposed by Castillo and Canteli [22] is used. However,
since the probabilistic εa‐N model does not take into account the mean stress effects, a new
probabilistic SWT‐N field is also proposed, as an extension of the p‐εa‐N field suggested in [22],
to include the mean stress influence.

4.1. p‐ε‐N model

Based on physical and statistical considerations, such as the weakest link principle, stability,
limit behaviour, range of the variables and compatibility, Castillo and Canteli [22] derived a
probabilistic Weibull model to describe the strain-life field using the same formulation as that
proposed by the authors for modelling of the stress-life field. Details of each derivation are
found in Castillo et al. [32, 33], where the stress version of the model proves to be successfully
applied to different cases of lifetime problems. This leads to the following Weibull strain-life
model [33]:

(21)

where p is the probability of failure, N0 and εa0 are normalizing values, and λ, δ and β are the
non-dimensional Weibull model parameters. Their physical meanings (see Figure 3) are as
follows:

N0:  threshold value of lifetime,

εa0:  endurance limit of εa,

λ:  parameter defining the position of the corresponding zero-percentile curve,

δ:  scale parameter and

β:  shape parameter.

Note that the strain-life model (Eq. (21)) has a dimensionless form and reveals that the

probability of failure p depends only on the product ��*��* , where ��* = log ��/�0  and��* = log ��/��0 , that is

(22)

i.e. ��*��*  follows a Weibull statistical distribution.

This model provides a complete analytical description of the statistical properties of the
physical problem being dealt with, including the quantile curves as curves representing the
same probability of failure. The model shows, with respect to the conventional strain-life
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Coffin-Manson relation, some important advantages. Specifically, it resulted from sound
statistical and physical assumptions and not from an empirical arbitrary hypothesis, provides
a probabilistic definition of the complete strain-life field without the need of splitting the total
strain in its elastic and plastic components but dealing with the total strains directly, includes
the run-outs also in the analysis and, finally, also facilitates fatigue damage analysis.

Figure 3. Probabilistic εa‐N field.

4.2. p‐SWT‐N model

The SWT (=σmax.εa) parameter is proposed by Smith et al. [7] in order to take into account the
mean stress effects on fatigue life. Any combination of maximum stress and strain amplitude
supplying the same value of the SWT parameter should lead to the same fatigue life. The
SWT‐N and εa‐N fields exhibit similar characteristics. Therefore, the p‐ε‐N field proposed by
Castillo and Canteli [22] may be extended to represent the p‐SWT‐N field as

(23)

where p is the probability of failure, N0 and SWT0 are normalizing values, and λ, δ and β are
the non-dimensional Weibull model parameters. Their physical meanings (see Figure 4) are

N0: threshold value of lifetime and

SWT0: fatigue limit of SWT,
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and the Weibull parameters λ, δ and β with the same meaning as discussed above.

Note that Eq. (23) has a dimensionless form and reveals that the probability of failure p depends

only on the product ��*SWT*, where ��* = log ��/�0  and SWT* = log SWT/SWT0  that is

(24)

i.e. ��*SWT* follows a Weibull distribution.

The parameters log N0 and log εa0 of the p‐εa‐N model, and log N0 and log SWT0 of the p‐
SWT‐N model can be estimated by the least square method. The Weibull parameters may be
estimated by the maximum likelihood method [32, 33].

Figure 4. Probabilistic SWT-Nf field.

5. Procedure to generate probabilistic fatigue crack growth rates

A procedure proposed by Correia et al. [34–39] to derive probabilistic fatigue crack propaga-
tion fields, based on the UniGrow model, may be summarized into three steps, as follows (see
Figure 5):

1. Estimation of the Weibull parameters for the p‐SWT‐N or p‐εa‐N models, described in
Section 4, using experimental εa‐N or SWT‐N data from smooth specimens tested under
low-cycle fatigue uniaxial tensile loading.
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2. Application of the UniGrow model with probabilistic fatigue damage models.

3. Computation of the p‐da/dN‐ΔK‐R field.

The UniGrow model is programmed in an Excel workbook, using Visual Basic for Applications
(VBA) macros. The problem of the CT specimen geometry was addressed by the code devel-
oped [34–39]. The required data are the material properties, loading parameters and geometric
dimensions of the CT specimen, including the initial and final crack sizes to be simulated. Also,
the elementary material element size, ρ*, is an input that after the first trial may be iteratively
corrected to result in a satisfactory fit between the experimental and numerical data. Figure 3
gives a general overview of the procedure.

Figure 5. Procedure to generate probabilistic fatigue crack propagation fields.
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Neuber and Glinka's approaches for the elastoplastic analysis are both possible to be applied
to the cracked CT specimen [15, 25] and a multi-axial elastoplastic calculation as suggested by
Moftakhar et al. [16] and Reinhard et al. [17] are programmed. This multi-axial approach is
supported by Hencky's total deformation equations that proved to yield reliable predictions
for the stress-strain field at notched details under proportional loading. Besides the crack tip
material element analysis, the UniGrow model also requires the computation of the elasto-
plastic stress-strain response along the crack path, in order to facilitate the residual stress
assessment. However, the above referred analytical multi-axial elastoplastic approaches are
not able to model the stress redistribution due to yielding, which may lead to inconsistent
predictions of the residual stresses. To overcome this limitation of the analytical approaches,
in this research the residual stresses are computed preferably using an elastoplastic finite-
element approach, the results being verified against those coming from the referred analytical
solutions. The residual stresses play a central role in the UniGrow model; therefore, the
accuracy of the residual stress evaluation method is vital for attaining consistent fatigue crack
growth rate predictions.

The probabilistic fatigue crack propagation fields are alternatively assessed using the proba-
bilistic εa‐N and SWT‐N fields. For each fatigue damage model, independent material ele-
ment sizes, ρ*, are identified and compared.

6. Basic fatigue data of the P355NL1 steel

The P355NL1 steel is a pressure vessel steel, the fatigue behaviour of which has been already
analysed [21, 35, 39, 40]. This section presents the cyclic elastoplastic fatigue data and the
fatigue crack growth data obtained for the P355NL1 steel [21]. The strain-life behaviour of the
P355NL1 steel is evaluated through fatigue tests of smooth specimens, carried out under strain-
controlled conditions, according to the ASTM E606 standard [41]. Two series of specimens, 19
and 24 specimens, are tested under distinct strain ratios, Rε = 0 and –1, respectively. The cyclic
Ramberg-Osgood [42] and Morrow [6] strain-life parameters of the P355NL1 steel are sum-
marized in Table 1, for the conjunction of both strain ratios [21, 35, 39, 40]. The Ramberg-
Osgood properties are represented by the cyclic strain hardening coefficient, K' and the cyclic
strain exponent, n'. The fatigue ductility coefficient εf', the fatigue ductility exponent c, the
fatigue strength coefficient σf' and the fatigue strength exponent b are parameters of the
Morrow strain-life relation. The elastic and monotonic tensile properties of this pressure vessel
steel under investigation, as represented by the Young modulus E, Poisson ratio ν, the ultimate
tensile strength fu and upper yield stress fy, are shown in Table 2.

Material σ’f b ε’f c K’ n’

MPa – – – MPa –

P355NL1 1005.50 −0.1033 0.3678 −0.5475 948.35 0.1533

Table 1. Cyclic elastoplastic and strain-life properties of the P355NL1 steel, Rε = –1 and Rε = 0.
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Material E v fv fy
GPa – MPa MPa

P355NL1 205.20 0.275 568.11 418.06

Table 2. Elastic and tensile properties of the P355NL1 steel.

Figure 6. Fatigue crack propagation data obtained for the P355NL1 steel.

Fatigue crack growth rates of the investigated materials are also evaluated for several stress
R-ratios, using CT specimens, following the recommendations of the ASTM E647 standard
[43]. The CT specimens of P355NL1 steel are defined with a width, W = 40 mm and a thickness,
B = 4.5 mm [21, 35, 39, 40]. All tests are performed in air, at room temperature, under a
sinusoidal waveform at a maximum frequency of 20 Hz. The crack growth data derived for
the P355NL1 steel, for three tested stress ratios, Rσ = 0.0, Rσ = 0.5 and Rσ = 0.7, are illustrated
in Figure 6. The crack propagation rates are only slightly influenced by the stress ratio. Higher
stress ratios provide higher crack growth rates. Figures 7 and 8 show the p‐SWT‐N and p‐εa‐
N fields, respectively, which are identified for the P355NL1 pressure vessel steel, using the
experimental data from the fatigue tests on smooth specimens. The constants of the Weibull
fields are also shown in the figures, in particular the threshold constants (B and C) and the
Weibull parameters (β, λ and δ). The extrapolations using the Weibull field should be avoided
mostly for very low-cycle fatigue regimes. It is verified in this study that the number of cycles
to fail the material's representative element, in the fatigue crack propagation regime II, is
generally in the low- to very low-cycle fatigue regimes. Thus, it is decided to enhance the
Weibull field in this region postulating some fatigue data at the low- to very low-cycle fatigue
regimes, using the available deterministic Morrow's equation. The Morrow's equation does
not show the vertical asymptote as verified with the Weibull field, being physically more
consistent when performing extrapolations for very low number of cycles.
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Figure 7. p‐SWT‐N field for the P355NL1 steel.

Figure 8. p‐εa‐N field for the P355NL1 steel.
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7. Prediction of the probabilistic fatigue crack propagation fields

The prediction of the probabilistic fatigue crack propagation fields is performed through the
application of the UniGrow model to CT specimens. Additionally, the elementary material
block size, ρ*, is required and is evaluated by a trial and error procedure in order to achieve
good agreement between the predicted and experimental da/dN versus ΔK data, for the
P355NL1 steel under consideration. The probabilistic fatigue crack propagation fields are
evaluated using, alternatively, the probabilistic p‐εa‐N and p-SWT‐N fields (see procedure
described in Section 6).

7.1. Numerical FE simulation of the compact tension specimens

Two-dimensional numerical models of the CT specimens are developed using nonlinear
elastoplastic finite-element modelling. These models were useful to assess the accuracy of
residual stress estimation using the simplified elastoplastic analysis. A very refined finite-
element mesh at the crack tip region is used to model conveniently the crack tip geometry with
a notch radius, ρ* (refer to Figure 1b for geometric details). Figure 9 illustrates the finite-element
mesh of the CT specimen along with the respective boundary conditions. One-half of the
geometry is modelled, taking advantage of the existing symmetry. 2D plane stress elements
are used since the specimens’ thickness is relatively thin (B = 4.5 mm for the P355NL1 steel).

Figure 9. Typical finite-element mesh of the CT specimen.
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Quadratic triangular elements (six-noded elements) are selected and applied with a full
integration formulation. The pin loading used in the CT testing is simulated with a rigid-to-
flexible frictionless contact, the pin being modelled as a rigid circle controlled by a pilot node.

Figure 10. Cyclic stress-strain relation obtained for the P355NL1 steel [39].

Maximum stresses Mesh 5 Mesh 4 Mesh 1 Mesh 2 Mesh 3

σy (MPa) 1367.9 1420.1 1495.8 1605.3 1606.7

Dev. (%) −14.79 −11.54 −6.82 – 0.09

σx (MPa) 347.4 370.3 363.9 354.2 354.1

Dev. (%) −1.93 4.57 2.74 – −0.03

Table 3. Maximum elastic stresses for distinct finite-element mesh densities for the P355NL1 steel (Fmax = 1634.1 N, ρ* =
30 Âμm).

All numerical simulations are carried out using the ANSYS® 12.0 code [30]. The six-noded
plane element adopted in the finite-element analyses is the PLANE181 element available in
the ANSYS® 12.0 code library. The contact and target elements used in the pin-loading
simulation are, respectively, the CONTA172 and TARGE169 elements available in ANSYS®

12.0 code [30]. A parametric model is built using the APDL language. The surface of the holes
is modelled as flexible using CONTA172 elements. The augmented Lagrangian contact
algorithm is used. The associative von Mises (J2) yield criterion with multi-linear kinematic
hardening is used to model the plastic behaviour. The multi-linear kinematic hardening uses
the Besseling model, also called the sub-layer or overlay model, so that the Bauschinger effect
is included. The plasticity model was fitted to the stabilized or half-life pseudo-stabilized cyclic
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curve of the materials. The von Mises yield criterion with multi-linear kinematic hardening is
adopted to model the plastic behaviour.

The finite-element model is initially applied to perform elastic and elastoplastic stress analyses
in order to allow us the comparison between the elastic and elastoplastic stress distributions
as resulting from the Creager-Paris solution [24] and the multi-axial Neuber approach [15],
respectively.

One important assumption of the UniGrow model consists in applying the compressive
residual stresses that are computed ahead of the crack tip, in the crack faces, in a symmetric
way with respect to the normal to crack face that passes through the crack tip. The resulting
residual stress intensity factor Kr is computed using the weight function method [26], for each
of the stress ratios covered by the testing program.

Figures 9 and 10 show the finite-element mesh of the CT geometry and the cyclic stress-strain
curves adopted in the plasticity model of the P355NL1 steel, respectively [39]. The Ramberg-
Osgood relation [42] is compared with the response of the finite-element model reproducing
a uniaxial stress state in Figure 10. Table 3 presents the maximum elastic stresses (σx and σy)
ahead of the crack tip, resulting from distinct mesh densities illustrated in Figure 11. The mesh
2 is adopted for residual stress computation. Results presented in Table 3 compare the mesh
2 with the other meshes.

Figure 11. Finite-element meshes used in the convergence study performed for the CT specimen.

Figure 12. Comparison between analytical and numerical results of the elastoplastic stress distribution ahead of the
crack tip and along the crack line (y = 0) for CT specimens made of the P355NL1 steel (Fmax = 1643.1 N, ρ* = 30 μm): (a)
σy stress distribution and (b) σx stress distribution.

Figures 12 and 13 illustrate the elastic and elastoplastic stress distributions for the P355NL1
steel, respectively. In these figures, the numerical and analytical solutions for the CT specimens
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are computed for a crack tip radius, ρ* = 30 μm, which is found to be the best value for the
P355NL1 steel. This ρ* parameter gives the best predictions of the fatigue crack growth rates,
using the Morrow relation as referred in [6]. Figure 14 shows the residual stress distributions
for the P355NL1 steel for distinct crack sizes and stress R-ratios. The residual stress distribu-
tions are computed by means of the analytical and numerical solutions using an elementary
material block size, ρ* = 30 μm [39]. Figure 15 illustrates the stress and strain fields along the
y- (load) direction obtained for the CT specimens using the elastoplastic finite-element analysis
and the properties of the P355NL1 steel, for a material's representative element ρ* = 30 μm, a
crack size a = 14 mm, a maximum load Fmax = 1634.1 N and a stress R-ratio Rσ = 0.0. The stress
and strain fields are shown at the end of the first loading reversal and at the end of the first
unloading reversal. Figure 16 presents the residual stress intensity factor range for an elemen-
tary material block size ρ* = 30 μm [39] as a function of the applied stress intensity factor range
obtained with the numerical analysis.

Figure 13. Comparison between analytical and numerical results of the elastoplastic stress distribution ahead of the
crack tip and along the crack line (y = 0) for CT specimens made of the P355NL1 steel (Fmax = 1643.1 N, ρ* = 30 μm): (a)
σy stress distribution and (b) σx stress distribution.

Figure 14. Comparison between analytical and numerical results of the residual stress distribution ahead of the crack
tip and along the crack line (y = 0) for CT specimens made of the P355NL1 steel (Fmax = 1643.1 N, ρ* = 30 μm).(a) Rσ = 0.0
and (b) Rσ = 0.5.
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Figure 15. Stress and strain fields for the load direction, obtained for the CT geometries made of P355NL1 steel, result-
ing from elastoplastic finite-element analysis (Fmax = 1634.1 N, ρ* = 30 μm, a = 14 mm, Rσ = 0.0). (a) Stress field (MPa) at
the end of the first loading reversal. (b) Stress field (MPa) at the end of the first unloading reversal. (c) Strain field at the
end of the first loading reversal. (d) Strain field at the end of the first unloading reversal.

Figure 16. Residual stress intensity factor as a function of the applied stress intensity factor range.

The elastic stress distribution sustains a very good agreement between the analytical and
numerical results, for several crack sizes, within a small distance from the crack tip. The
analytical solutions lead to higher maximum absolute stresses than the elastoplastic FE
analysis. The analytical solution does not show plastic zone behaviour, which is a clear
limitation of the analytical approach. The increasing of the stress ratio affects the compressive
residual stresses that decrease progressively with increasing stress ratio. This trend is respon-
sible for increasing the effectiveness of the applied stress intensity range as a crack driving
force. The extension of the compressive residual stresses increases for higher crack lengths.
The numerical compressive stress region is always lower than the one obtained by the
analytical analysis. Therefore, the numerical solution, for the residual stresses, is adopted in
the crack propagation prediction, based on the UniGrow model. A very high linear correlation
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between the residual stress intensity factor and the applied stress range is verified for each
stress R-ratio. This linear relation agrees with the proposition by Noroozi et al. [12] based on
analytical analysis.

7.2. Results and discussion

Finally, in this section, the UniGrow model is applied to compute the fatigue crack propagation
rates for the same fatigue crack propagation data described in Section 6. As detailed before,
the residual stress intensity factor is calculated using a compressive residual stress distribution
computed from numerical analysis and the weight function technique [26]. The strain range
and maximum stress, needed by the probabilistic strain-life or SWT-life fields, are evaluated
using an analytical calculation applied over the first material element ahead of the crack tip,
keeping the original structure of the UniGrow model. Average strain and stress values, along
the first elementary material block, are used instead of peak values. The analytical solution
produces reliable results at the crack tip notch root as verified in previous section. The original
structure of the UniGrow model presents some advantages: (i) provides a direct correspond-
ence with fracture mechanics based analyses, which facilitates the physical understanding of
the process, (ii) allows close-form solutions for fatigue crack propagation laws to be achieved
in the same format as that of existing fracture mechanics approaches and (iii) requires
inexpensive computations.

Figure 17. Probabilistic prediction of the fatigue crack propagation based on the p-SWT‐N field for the P355NL1 steel
(ρ*= 3 × 10−5 m): (a) Rσ = 0.0 and (b) Rσ = 0.5.

The probabilistic εa‐N and SWT‐N fields are used to derive the probabilistic fatigue crack
propagation fields (p‐da/dN‐ΔK‐R fields). For each case, an independent identification of the
elementary material block size, ρ*, is performed. Figure 17 shows the probabilistic fatigue crack
propagation fields obtained for the P355NL1 steel, using the p‐SWT‐N material fields. Figure 18
illustrates the probabilistic fatigue crack propagation fields predicted for the P355NL1 steel,
resulting from the p‐εa‐N material fields.
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Elementary material block size of 3 × 10−5 m is found adequate for the P355NL1 steel, resulting
from the application of the p‐ε‐N fields. The elementary material block size found for the
P355NL1 steel is higher than those proposed by Noroozi et al. [13] for the 4340 steel (ρ* = 2 ×
10−6 m). So far, there are no conclusive studies relating the micro-structural grain sizes with
the elementary material block sizes. Nevertheless, it can be anticipated that ρ* can be indirectly
dependent on the micro-structural features of the analysed material (e.g. grain size) but it
cannot be uniquely associated with any specific micro-structural particle size. Therefore, the
material grain size may be considered just one of the possible micro-structural features
affecting the definition of ρ*.

Figure 18. Probabilistic prediction of the fatigue crack propagation based on the p‐εa‐N field for the P355NL1 steel (ρ* =
3 × 10−5 m): (a) Rσ = 0.0 and (b) Rσ = 0.5.

Concerning the probabilistic fatigue crack propagation rate fields of the P355NL1 steel, it is
clear that the use of the p‐SWT‐N model overestimates the effects of the stress R-ratio. Using
the probabilistic SWT‐N model, the stress ratio effects are accounted twice, through the
residual stress intensity factor (compressive residual stresses effects) and through the mean
stress of the cycle. Nevertheless, the number of cycles required to crack the material element
fall within the very low- to low-cycle fatigue regimes at which a rapid cyclic mean stress
relaxation is verified. However, the multi-linear kinematic hardening model used in the
investigation is not capable of simulating the cyclic mean stress relaxation. The predictions
based on the p‐εa‐N model are satisfactory. First, they define lower and upper bounds for the
available experimental data. Secondly, the major influence of the stress ratio is verified when
it changes from 0 to 0.5. In the damage computations presented in the chapter, the prior loading
history on crack tip elements is not considered. Preliminary calculations performed consider-
ing the prior loading history on a set of elements ahead of the crack tip, forming a process zone,
show only a marginal influence on da/dN predictions, mainly in the propagation regimes I and
II. Nonetheless, the computational costs associated to simultaneous damaged elements
increases very significantly.
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8. Conclusions

An assessment of the UniGrow model is presented in this chapter, based on available experi-
mental data for the P355NL1 steel under consideration. The UniGrow model is also extended
to predict probabilistic fatigue crack propagation fields, replacing the deterministic SWT‐N
relation proposed in the original UniGrow model by the p‐SWT‐N or p‐εa‐N fields. In the
present chapter, the p‐SWT‐N field is first proposed as a generalization of the p‐εa‐N field, in
order to take into account the mean stress effects. Both p‐SWT‐N and p‐εa‐N fields led to
satisfactory correlations of the experimental data available for the P355NL1 steel under
investigation.

The multi-axial analytical Neuber elastoplastic analysis proposed in the UniGrow model to
compute the residual stress distribution is assessed using elastoplastic finite-element analysis.
Inconsistent compressive residual stress distributions, mainly for Rσ = 0, are found using this
approach. The multi-axial Neuber model does not take into account stress redistribution due
to yielding and therefore does not provide the dimensions of the plastic zone. The residual
compressive stress intensity factor, computed with the compressive residual stress field from
the finite-element analysis, exhibits a linear relation with the applied stress intensity factor
range, which confirms the typical trend documented in literature of linear increase of the
residual stress intensity factor with the applied stress intensity factor range, for a specific stress
R-ratio.

The p‐da/dN‐ΔK‐R fields predicted for the P355NL1 steel, based on material p‐εa‐N field,
produce satisfactory results, since this material shows crack propagation rates with relatively
small sensitivity to the stress R-ratio. The elementary material block size for the P355NL1 steel
is found to be about one order of magnitude higher than the value proposed by Noroozi et al.
[14] for the 4340 steel. The ρ* can be indirectly dependent on the micro-structural features of
the analysed material (e.g. grain size) but it cannot be uniquely associated with any specific
micro-structural particle size.
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