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Catadioptric Omni-directional Stereo Vision and 
Its Applications in Moving Objects Detection 

Xiong Zhihui,  Chen Wang and  Zhang Maojun 
College of Information System and Management, National University of Defense Technology 

Changsha, P.R. China 

1. Introduction 

Catadioptric Omni-Directional Stereo Vision (ODSV) technology is the combination of 
omni-directional imaging and stereo vision, which has wide application potentials on robot 
vision and large-scale video surveillance [1-4]. Fig.1 gives the framework of ODSV 
technology, which includes four major parts: the design of omni-directional stereo vision 
imaging system, unwarping of omni-directional stereo images, rectification of omni-
directional stereo images, stereo matching and depth estimation of omni-directional stereo 
vision. 
Among these four parts, the imaging system can be used to capture omni-directional stereo 
image pair(s), which is the input of omni-directional stereo vision. An omni-directional 
stereo vision imaging system is typically composed of catadioptric mirrors, imaging sensors 
and fasteners. 
The purpose of unwarping the omni-directional stereo images is to convert the circularity 
shaped omni-directional images into perspective projection images, which are suitable for 
human watching. Generally, we call the circularity shaped images captured by catadioptric 
omni-directional imaging system as omni-directional images, and we call the unwarped 
images that are suitable for human watching as panoramic images. 
Rectification of omni-directional stereo images can be regarded as the pretreatment before 
stereo matching. In many cases, there are horizontal errors and vertical errors in the omni-
directional images and panoramic images, these errors result in large searching space and 
mismatching when performing stereo matching. The rectification of omni-directional stereo 
images uses epipolar geometry to transform the images, which makes the matching points 
lie on a horizontal scan line, and reduce the searching space from two-dimension to one-
dimension, so as to improve the stereo matching efficiency. 
Stereo matching and depth estimation of omni-directional stereo vision are key problems in 
catadioptric omni-directional stereo vision, whose main function is to find correspondences 
between pixels among a pair of or more reference images, i.e. to estimate relative disparity 
for each pixel in reference images. Given pixel correspondence and calibrated camera, it is 
easy to figure out the depth information via triangulation for the determinate relationship 
between disparity and depth. 
Taking its advantages of large FOV (Field of View) and depth information, catadioptric 
omni-directional stereo vision can be widely used in robot vision and video surveillance. For 
example, in robot football games, we can use this technology to make robots to "see" the O
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football whenever it is at any direction. Furthermore, since the depth information is not 
sensitive to the surrounding disturbance, this depth information can be used to detect the 
football position. 
 

 

Fig. 1. Framework of catadioptric omni-directional stereo vision 

2. Omni-directional stereo vision imaging system 

2.1 Principle of catadioptric omni-directional imaging 
The principle of the catadioptric omni-directional imaging is following: in the 3D space 
environment, rays from all the 360 degree FOV (Field of View) objects are collected and 
reflected by curve faced reflecting mirrors (such as paraboloid, hyperboloid, etc.); these 
reflected rays are captured by imaging systems and omni-directional images are obtained [5].  
Taking the PROIS (Paraboloid Reflective Omni-directional Imaging System) [5] s an 
example, Fig.2 illustrates the principle and process of the catadiopric omni-directional 
imaging: 1) Incident rays from the scene are reflected by the paraboloid mirror. 2) Reflex 
rays run into the optics imaging system and forms an omni-directional image on the image 
sensor (such as CCD of a digital camera). 3) Finally, the omni-directional image is unwarped 
into panoramic image. 

2.2 Omni-directional stereo imaging system 
At present, there are three ways to construct the catadioptric omni-directional imaging 
systems [6], shown in Fig.3:  

www.intechopen.com



Catadioptric Omni-directional Stereo Vision and Its Applications in Moving Objects Detection 

 

495 

1. The pairs of omni-directional imaging systems are installed horizontally, and the axes 
of the pairs of imaging systems are vertical with the horizontal plane as shown in Fig. 
3(a). However, there are occlusions between these two systems, which limit the FOV of 
the stereo vision system. 

2. The pairs of omni-directional imaging systems are installed vertically on the same 
vertical axes, as shown in Fig. 3(b). Using this type of design, there exist no occlusions 
between these two systems, and it ensures that there exists parallax on 360 degree FOV. 
In this type of systems, the mirror can be reflecting mirrors (such as paraboloid, 
hyperboloid, etc.). When the system uses paraboloid as the reflecting mirrors, it 
requires using expensive telecentric lens.  

3. Use two reflecting mirrors and a camera to construct an omni-directional stereo vision 
system, as shown in Fig. 3(c). This type of stereo imaging system requires that the two 
images of stereo vision are captured with a single camera, which limits the imaging 
resolution much. According to the principle of Fig. 3(c), Fig. 4 presents the design of a 
realistic omni-directional imaging system and its picture. As shown in Fig. 4(a), this 
system installs an expensive telecentric camera on vertical axes, and the upper mirror and 
nether mirror are also installed on the same axe. Fig.4(b) shows the practical picture of 
this system. 

 

 

Fig. 2. Principle of catadioptric omni-directional imaging and its unwarping 

www.intechopen.com



 Computer Vision 

 

496 

upper

mirror

nether

mirror

a single

camera

upper

mirror

nether

mirror

upper

camera

nether

camera

left mirror right mirror

left 

camera

right

camera

 
                                              (a)                      (b)                        (c) 

Fig. 3. Three ways to construct omni-directional stereo vision imaging system. 

(a)horizontal cameras; (b)vertical cameras; (c)vertical and single camera. 

       
                                                (a)                                          (b) 

Fig. 4. Design and practical picture of single camera omni-directional stereo imaging system. 
(a)design size; (b) practical picture. 
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3.  Unwarping of omni-directional stereo vision images 

There are two methods to perform stereo matching in omni-directional stereo vision. The 
first method is to perform stereo matching on the original images captured by the omni-
directional imaging systems. When we use this method, we need to research and put 
forward new matching algorithms for omni-directional images. Another method is to 
unwarp the original captured omni-directional images into panoramic images, and then 
uses traditional stereo matching algorithms to finish the stereo matching on the panoramic 
images. When we use the second method, we need to unwarp the omni-directional images 
into panoramic images, as shown in Fig.5 (Note: the omni-directional image is captured 
with a virtual imaging system using 3D MAX). 

                             (a)                                                                                   (b) 

Fig. 5.  Omni-directional stereo vision image is unwarped into panoramic stereo vision 
image pair.(a)Omni-directional stereo vision image;(b)Panoramic stereo vision image pair. 

For simplicity, we take the unwarping of a single omni-directional image into panoramic 
image as an example to describe the unwarping of omni-directional image. Presently, some 
general approaches for omni-directional image unwarping include ray-trace coordinate 
mapping, concentric circle approximate unwarping and look-up table unwarping [7].  
Among these approaches, the ray-trace coordinate mapping method tracks and analyzes the 
propagation trace according to principles of light propagation and reflection, and draws a 
pixel coordinate mapping between the original omni-directional images and the unwarped 
panoramic images. This method unwarps panoramic images with both high precision and 
less distortions. The disadvantage is that this method needs heavy computation for 
coordinate mapping, which slows down the unwarping speed.  
On the other hand, the concentric circle approximate unwarping method treats the omni-
directional image as a series of concentric circles, and these circles are pulled straight and 
extended or compressed to the same length. This method needs lower computation time. 
But this method unwarps omni-directional images with bad visual effect because of its 
lower precision and higher distortions.  

3.1 Concentric circle approximate method for omni-directional image unwarping 
Fig.6 depicts the principle of concentric circle approximate unwarping. Fig.6(a) denotes a 
circular omni-directional image with inner radius r and outer radius R. The region between 
r and R is valid region. Fig.6(b) shows the corresponding unwarped panoramic image. For a 
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pixel ' ' '

0 0 0
( , )P X Y  in the unwarped panoramic image, the coordinate of the corresponding 

pixel 
0 0 0

( , )P X Y in the original omni-directional image (Fig.6(a)) can be determined by the 

following equation. 

 
'

0 0

'

0 0

( ) sin

( ) cos

X r Y

Y r Y

θ
θ

= + ∗⎧⎪
⎨

= + ∗⎪⎩
 (1) 

Where ' '

0 0
( )X r Yθ = + . 

 
                                                     (a)                          (b) 

Fig. 6. Principle of unwarping the omni-directional image into panoramic image. (a)omni-
directional image;(b)panoramic image. 

3.2 Look-up table method for omni-directional image unwarping 
Fig.7 describes the principle of look-up table method for omni-directional image unwarping. 
First of all, this method calculates the pixel coordinate mapping relationship between the 
omni-directional image and panoramic image (e.g. using the ray-trace coordinate mapping 
method), and saves the mapping relationship into a loop-up table. After that, when 
performing the omni-directional image unwarping, for each pixel in the unwarped 
panoramic image, what we need to do is to get the mapping from the look-up table, and 
then get the corresponding pixel from the omni-directional image. 
 

 

Fig. 7. Principle of look-up table method for omni-directional images unwarping 
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Advantages of the look-up table method including: this method unwarps omni-directional 
images with high precision (because this method generates the look-up table according to 
the results of ray-trace coordinate mapping); on the other hand, this method unwarps omni-
directional images with high speed (since this method performs unwarping only by 
querying the look-up table and fetches the coordinate). Disadvantage of the look-up table 
method is: this method takes large storage space to store all the coordinate mappings (since 
we need to maintain an item for each pixel of the unwarped panoramic image). 

3.3 Eight direction symmetry reuse algorithm for look-up table unwarping 
In order to decrease the storage space needed for storing look-up table in the look-up table 
method for unwarping omni-directional images, we can use the eight direction symmetry 
reuse algorithm [7]. 
Eight direction symmetry reuse algorithm includes three steps: First of all, we sector the 
original omni-directional image into eight symmetrical regions and partition the target 
panorama image into eight rectangular regions (each corresponds to a sector). Secondly, 
based on any one of these sectors, compute the coordinate transform equation according to 
the principle of symmetrical transform. Finally, impose the ray-trace coordinate mapping 
function on only one sector, and perform symmetrical reusing process on the other seven 
sectors. 

3.3.1 Eight direction symmetrical partition of omni-directional images 
In order to reduce the storage space required to store the coordinate mappings, we reuse the 

coordinate mappings of the first sector using symmetrical principle. The strategy is to 

partition both the omni-directional image and cylinder panoramic images into eight 

symmetrical regions and find out the symmetrical relationship between them, and then 

reuse these relations. 

Fig.8 indicates the principle of eight symmetrical partitions and eight direction symmetry 
reuse. In Fig.8(a), the coordinate system XOY is constructed at the centre of the omni-
directional image O. The omni-directional image is divided into eight symmetrical regions 

named 
0

A ,
1

A ,……,
7

A . In Fig.8(b), we construct the coordinate system ' ' 'X O Y  at point 'O  

and partition the target panorama into eight equal regions named '

0
A , '

1
A , ……, '

7
A . 

After partitioning, the sectors
0

A ,
1

A , ......., 
7

A  in Fig.8(a) are mapped to the rectangular 

regions '

0
A , '

1
A , ……, '

7
A  in Fig.8(b) respectively. We define the sector 

0
A  and the 

rectangular region '

0
A  as storing region, on which the coordinate mapping relationship need 

to be stored. The rest sectors 
1

A ,
2

A ,……,
7

A  and the reset rectangular regions 
'

1
A , '

2
A ,……, '

7
A  are defined as reusing regions, on which the coordinate mapping 

relationship can be obtained by symmetrical transform reusing the computation result of 

storing region(
0

A and '

0
A ). 

3.3.2 Eight direction symmetry coordinate transform 

For the point 
0 0 0

( , )P X Y in storing region in Fig.8(a), its symmetrical points in the seven 

reusing regions 
i

A (i=1,2,3,...,7)are 
i

P (i=1,2,3,...,7). At the same time, the seven points 

i
P (i=1,2,3,...,7) in Fig.8(a) map to the seven points 

'

i
P (i=1,2,3,...,7). Supposing the coordinates 
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(a) Eight direction symmetry points in omni-directional image 
 

 

(b) Eight direction symmetry points in panorama 

Fig. 8. Eight symmetrical partition and symmetry reuse 

of point 
0

P is
0 0

( , )X Y , owing to the symmetry of 
1

P  and 
0

P at line y x= , the coordinates 

of point 
1

P is
0 0

( , )Y X . By the same token, 
2

P and
1

P are symmetric with respect to y-axis 

and the coordinates of 
2

P is
0 0

( , )Y X− . The rest may be deduced by analogy, finally we get: 

 

1 0 0 2 0 0

3 0 0 4 0 0

5 0 0 6 0 0

7 0 0

(  ,   ),   ( ,   )

( ,   ), ( , )

( , ), (  , )

(  , )                          

P y x P y x

P x y P x y

P y x P y x

P x y

= = −⎧
⎪ = − = − −⎪
⎨ = − − = −⎪
⎪ = −⎩

 (2) 

In Fig.8(b), suppose the coordinates of point '

0
P  is ' '

0 0
( , )x y , the length of each rectangular 

region is '
h , and the seven points '

i
P  are the correspondences of the points 

i
P (i=1,2,3,...,7) in 

Fig.8(a). From Eq.(2) we can see that points 
i

P (i=1,2,3,...,7) relocated on the same concentric 

circle, thus they are of the same vertical coordinate value '

0
y (equal to the vertical coordinate of 

'

0
P  ). In addition, their horizontal coordinates '

i
x  satisfies the following expression: 

 

' '

0
'

' '

0

*                if 0  2  4  6

( 1)* 1   if 1   3  5  7
i

i h x i
x

i h x i

+ =⎧⎪= ⎨
+ − − =⎪⎩

 (3) 
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Therefore, if the coordinates ' '

0 0
( , )x y of point '

0
P  are known, the coordinates of the rest 

seven reusing points '

i
P (i=1,2,3,...,7)are: 

 

' ' '

0 0'

' ' '

0 0

( * ,   y )                if   2,   4,   6   

(( 1)* 1,   y )   if 1,   3,   5,   7
i

i h x i
P

i h x i

+ =⎧
= ⎨ + − − =⎩

 (4) 

3.3.3 The eight direction symmetry reuse algorithm 
The algorithm includes three steps: preprocessing, coordinate mapping and coordinate 
reusing. 
// preprocessing 

Step1. Define the centre of the omni-directional image, the inner and outer radius of the 
valid region; 
Step2. Define the resolution (height and width) of the unwarped panoramic image; 
Step3. Define parameters in the ray-trace coordinate mapping; 
//perform coordinates mapping and coordinate reusing 

Step4. For each pixel ' ' '

0 0 0
( , )P x y  in the rectangular region 

'

0A of the unwarped panoramic 

image, implement step 5 to step 9; 
// coordinate mapping 

Step5. Fetch the coordinates of point   from the look-up table as 
0 0

( , )X Y , in region 
0

A  of 

the omni-directional image, where point 
0

P  is correspondent with point ' ' '

0 0 0
( , )P x y ; 

Step6. Copy the pixel value of point 
0 0 0

( , )P X Y  as that of '

0
P ; 

// coordinate reusing 

Step7. Adopting Eq.(2), compute the coordinates ( , )
i i

X Y  of points 
i

P in the seven reusing 

region 
i

A of the omni-directional image respectively, and guarantee that 
i

P is the 

symmetrical point of
0

P , where i=1,2,3,...,7;  

Step8. Adopting Eq.(4), compute the coordinates 
' '

0 0
( , )x y of points 

'

i
P in seven reusing 

region '

i
A  of the unwarped panoramic image respectively, and guarantee that 

i
P is the 

symmetrical point of 
'

0
P , where i=1,2,3,...,7; 

Step9. Copy the pixel values of symmetrical points ( , )
i i i

P x y  in the seven reusing regions 

i
A  of omni-directional image in step 7 as that of points ' ' '( , )

i i i
P x y  in the seven reusing 

regions '

i
A  of unwarped panoramic image in step 8.  

// complete the algorithm 

Step10. When the implement traverses all the pixels in unwarped panoramic image, every 
pixel in other seven reusing regions of the unwarped panoramic image will get its correct 
pixel value. 

4.  Omni-directional stereo image rectification 

After omni-directional images capturing and unwarping, we obtain cylindrical panoramic 
image pairs from the same scene. But it is not appropriate to carry out the stereo matching 
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and depth estimation directly on the obtained cylindrical images for randomicity of imaging 
positions between panorama image pairs, and a rectification process should be done first 
(imaging systems in Fig.3(b), 3(c) are special cases of omni-directional imaging system, i.e. 
in which the relationship between imaging position of image pairs is particular, and 
unwarped panoramic pairs need no rectification). There is only horizontal disparity within 
rectified image pairs, therefore, we can search the corresponding points just along image 
scan line direction, which is a faster and more accurate approach.   
The principle of rectification for cylindrical image pairs and for ordinary perspective image 

pairs is similar, both based on epipolar geometry. But because of particularity of cylindrical 

imaging model, there is biggish difference between the two rectification processes. Some 

related work has been done. [8-10] studied the epipolar geometry of cylindrical image and 

relevant mathematical formula was given. [9-12] discussed image rectification and 

corresponding matching problem in plenoptic modeling, range estimation and 3D 

reconstruction based on cylindrical image, but did not mention how to rectify image pair 

and to search corresponding points. [13-14]proposed a particular panoramic camera fix for 

range estimation and investigated the rectification problem, however, they didn’t discuss 

about rectification on arbitrary pose of cylindrical camera pairs. While [15] firstly segmented 

panoramic image into several parts along axes direction, then projected every part on to 

plane tangent to the cylinder, and at last rectified image with proposed method for planar 

image. When working with approach in [15], the homographic and perspective project 

transformation (HPPT in short) is necessary and therefore inevitable result in pixel 

information losing and image distortion [16-18], and eventually reduces the correctness of 

the corresponding matching. Although [17] proposed a method, which transformed a line in 

planar image into a vertical line of cylindrical image, to minimize by-effect of HPPT, this 

method, in view of particularity of cylindrical imaging, can not apply to cylindrical image 

directly. 

According to recent study literatures, the normal approach for rectifying cylindrical image 

pairs is the way via epiline-sampling based on epipolar geometry. It samples reference 

images as much as possible to obtain better pixel-maintain-rate and effective-pixel-rate by 

analyzing the epipolar constrain of cylindrical image pairs, and has a fair rectification result 

for unwarped omni-directional images. Compared with approach of HPPT, this method can 

reduce image distortion and pixel information losing obviously and maintain the scene 

information better. 

4.1 Epipolar geometry of cylindrical panoramic image pairs 
Epipolar geometry is an important constraint for stereo images from camera pairs, it reveals 

the inner relationship of the pixel positions of special scene projected onto the two cameras. 

As illustrated in Fig.9, let V1, V2 denote two viewpoints with origin v1, v2, and Clind1, Clind2 

are two cylindrical panoramic images, p means a scene point with coordinates p1=(x1,y1,z1)T 

in V1, p2=(x2,y2,z2)T  in V2. For generality, we assume coordinates V1 is coincide with world 

coordinates. The plane spanned by v1, v2 and p is so-called epipolar plane, and its 

intersection lines ( Epiline1, Epiline2) with Clind1, Clind2 are named epiline. Epipolar 

geometry of two views can be formalized as follows.  Let pv1, pv2 denote positions of a scene 

point in viewpoint coordinate of V1 and V2. The transformation between them is given by 
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pv2=Rpv1+T, where R is a (3x3) rotation matrix and T is a (3x1) translation vector. Then the 

normal of plane spanned by T and p1 is  NTP1=Txp1 where x denotes outer product. And the 

normal of plane spanned by T, p2 is NTP2=RNTP1=R(Txp1). Since p2 belongs to the intersection 

line between epipolar plane and Clind2, Eq.(5) can be established by NTP2· p2=0, i.e. 

 

 

Fig. 9. Epipolar geometry of cylindrical image pairs 

 

 1 2( ) 0R T p p× ⋅ =  (5) 

let [ , , ]
T

x y z
T t t t= , and 

0

[ ] 0

0

z y

z x

y x

t t

T t t

t t

×

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

, then Eq.(5) can be expressed as 

 
1 2 1 2 2 1

( [ ] ) ( ) 0T
R T p p Mp p p Mp× ⋅ = ⋅ = =  (6) 

Where [ ]M R T ×=  is a ( 3 3× , rank 2) matrix. Eq.(5,6) presents the epipolar geometry of 

cylindrical panoramic image pairs. 

4.2 Coordinate transformation 
For what we actually get is the pixel coordinate of image, a transformation from pixel 
coordinates to camera coordinates is necessary. The transforming equation is: 

 

1

1 1 1 1 1

1 1

cos

( , , ) sin

( )

T

c

x f

p x y z y f a

z v v PixelSize

α=

= = =

= −

⎧
⎪
⎨
⎪⎩

 (7) 

Where =u1x2π/ColNum, f denotes camera focus, i.e. the radius of cylinder, (u1,v1) is pixel 
coordinates of p1 on unrolling cylindrical image, vc means the row index of center point on 
unwarped cylindrical image, ColNum denotes width of unrolling cylindrical image, PixelSize 
denotes the size of pixel. Obviously, the same transformation can by applied to p2. Let 
Mp1=(kij)3x1=K, according to Eq.(6,7), there is 
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0

)(

sin

cos

2

2

2

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⋅

PixelSizevv

f

f

K

c

α
α

 

where ColNumu /222 πα ×= . Without subscript components of 2 

and v2, we have
   

PixelSizek

fkfk
vv c

31

2111 sincos αα +
+=   , ColNumu /2πα ×= .  

4.3 Epiline equation solving 

When omni-directional image unwarping, it is obvious that: f can be fixed, and 
c

v , 

PixelSize is known (for the size of camera film is known). Therefore, we can only consider 
solving epipolar geometry equation under the following two cases: 

1. Cylindrical camera has been calibrated, i.e. the values of R , T , f ,
c

v , PixelSize are 

known. Then Eq.(6) will be a group of linear equations  about 
2

p  if coordinates of 

1
p

1 1
( , )u v is known. And vice versa. 

2. Cylindrical camera has not been calibrated. Thereby, we should firstly estimate 

fundamental matrix M . Let
3 3

( )
ij

M m ×= , Eq.(6) can be expressed as  

 
11 1 2 12 1 2 13 1 2 21 1 2 22 1 2 23 1 2 31 1 2 32 1 2 33 1 2

0m x x m y x m z x m x y m y y m z y m x z m y z m z z+ + + + + + + + =   (8) 

If coordinates of 
1 1 1

( , , )x y z  and 
2 2 2

( , , )x y z are known, Eq.(8) will be a nine variables linear 

equation with constrain of det( ) 0M = . Referring to 8-points algorithm of estimating 

fundamental matrix, we can get M similarly and then the corresponding epiline equation of 
every point. 

4.4 Rectification via epiline sampling 
To reduce distortions and pixel-information-losing of rectified images, it should sample the 
reference image maximum according to epipolar geometry. 

For generality, assume the radius and height of
 1

Clind ,
2

Clind
 

is 1f , 2f , 1h , 2h , where 

21 ff = ,
21 hh = ) f and h can be fixed when omni-directional unwarping), 1V , 2V denote two 

viewpoints with origin 1v , 2v , X axes sets along 21vv ,and the coordinates 1V  is coincide with 
the world coordinates (see Fig. 10). For simplicity, we study the epiline sampling algorithm 
on Part1and Part2, parts of the cylindrical images. 

Let 1 1 1

1
( , , )

x y z
e e e e= , 2 2 2

2
( , , )

x y z
e e e e=  be the two epipolars which have minimal distance 

among the four epipolars on Clind1, Clind2,  since e1,e2 must be on all of the epipolar planes, 

i.e. all of the epipolar planes are composed of the plane cluster which intersect at 
1 2

e e
iiif

. Let 

the angle between epipolar plane and PH  which is a plane spanned by 
1 2

e e
iiif

 and point 

f
p ( 1 1( , ,0)

f y x
p me me= − ,

1 2 12

y x

f
m

e e
=

+
) on 

1
Clind  be β . In order to sample pixel 

information on Part1, Part2 as much  as possible, the value region ofs should be as large as 
possible, that is to say, epipolar plane should intersect Part1, Part2 maximally. 
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Fig. 10. Principle of epiline-sampling on cylindrical images 

To calculate the largest value range of β , vertexes coordinates of 
1

Part ,
2

Part should be 

taken into consideration. Let the coordinates of vertexes of 
1

Part ,
2

Part  be ),,( j

i

j

i

j

i zyx  

where 1, 2,3, 4i =  and 1, 2j = (when 1, 2i = , ( , , )j j j

i i i
x y z  denotes vertexes above PH , 

otherwise, denotes vertexes below PH ) , the normal of plane spanned by ( , , )j j j

i i i
x y z ,

1
v ,

2
v  

is 
j

i
n , and the normal of PH  is 

ph
n , then the angle between these two planes is 

arccos

j

i phj

i j

i ph

n n

n n
β

⋅
= . Thereby when the value region of cut angle β  between PH  and 

epipolar plane intersecting 
j

Part  is 
3,4

[0,max( )]j

i
β =  below PH , and 

3,4
[0,max( )]j

i
β =  

above PH , the intersection line between epipolar plane and
1

Clind ,
2

Clind  can sample the 

pixel information of 
1

Part ,
2

Part  as much as possible. 

Following is the algorithm of calculating epilines on 
1

Part ,
2

Part . Let 
1,2

max( )j l

i m
β β= = , 

3,4
max( )j k

i n
β β= = , , , {1,2}, {3,4}m l k n∈ ∈ , the Z coordinate of intersection point between 

line defined by 

l

m

l

m

x x

y y

=⎧
⎨ =⎩

 and plane spanned by ( , , )l l l

m m m
x y z ,

1
e ,

2
e  be 

max
z , and 

Z coordinate of intersection point between the same line and plane spanned 

by ( , , )k k k

n n n
x y z ,

1
e ,

2
e  be 

min
z , then for any point on  

 

min max

l

m

l

m

x x

y y

z z z

=⎧
⎪ =⎨
⎪ ≤ ≤⎩

 (9) 

we can figure out the corresponding epiline equation on 
2

Clind  referring to 

( ) ( , , ) 0T

k
Mp x y z⋅ = , and corresponding epiline on 

1
Clind  as the intersection of cylinder 

and epipolar plane where the cylinder is defined as  
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2 2 2

0

x y f

z h

+ =⎧
⎨

≤ ≤⎩
 (10) 

and the epipolar plane is defined as  

 
1 2

[( )[( )] ] [ ( , , )] 0
k k k

p e p e p x y z×− − ⋅ − =  (11) 

With Eq.(10,11), epiline corresponding to 
k

p  on 
1

Clind  can be solved. When set the value of 

k
z  from

min
z to

max
z , we can sample 

1
Part ,

2
Part  by pairs of epilines as many as 

max min
( )z z− . 

4.5 Rectification experiments 
Corresponding rectifying experiments on part of the cylindrical image (Fig.11(a),Fig.12(a)) 
via algorithm of HPPT[15] and epiline-sampling are shown in Fig.11(b,c) and Fig.12(b,c).  
As experiments illustrated, rectifying with HPPT resulted in worse image distortions and 
resolution losing, while the approach based on epiline-sampling shows a better result, for it 
keeps the length of epiline and height and width of the image unchanged and reduced pixel 
information losing, as shown in Fig.11(c) and Fig.12(c). 
 

  
                          (a)                                             (b)                                                     (c) 

Fig.11 (a): Uncalibrated image pair of part of synthesized cylindrical images (corresponding 
points are not in the same scan line); (b): Rectified image pairs corresponding to images in 
(a) using the method [15] (corresponding points are in the same scan line); (c): Rectified 
image pairs corresponding to images in (a) using the proposed method (corresponding 
points are in the same scan line) 

 
                         (a)                                                   (b)                                                    (c) 
Fig. 12. (a): Uncalibrated image pair of part of real cylindrical images (corresponding points 
are not in the same scan line); (b): Rectified image pairs corresponding to images in (a) using 
the method [15] (corresponding points are in the same scan line); (c): Rectified image pairs 
corresponding to images in (a) using the proposed method (corresponding points are in the 
same scan line) 

5.  Stereo matching and depth estimation 

After rectification of omni-directional image pairs, stereo matching should be done on 
rectified images to recovery depth information. Given camera calibrated, it is easy to 
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figure out depth information from disparity via triangulation because of correspondence 
between disparity and depth. In this way, the problem of depth recovery is equal to 
finding correspondence within image pairs or series of images, i.e. stereo matching. 
However, stereo matching is a hard work for the reasons of noises, occlusion and 
perspective distortion. 
At present, researches in this field mainly differ in problem modeling and solving, they can 

be categorized into algorithms based on feature information, region information, and local 

or global approaches based on pixel information. Each method has their own advantage and 

disadvantage, for example, algorithms based on feature information is robust against noise, 

but can only obtain sparse disparity image; algorithms based on region matching although 

can get dense disparity map, but its reliability is poor and result is incorrect in the region of 

untextured, occluded and discontinuity; algorithm based on local information is faster 

compared to other ones but more sensitive to image local features and apt to produce wrong 

result.    

However, approaches with global graph cuts (GC) optimization are widely studied and 

showing strong performance in last few years. [19-21] utilized GC optimization in stereo 

matching decade ago; Yuri Boykov and Vladimir Kolmogorov developed new faster GC 

algorithm[23-27] on the basis of[19,21-22], which coped smoothness problem of resultant 

disparity map in the depth-jump area. Meanwhile, [28, 29, 31] adopted occlusion 

restriction in GC optimization, but occlusion itself is still too complex to deal with. [29-32] 

firstly initialized a disparity map and segmented it, then fitting each segment with a 

planar equation and labeling them via GC optimization, , therefore, a better result can be 

obtained. 

In this section, methodology and processes of stereo matching via GC optimization will be 

introduced in the first instance, and then a stereo matching algorithm based on region 

restriction and GC optimization will be illustrated in detail. This algorithm assumes 

disparity jumps only at the region of color discontinuity, and constructs energy function 

subjected to restriction between region boundaries. In this way, not only the global solution 

of energy function can be work out, but also that the solution has the feature of 

discontinuity-preserving, meanwhile embodies occlusion restriction, ordering restriction 

and uniqueness restriction. Additional, for energy function is only constructed based on 

boundary pixels, the number of graph vertex in GC optimization should certainly reduce 

significantly and results in great efficient performance. 

5.1  Energy minimization presentation of stereo matching 
Stereo matching between image pair can be compared to a problem of carbonization 

optimization. For a scene of limit depth, the corresponding discrete integral disparity is also 

a limit set, and our goal is to find (according to some rules) an optimal combinatorial 

configuration of disparity for each pixel in stereo images. Energy minimization is a common 

solution for this issue, which is usually presented as: 

 

 

{ }
,

,

min ( ) ( ) ( , )p p p q p q

p I p q N

 E f D f V f f
∈ ∈

= +∑ ∑  (12) 
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Where p , q denote pixels with neighborhood system N in image I , f is the combinatorial 

configuration of disparity for every image pixel. ( )
p p

D f  (called data term) expresses color 

consistency of pixel p when its disparity is
p

f .
, ( , )

p q p q
V f f  (called smoothness term) 

means smoothness between pixels p with disparity
q

f and q with disparity
q

f . 

5.2  GC optimization 
To solve Eq.(12), there are many approaches such as simulating anneal, dynamic 

programming and neural network, but these methods are either fit for high dimension 

dataset or hard to converge, and usually are inefficient in terms of computation. Recent 

researches prove that algorithms based on min cuts are very appropriate for problem of 

combinatorial optimization. They can be categorized mainly into two sets: 
 

1.  GC algorithms obtaining global optimal solution 
[20,21,33] regard combinatorial optimization as a labeling problem, and solving the problem 

via constructing a special graph whose min cuts/max flow just corresponds to optimal 

solution of energy function. To ensure a given energy function can be presented with graph, 

it demands smoothness term of energy function must be convex, therefore, result in bigger 

punish and over-smooth at boundary of disparity jump. Additional, for the convexity of 

smoothness term, some issues such as occlusion problem, ordering restriction can not be 

dealt with very well. 
 

2.  GC algorithms obtaining global second optimal solution 
To settle the over-smooth problem, [23-25] proposed to adopt unconvex smoothness term to 

make energy function discontinuity-preserving. So called Potts model 

,
( , ) ( )

p q p q p q
V f f T f fλ= × ≠ is a common simple smoothness term, however, even with 

Potts model, [23,26,28] proved it is NP-hard to optimize such energy function and there is 

no efficient global optimization algorithm. Therefore, [23,26,27]developed approximating 

ways to cope this problem by dividing optimization of multivariable energy function into 

iterative optimization of two-variable energy function, it meanwhile showed that, after 

certain iteration, the solution we get via this approach is just near the global optimal 

solution[21]. Because of unconvexness of smoothness term, such algorithm also can deal 

with occlusion, ordering problems and uniqueness. However, there are still some 

disadvantages. Approximating approach can only obtain second optimal solution in 

iterative way, it is hard to measure the computation complexity, and when take occlusion or 

ordering into consideration, it will bring in more additional computation.  

5.3  Graph construction of GC optimization 
Graph construction of GC optimization in this section is very similar to the way proposed in 

[21], as Fig.13 illustrated, where vertexes of graph network are possible matching pixel 

pairs, and edges of graph network denote neighborhood interaction and restrictions 

ensuring correspondence between a min cut of graph and a disparity configuration of stereo 

matching. 
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Fig. 13.  A graph structure for stereo matching 

 

Fig. 14.  A subgraph of Fig.13 corresponding to pixels p and q 

Fig.14 is a subgraph of Fig.13 corresponding to pixels p and q, and vertexes R and S are 

terminals Source  and Sink in Fig.13. The detail graph construction process can be defined 

as follows: 
1. For each pixel p, create a set of vertexes p1,……, pk-1 (k is the number of labels). Connect 

them by edges which is called t-links{ }1
, ...,

p p

k
t t where 

{ } { } { }
1 1 1 1

, , , , ,
p p p

j j j k k
t R p t p p t p S

− −
= = = ; 

2. For each pair of neighboring pixels p, q and for each { }1, ..., 1j k∈ − , create an edge 

called n-links{ },
j j

p q with weight { },p q
u ; 

3. Each t-links 
p

j
t is assigned a weight ( )

p p j
K D l+ where

p
K is any constant such that 

{ },
( 1)

p
p p qq N

K k u
∈

> − ∑ . 
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Any cut of graph define in this way corresponds to a disparity configuration of stereo 
matching, and the cut cost is: 

 { }
{ }

,
,

( )C C C

p p p p qp q
p I p I p q N

C K D f u f f
∈ ∈ ∈

= + + −∑ ∑ ∑  (13) 

In Eq.(13), 
p

p I

K
∈

∑ is a constant, and ( )
C

p p

p I

D f
∈

∑  is corresponding data term in Eq.(12). If we 

define
,

( , )
p q p q

V f f = { },

C C

p q p q
u f f− , then there is only a constant term dispersion between 

Eq.(12) and Eq.(13). Therefore, the two equations can get optimal solution simultaneously, 

i.e. corresponding solution of min cut of constructed graph is also the global optimal 

solution of energy function. More information can refer to paper [21]. 

5.4  Stereo matching based on region boundary restriction and GC optimization 

For the unconvexness of { },

C C

p qp q
u f f− , energy function with the form of Eq.(13) can 

obtain global optimal solution via GC, therefore stereo matching algorithm based on region 

boundary restriction and GC optimization is naturally to represent energy function in the 

form similar to Eq.(13), but additional, it also need to deal with over-smooth problem 

meanwhile embody ordering and unique restrictions. 

5.4.1  Assumptions 
This algorithm assumes that: 
1. Most of disparity jump occur at the region of color discontinuity. 
2. If the image is over-segmentation based on color information, then it is sensible to 

consider that pixels in same segment have equal disparity [29,31]. 
3. Most occlusions in image pair are part-occlusion. 
With qualitative analysis, it is clear that the assumptions given above are rational in most of 
cases. 

5.4.2  Algorithm principle 
Because pixels in same region have equal disparity after image segmentation, therefore, 

disparity of whole segment is up to disparity of its boundary pixels, and the key problem of 

stereo matching can be regarded as find corresponding disparity for every pixel on each 

segment. 

Hence, an approach is region matching, for that if region correspondence between images is 

known, it is easy to figure out disparities of boundary pixels. [37] proposed a region 

matching algorithm, which worked as following: (1)segment image based on color 

information; (2) match regions by region features; (3) compute disparity map of whole 

image according to region matching result. However, this algorithm is not consistent with 

the fact. For factors such as imaging process and segmentation algorithm itself, 

segmentation results of image pairs of same scene may be different in many ways, which 

will be certainly result in wrong region matching. Fig.15 illustrates the difference in shape 

and size of segments of image pairs. 
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                                                 (a)                                                           (b)  

          

                                                   (c)                                                         (d) 

Fig. 15. (a): middle-top part of left view of venus testing image pair; (b): segmentation result 
of (a) via mean-shift algorithm; (c): middle-top part of right view of venus testing image 
pair; (d): segmentation result of (c) via mean-shift algorithm 

To overcome problem mentioned above, in this section, a new approach for region matching 

is proposed. It only segments one of reference images (for generality, we can assume it is left 

image) based on color information, and then constructs energy function according to color-

consistency and neighborhood relationship. It will show that, when optimization via graph 

cuts with this approach, region boundary of left image will close to corresponding region 

boundary of right image automatically. Constructed energy function is defined as: 

 
{ } { }1 2

, ,

, ,

( ) ( ) 1 ( , ) 2 ( , )
p p p q p q p q p q

p BI p q N p q N

min E f D f V f f V f f
∈ ∈ ∈

  = + +∑ ∑ ∑  (14) 

Where BI is the image consist of pixels on left and right region boundary (see [37] for 

definition of left and right region boundary) from one reference image, ( )
p p

D f denotes 

color difference for pixel p with disparity
p

f , , ,1 ( , ) 1 ,p q p q p q p qV f f u f f= × −  

, ,2 ( , ) 2p q p q p q p qV f f u f f= × − indicate the punish for different disparity of ,p q with 

neighborhood 1 2,N N , where 1N is neighborhood of pixels along scan line direction on 

adjacent region(as ,p q  illustrated in Fig.16(a)), 2N is neighborhood of pixels on left and 

right boundary of the same region(as sillustrated in Fig.16(a)), 1 2u u> . And Fig.16(b) 

shows how this algorithm works. 
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                                          (a)                                                                           (b) 

Fig. 16.  (a): position relation illustration of pixels on region boundary(part magnified image 
of Fig.15(b)); (b): principle of region boundary pixels matching illustration(part magnified 
image of Fig.15(c)) 

p, q are pixels on boundary of two adjacent region, it is clear that, corresponding points of p, 
q in Fig.16(a) should lie in the area near central point of the circle in Fig.16(b). If assume 

correspondence of p, q in optimal configuration f c is not the case, i.e. corresponding points 
of p, q in Fig.16(a) are p, q in Fig.16(b) respectively, then according to Eq.(14) , 

,
1 ( , ) 0

p q p q
V f f >  and is proportional to distance between p, q, hence it is contradictory to 

the assumption that f c is the optimal configuration. Because if choose p, q in Fig.16(b) more 

close to central point of the circle, 
,

1 ( , )
p q p q

V f f  will certainly reduce and 
,

2 ( , )
p q p q

V f f and 

( )
p p

D f should keep the same cost (for pixels in same region are color consistency 

and 1 2u u> ), therefore, the total cost of energy function ( )E f  will reduce. 

With globally optimizing Eq.(14) via GC, we can get fairly correct result of region matching, 
but for occlusion between regions, the dense disparity map can not be obtained yet. 

5.4.3  Dealing with occlusion  
Different depth of scene objects is the essential cause of occlusion, and only pixels in 
unoccluded part of one image have corresponding point in another image, that is to say, if 
we can match unoccluded part of reference images correctly, we can get correct disparity 
map meanwhile. After optimizing Eq.(14) via GC, region matching is fairly accurate, thereby 
the subsequent key problem is dealing with occlusion. We discuss that in three cases 
(because there is only horizontal displacement, so we need only analyze occlusion occurring 
at left and right region boundary): 
1. There is no occlusion existing at left or right region boundary, then disparity of pixels 

on left and right region boundary are equal to each other, and also to disparity of the 
region. 

2. Only left/right region boundary is occluded, in this case, disparity of whole region can 
be inferred from that of unoccluded region boundary. 

3. Both left and right region boundary are occluded. Under this circumstance, we can not 
certainly get correct region disparity because neither disparity of left or right region 
boundary is authentic. 

Analyze occlusion and disparity estimating in the cases of situation 1 and 2. As Fig.17 
illustrated, Fig.17(a) and Fig.17(b) are stereo image pairs. Assume corresponding point pairs 

after region matching are{ }1, 1 , ...,{ 2, 2}a A c C , then disparity of pixels on region boundary 

in Fig.17(a) can be expressed as
1 1 1 1

( ),...., ( )
A a C c

x x x x− − . It is obvious that there is part-
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occlusion existing in region ,A C  (labeled with red rectangle), therefore, only disparity of 

left region boundary of A is authentic, i.e. disparities of pixels between a1,a2 can be 

considered to be
1 1

( )
A a

x x− . Similarly, disparities of pixels between c1, c2 can be considered 

to be 
2 2

( )
C c

x x− . For 
2 2 1 1 1 1 2 2 1 1 2 2

( ) ( ), ( ) ( ), ( ) ( )
A a A a C c C c B b B b

x x x x x x x x x x x x− > − − > − − = − , 

we can present disparity estimating equation as: 

 1 1 2 2min(( ), ( ))
p P p P p

D x x x x= − −  (15) 

where ,P p  are corresponding pixels on left and right region boundary. As an example 

,Fig.17(c) gives the corresponding dense disparity map of Fig.17(a) (disparity of background 
pixel is set to zero). 
 

   

                                    (a)                                         (b)                                  (c) 

Fig. 17. Occlusion and disparity calculation. (a): left view of image pair; (b): right view of 
image pair; (c): corresponding disparity result 

As discussed above, with this approach, it can obtain authentic region disparity and 
meanwhile occlusions occurring within reference image pairs. Additional, although there is 
punish given for adjacent region boundary, it allows disparity jump between them (as 
disparity jump existing at the left and right boundary of region B in fiugre17).  

5.4.4  Uniqueness 
In this algorithm, though it is not defined uniqueness restriction explicitly, uniqueness 
restriction is still fulfilled in result disparity map for color consistency and neighborhood 
interactions have been enforced in energy function. 

As illustrated in Fig.17, assume boundary pixel a2 in Fig.17(a) is ( , )x y , its corresponding 

point in Fig.17(b) is 2A = ( , )x d y+ , and 1b = ( 1, )x y+ is the adjacent boundary pixel of a2, 

hence coordinates of B1 as corresponding point to b1 should be ( 1, )x d y+ + (when region 

B unoccluded) or ( , ), 1x d k y k+ + > (when region B occluded), otherwise, B1 will lie in 

region A and result in more cost of ( )
p p

D f for different color within two regions. 

To sum up, the process of this algorithm can be described as following: 
1. Segment arbitrary one image of stereo image pairs and obtain corresponding region 

boundaries. 
2. Construct graph according to Eq.(14) and segmentation result. 
3. Find the min cut of constructed graph and matching regions. 
4. Estimate disparity map and analyze occlusion according to Eq.(15). 
Among those steps, the second one is the key operation. Although it is similar to approach 
proposed in [21], it differs from that in graph element and neighborhood system, and the 
essence of energy function despite of alike equation form. 
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5.5  Stereo matching experiments 
Fig.18 illustrates some examples of stereo matching and disparity estimating with image pairs 
from Middlebury dataset and real scenes. The results of stereo matching are measured with 
criteria proposed in [34], i.e. record number of pixel whose disparity discrepancy is beyond 
one from ground truth(called error). For every pair of reference image, calculate three 

statistics: (1) error on all pixels in image
all

D ; (2) error on pixels in undiscontinuity region; (3) 

error on pixels in untexture region. Experiments result are shown in Fig.18, Fig.19, Fig.20. 
 

   
(a) 

    
(b) 

   
(c) 

   
(d) 

Fig. 18. Result on tsukuba and sawtooth testing image pair. (a): tsukuba testing image pair 
and corresponding ground truth; (b): corresponding stereo matching results on tsukuba 
testing image pair via algorithms of proposed, [35-36] from left to right; (c): sawtooth testing 
image pair and corresponding ground truth; (d): corresponding stereo matching results on 
sawtooth testing image pair via algorithms of proposed, [35-36] from left to right 
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(a)  

 
(b)  

Fig. 19. Experiment with synthesized scene. (a) synthesized cylindrical panoramic image 
pair after rectification; (b) disparity map of synthesized cylindrical panoramic image pair. 

 
(a) 

 
(b) 

Fig. 20. Experiment with real scene. (a) real cylindrical panoramic image pair after 
rectification; (b) disparity map of real cylindrical panoramic image pair. 
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6.  Applications on moving object detection and tracking 

Moving object detection is a foundation problem in computer vision, and it is also a 
foundation problem in catadioptric omni-directional stereo vision. So, we will present an 
application case of moving object detection that is based on the omni-directional stereo vision. 
As we know, traditional moving object detection methods that are based on a single camera 
have some difficulties, including: 1) Need to consider the background change, such as the 
illumination changes, background disturb (e.g. wind blowing and tree swing), shadow, 
movement of the cameras, et al. 2) When tracking the moving objects, the object is likely to 
go beyond the camera resulting in lose of the objects. At this time, we need to rotate the 
camera and search the object again. 
The above problems can be resolved using the omni-directional stereo vision method. In this 
method, we utilize the depth information from the stereo vision to detect objects, since the 
depth information calculation is independent from the background image, it is not affected 
by illumination change and background disturb. Catadioptric omni-directional imaging 
system captures the 360 degree FOV just in one shot, so it does not need to rotate the camera 
when tracking moving objects. 
 

 

Fig. 21.  Overall flow of moving object detection based on omni-directional stereo vision 

Fig.21 shows the overall flow of moving object detection based on omni-directional stereo 
vision. In this figure, the omni-directional stereo vision device takes charge to capture omni-
directional stereo vision image (or image pair). After camera parameters estimation, global 
movement estimation and global movement compensation, we get the omni-directional 
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stereo image (or image pair) that has compensated the global movement of the camera. At 
this time, there exists no camera movement, and exists only object movement (i.e. local 
movement). Based on these images, we can perform stereo matching and depth calculation, 

so as to get the omni-directional stereo depth image at the same time (e.g. ttT Δ+= ). 
Then, we can do differential calculation between frames of the omni-directional stereo depth 
images at different times, and we can detect and track the moving objects. 
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