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Abstract

We  consider  the  stabilization  of  nonlinear  polynomial  systems  and  the  design  of
dynamic output feedback laws based on the sums of squares (SOSs) decompositions.
To design the dynamic output feedback laws, we show the design conditions in terms
of  the  state-dependent  linear  matrix  inequalities  (SDLMIs).  Because  the  feasible
solutions of  the SDLMIs are  found by the SOS decomposition,  we can obtain the
dynamic  output  feedback  laws  by  using  numerical  solvers.  We  show  numerical
examples of the design of dynamic output feedback laws.

Keywords: sums of squares polynomials, output feedback stabilization, Lyapunov
methods, state-dependent LMIs

1. Introduction

In the last few decades, control design methods based on numerical methods have appeared
in the control literature. Major progress in the 1980s was the emergence of numerical methods
based on linear matrix inequalities (LMIs) [1]. The methods provide the numerical solutions
to linear control problems in the formulation of the semidefinite programming. The LMI
approach provides the design methods of feedback laws for the asymptotic stabilization, H-
infinity control, and robust control. For the nonlinear control problems, the sums of squares
(SOS) approach is introduced as a generalization of the LMI approach to nonlinear systems [2–
6]. A feature of the sums of squares polynomials is negative semidefiniteness, and this is
suitable for the stability analysis of nonlinear systems based on the Lyapunov theory. The
studies [2,  3]  have shown that  the sums of  squares decomposition can be solved in the
formulation  of  the  semidefinite  programming.  The  result  leads  to  the  development  of
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numerical methods for the analysis and synthesis of nonlinear polynomial systems. Applica-
tions to control problems are feedback design [7, 8], motion planning [9], modeling, and control
of fuzzy systems [10] to mention a few. Applications of the SOS approach to nonpolynomial
systems are found in reference [11, 12].

The SOS approach has been the basis of numerical methods for the analysis and the synthesis
of nonlinear systems. Although the Lyapunov-based approach offers the methods for the
analysis and the synthesis, the construction of Lyapunov functions is often a difficult task. The
SOS approach provides a technique to find Lyapunov functions by formulating the Lyapunov
inequality conditions into the SOS conditions. The stability of nonlinear systems is analyzed
by a direct application of SOS decompositions to the Lyapunov stability analysis. However,
applications of the SOS approach to Lyapunov-based feedback design are much complicated
because decision variables do not enter the Lyapunov inequalities conditions linearly. So far,
two main approaches have been proposed. One is a method in [8], which formulates the design
conditions into state-dependent linear matrix inequalities (SDLMIs) conditions. The SDLMIs
are solved by the SOS decompositions. The other method is based on an iterative algorithm
shown in reference [7], which also considers the enlargement of the regions of attraction of the
closed-loop systems.

In the actual control problems, we often cannot measure all the values of the state variables of
control systems. This fact leads to the necessity of the design of output feedback laws. The
design of output feedback laws is more complicated task than that of state feedback laws
because the stability conditions of the closed-loop systems become complex. As far as the
authors know, so far, a few output feedback design methods have been proposed, for example,
[[7], Section 3.5] and [13–15]. The further developments of design methods for output feedback
laws have been desired.

It is well known that we often can design dynamic feedback laws even when the design of
static output feedback laws is difficult. This leads to the motivation of developing a design
method based on the SOS approach for the design of dynamic output feedback laws. In
reference [7], an iterative method for the design of dynamic output feedback laws has been
shown. However, we need to give control Lyapunov functions (CLFs) to start the iteration in
the method, and this might be a difficult task especially for complex or high-dimensional
systems. The state-dependent LMI approach can be an alternative approach because it does
not need to give any CLF. However, a concrete method for dynamic output feedback laws has
not been shown in this direction yet.

We provide the design methods of dynamic output feedback laws for the stabilization based
on the SDLMI approach. This method is based on the design method of state feedback laws
based on the SDLMI approach [8]. The proposed method employs a two-step algorithm. We
first design a virtual state feedback law for a given system using the method of reference [8].
Then, we design a dynamic output feedback by using an SDLMI again based on the virtual
state feedback law. The use of the virtual state feedback inherits the design approach of output
feedback laws in reference [16], which indicates the general design approach of output
feedback laws not necessarily for the SOS approach. We also show some numerical examples
to demonstrate the effectiveness of the proposed method to the actual control problems.
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Notation: We denote the set of the real numbers and integers as ℝ and ℤ, respectively. The
notation ℤ+ is the nonnegative integers. The notation ‖x‖ is the Euclidean norm of a vector x.

For , |α| denotes � = ∑� = 1� �� . For a matrix X ∈ ℝn×n, He (X) denoes He (X)
= X + XT.

2. Preliminary: stability of nonlinear systems

This section provides the stability theory of nonlinear systems. We present the definitions of
stability, and then, we introduce the Lyapunov stability theory. The Lyapunov stability theory
forms the basis for the analysis and synthesis of the stability of dynamical systems. The theory
states that the existence of a kind of functions implies the stability.

This section considers the stability of an autonomous nonlinear system

(1)

where x∈ℝn is the state, f:ℝn → ℝn is the vector fields, and x0 ∈ ℝn is the initial value of the
state. In the following, we assume that the origin x = 0 is the equilibrium of system (1), that is,
f(0) = 0, and we consider the stability of the origin.

To begin with, we show the definitions of the stability.

Definition 1 (stability). The equilibrium x = 0 is said to be Lyapunov stable if for any  > 0,
there exists δ = δ( ) > 0, such that for any ‖x0‖ < δ, the solution x(t) of (1) satisfies that

Definition 2 (asymptotic stability). The equilibrium x = 0 is said to be asymptotically stable if
it is stable and there exists δ > 0, such that for any ‖x0‖ < δ, the solution of (1) satisfies that

Definition 3 (global asymptotic stability). The equilibrium x = 0 is said to be globally asymp-
totically stable if it is stable and for any x0 ∈ ℝn, the solution x(t) of (1) satisfies that

To introduce the Lyapunov stability theory, we provide the definitions of the properties of
functions.

Definition 4 (positive definiteness). A function h: ℝn → ℝ is said to be positive definite if h(x)
> 0 for any x ≠ 0 and h(0) = 0.
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Definition 5 (positive semidefiniteness). A function h: ℝn → ℝ is said to be positive semide-
finite if h(x) ≥ 0 for any x ∈ ℝn.

We say that a function h(x) is negative definite (negative semidefinite) if the function −h(x) is
positive definite (respectively, positive semidefinite).

Definition 6 (properness). A function h: ℝn → ℝ is said to be proper if for any K ∈ ℝ, the
sublevel set

is bounded.

The Lyapunov stability theory is stated as follows [17].

Theorem 1. Let U be an open subset of ℝn which contains the origin. Suppose that a function
V:U → ℝ is continuously differentiable, positive definite, and proper. The equilibrium of
system (1), x = 0, is stable if and only if the function V(x) satisfies that

Moreover, the equilibrium of system (1), x = 0, is asymptotically stable if and only if the function
V(x) satisfies that

When U = ℝn, the global asymptotic stability holds.

The Lyapunov theory is used to investigate the stability of nonlinear systems. However, to
investigate the stability of each system by Lyapunov theory, we need to find a Lyapunov
function for it. However, to find the Lyapunov functions is often a difficult task. Further, when
we try to design stabilizing feedback laws based on the Lyapunov theory, we also need to find
the Lyapunov function candidates for the closed-loop systems. Therefore, we require a method
to find Lyapunov functions for each nonlinear system. The SOS approach provides Lyapunov
functions as solutions to the SOS conditions.

3. Sums of squares polynomials and state-dependent linear matrix
inequalities

This chapter introduces some definitions and results on SOS polynomials. We also introduce
that SDLMIs can be solved by the SOS decomposition.

We begin with the definitions of monomials, polynomials, and sums of squares polynomials.
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Definition 7 (monomials). Let  and . A monomial of z, mα(z), is
a function given by

Definition 8 (polynomials). Consider monomials of z, ��� � , where �� = (��1, ��2, …, ���) ∈ ℤ+� ,
and ci ∈ ℝ for i = 1,…,m. A polynomial of z, f(z), is a function given in the form of

The degree of polynomial f(z), d, is given by

Let ℛn denote the set of polynomials of n variables. Then, we show the definition of the sums
of squares polynomials.

Definition 9 (sums of squares polynomials, SOSs). Let z = (z1,…,zn). A sum of squares
polynomial σn(z) is a function given in the form of

The decomposition of given polynomials into SOSs is called as the SOS decomposition.
Regarding the SOS decomposition, the following result is shown.

Theorem ([2, 3]). Consider the polynomial of z of degree 2d, f(z). The polynomial f(z) is an SOS
polynomial if and only if there exist a column vector X(z) whose elements are monomials of z
of degree no greater than d and a positive semidefinite matrix Q such that

holds.

We show a simple example of SOSs.

Example 1. Consider a polynomial f(z) given by
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where z ∈ ℝ. Apparently, this polynomial is expressed as the sum of squares polynomial

Regarding Theorem 2, the polynomial is also expressed as

(2)

and the matrix in the right-hand side of (2) is positive definite.

The SOS decomposition can be solved by some numerical solvers, such as YALMIP [18] and
SOSTOOLS [19]. When some coefficients of polynomials are decision variables in an SOS
decomposition, by using the numerical solvers, we can find the feasible solutions such that the
SOS decomposition holds. Therefore, we can adapt the SOS decomposition to the design of
feedback laws in control problems.

With the relation to the stability theory presented in Section 2, the sufficient condition of the
stability is given as the SOS conditions.

Theorem 3. [2] Consider system (1). If there exist a positive definite function  and an
SOS polynomial , such that

then the equilibrium x = 0 is asymptotically stable.

Theorem 3 shows a direct application of the SOSs to the analysis of the stability. This implies
that the SOS decomposition can be applied to the synthesis of the stabilizing feedback laws.
This chapter develops a method to design dynamic output feedback laws based on the SDLMI
approach [8]. The SDLMI is defined as the optimization problem:

where ai ∈ ℝ are the fixed coefficients, ci are the decision variables, the matrix functions Fi:
 are state-dependent symmetric matrices. The constraint should be satisfied for any z

∈ ℝn. This differs from standard LMIs and is the derivation of the word, state-dependent.

A relation of the SDLMIs and the SOS decompositions is shown as follows.
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Theorem 4. ([8]) Let d > 0 and F:  a symmetric polynomial matrix the elements of which
are polynomials of z with degree 2d. Moreover, consider a vector v ∈ . If vT F(z)v is a sum of
squares polynomial, then F(z) ≥ 0 holds for any z ∈ ℝq.

Theorem 4 states that if we find that the polynomial vT F(z)v is decomposed into an SOS with
respect to (z,v), it implies the positive definiteness of F(z) for any z ∈ ℝn. We can derive stability
conditions in terms of SDLMIs. This leads to the design of feedback laws for the stabilization
based on the combination of the SDLMIs and the SOS decomposition. We develop the synthesis
of dynamic output feedback laws based on Theorem 4 in the following sections.

4. Problem setting: stabilization through dynamic output feedback

This chapter considers the stabilization problem via dynamic output feedback laws and the
synthesis of the stabilizing feedback laws. This section states the problem setting.

The approach presented here is based on the SDLMI approach, which derives the sufficient
conditions of the existence of stabilizing feedback laws as the SDLMI conditions. We can obtain
stabilizing feedback control laws and Lyapunov functions by solving the SDLMI conditions
using numerical solvers.

Consider a nonlinear system given as

(3)

where x ∈ ℝn is the state, u ∈ ℝnu is the input, y ∈ ℝny is the output, f: ℝn × ℝnu → ℝn, h: ℝn →
ℝny, and x0 is the initial state. For the nonlinear systems given by (3), we assume that system (3)
is expressed as

(4)

where , A: ℝn → ℝn×N, B: ℝn → ℝn×nu, C: ℝn → ℝny×N. Further, we assume that Z(x) = 0,
if and only if x = 0. We consider the output stabilization of system (4) using a dynamic feedback
law in the form of

(5)

where  is the state of the dynamic feedback law,
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��:ℝ�� × ℝ�� ℝ�� × �� , ��:ℝ�� × ℝ�� ℝ�� × ��, ��:ℝ�� × ℝ�� ℝ�� × �� , and��:ℝ�� × ℝ�� ℝ�� × ��, and �0 is the initial state.

We have the closed-loop system of (4) with the dynamic output feedback law (5), given by

( ) ( ) ( ) ( ){ } ( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ ˆ ˆ

ˆ ˆ ˆ

, , ,

ˆ , , .
c c

c c

x A x B x D x y C x Z x B x C x y x

x A x y x B x y C x Z x

= + +

= +

&
& (6)

We consider the stabilization of the closed-loop system (6). To this end, we give a method to
design the matrix functions �� �, � , �� �, � , �� �, � , �� �, �  in the next section.

Remark 1. We obtain a system in the form of (4) as an expression of a nonlinear affine system

by choosing Z(x) properly. Note that the choice of Z(x) is not unique in general. The systems
in the form of (4) can be seen as a generalization of linear systems, given as

where the matrices A, B, and C are with the appropriate dimensions.

5. Design of dynamic output feedback laws through SOSs

This section provides a design method of dynamic feedback laws (5) for the output stabilization
of system (4). We show stability conditions of the closed-loop system of (6) as SDLMI condi-
tions. We can obtain the stabilizing laws by solving the SDLMI conditions via SOS decompo-
sition using numerical solvers.

The main idea of the proposed method is as follows. Instead of the dynamic feedback law (5),
assume that there exists a static state feedback law

(7)

where , such that the feedback law asymptotically stabilizes the origin of system (4).
Then, according to the converse Lyapunov theorem, we have a Lyapunov function U1 (x). Then,
we consider the design of the dynamic output feedback law (5) so that a function � �, �  given
by

Nonlinear Systems - Design, Analysis, Estimation and Control326



(8)

becomes the Lyapunov function of the closed-loop system (6) with some positive definite
matrix Σ. When we design the output feedback laws, so that the function � �, �  of (8) is a
Lyapunov function of the closed-loop system, the value of �  of the designed output feedback
laws in (8) will estimate the value of k(x). A design procedure discussed here can be seen in
reference [16], and is called as the direct design. As shown in the following, when we obtain
the static feedback law (7) in polynomial forms, we can obtain the SDLMI conditions where
the stability of the closed-loop system (6) is guaranteed by function (8).

In the following, if the matrix B(x) of (4) has rows all the elements of which are zero, we denote
the corresponding row indices as . We also employ the notation 

As discussed above, we design a stabilizing state feedback law as the first step. The state
feedback law also can be designed by using SDLMIs. We introduce the following result shown
in reference [8].

Theorem 5. ([8]) Suppose that there exist a symmetric polynomial matrix P: ℝn → ℝN×N, a
polynomial matrix  a parameter  and an SOS polynomial  such that

(9)

are SOS polynomials, where  is the j-th row of A(x), and

(10)

Then, the origin of (4) is asymptotically stabilized by a state feedback given by

(11)

For the design of the output feedback laws, we show the following theorem as the main result,
which gives a design condition of the feedback law (5) in terms of state-dependent matrix
inequalities.

Theorem 6. Suppose that there exist a symmetric matrix  a polynomial matrix
 a parameter  and an SOS polynomial  such that
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(12)

are SOS polynomials, where  and M(x) is given as 10. Further, suppose that there exist a

symmetric matrix �2:ℝ(� + ��) × (� + ��), and an SOS polynomial  such that

(13)

is an SOS polynomial where � ∈ ℝ� + �� , and

where the matrices �� �, � ,   �� �, � ,   �� �, � , ���   �� �, � , are given in (5). Then, the

dynamic output feedback law (5) globally asymptotically stabilizes the origin of the system (4).

Proof. According to Theorem 6, the function

is the Lyapunov function of the closed-loop system of (4) with the state feedback law

Then, to consider a dynamic output feedback law in the form of (5), we consider a function
given by

(14)

where the function  is given by
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Then, the time derivative of function (14) along the trajectory of the closed-loop system (6) is
given as

where

(15)

and

(16)

Therefore, the time derivative of the function � �, �  along the solution of system (6) is given
as

(17)

Then, condition (13) of the theorem and Theorem 4 imply that
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(18)

From (17) and (18), we can conclude that �̇ �, �  is negative definite. Therefore, according to
Theorem 1, we can conclude that the origin of the closed-loop system is globally asymptotically
stable. This completes the proof.

When we design the dynamic output feedback law (5) according to Theorem 6, we first solve
the SOS decomposition of condition (12) to find the matrix P1. Then, if we can obtain the feasible
solutions of the matrix P1 and the function K(x) satisfying condition (12), we try to find the
matrix functions �� �, � , �� �, � , �� �, � , �� �, � , the matrix P2, and the SOS polynomial 3 >

0 satisfying condition (13). At this time, because the decision variables do not enter in (13)
linearly, we set P2 = I in general. Then, we can consider the SOS decomposition for (13). If we
can find the feasible solution of condition (13), we will obtain the stabilizing feedback laws in
the form of (5).

Remark 2. The condition of (12) in Theorem 6 corresponds to the condition of (9) in Theorem
5. Note that the matrix P1 in Theorem 6 is a constant matrix, although the matrix P(x) in Theorem
5 is the function of x. This is due to the fact that the inverse of the matrix P1 appears in (16). If
the matrix P1 is the polynomial matrix in Theorem 6, we cannot employ the SOS decomposition.
Therefore, we limit ourselves to the case of the constant matrices in Theorem 6.

6. Numerical examples of dynamic output feedback stabilization

6.1. Numerical example 1

This section shows some numerical examples of the dynamic output feedback stabilization by
the proposed method shown in Section 5.

We show the first example of the stabilization. Consider a system given by

(19)

where x = (x1, x2)T is the state, y ∊ ℝ is the output, and u ∊ ℝ is the input. In order to design a
dynamic output feedback law for the stabilization of system (19) based on the result presented
in the previous section, we choose Z(x)=(x1, x2)T. Then, we have the expression of system (19)
in the form of (4), where
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We consider the output feedback stabilization of system (19) using the dynamic feedback law
(5). We consider a low-dimensional dynamic feedback, and we assume that �� = 1. According

to Theorem 6, by choosing P2 = I, we obtained the matrix P1 and the function K(x) by solving
the SOS decomposition of (12) using YALMIP. We consider the function K(x) with zero degree.
The obtained matrix P1 and the function K(x) are given as

( )

2 11

1 11 2

3 6

1.2306 10 9.8824 10
,

9.8824 10 5.2061 10

6.9660 10 4.9775 10 .

P

K x

- -

- -

- -

é ù´ - ´
= ê ú- ´ ´ë û

é ù= - ´ - ´ë û

Figure 1. Time responses of x, � , and u of (19) with dynamic output feedback law (5) with degree zero one.

Then, by using P1 and K(x), we found the feasible solution �� �, � , �� �, � , �� �, � , �� �, � ,

which are two degree, to the SOS decomposition of condition (13). Therefore, we obtain the
dynamic output feedback laws that stabilizes system (19), given by

(20)
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Figure 1 shows the time responses of the state variables x(t), � �  and u(t) of the closed-loop
system (19) with the designed dynamic output feedback (20). The initial values are chosen as
x(0) = (3,-1),and � 0 = 0.5. In Figure 1, the states x(t) and � �  converge to the origin.

Then, we also obtain a dynamic output feedback control law in the case where the elements
of K(x) are degree zero, and the elements of �� �, � , �� �, � , �� �, � , and �� �, �  are degree

three with respect to �  and y. Again, by solving the SOS decomposition following Theorem 6,
we obtain the value of the matrix P1 and the function K(x) as same as above.

We also obtain the values of �� �, � , �� �, � , �� �, � , and �� �, �  as

Figure 2. Time responses of x, � , and u of (19) with dynamic output feedback law (5) with degree zero one.
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The obtained feedback control law also stabilizes system (19). Figure 2 shows the time
responses of the state � � ,  � �  and the input u(t) of the closed-loop systems with the initial
values x(0) = (3,-1), and � 0 = 0.5. The state converges to the origin, and the value of u(t) also
converges to zero.

6.2. Numerical example 2

We consider the following example, which models a circuit with negative-resistance oscillator,
taken from reference [17] and modified. Consider a system given by

(21)

where x = (x1, x2)T is the state, u ∊ ℝ is the input, and y is the output. To design the dynamic
output feedback laws, we express system (21) of form (4) as

3
1 1 2

2
2

3
1 2

2

10 1 0
,31 1 1

1
0 1 . 3

x x x u
x x

x xy
x

é ùé ù é ù é ù- -ê ú= +ê ú ê ú ê úê úë û ë ûë û ê úë û
é ù
- -ê úé ù= ë û ê ú
ê úë û

&
&

Following the design procedure in the previous section, we design the dynamic feedback
control law with �� = 1.First, we obtain the constant matrix P1 and the polynomial matrix K(x)

with degree zero. The matrix P1 and K(x) with zero degree are obtained as

Then, we solve the SOS decomposition (13) to find the matrices �� �, � , �� �, � , �� �, � , and�� �, �  with degree one. By choosing P2 = I, the feasible solutions are obtained as

( )
( )
( )
( )

9 11

8 10

5 11 12

11 12

ˆ ˆ

ˆ ˆ

ˆ

, 0.1675653629 9.5745 10 8.1304 10 ,

, 0.1582768369 5.2303 10 3.9643 10 ,

, 6.655333476 10 3.0370 10 3.9639 10 ,

, 1.081399695 4.5067 10 4.1856 10ˆ ˆ.

ˆ

c

c

c

c

A x y y x

B x y y x

C x y y x

D x y y x

- -

- -

- - -

- -

= - - ´ + ´

= - + ´ - ´

= ´ + ´ + ´

= - - ´ + ´
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Figure 3 shows the time responses of the states x, �  and the input u of the closed-loop systems.
The figure shows that the states x and �converge to the origin. Also, the figure shows that the
input values converge to zero as the states converge to the origin.

Figure 3. Time responses of x, � , and u of (21) with dynamic output feedback law (5) with degree zero one.

7. Conclusion

We considered the design of dynamic output feedback laws via the SOS decomposition. For
the design of the feedback laws, we derived the design conditions as the state-dependent
matrix inequalities. According to the derived conditions, we can design the stabilizing
feedback laws as the feasible solutions to the SDLMIs by using the numerical solvers. Future
works include to derive less conservative conditions and to develop design methods of
dynamic output feedback laws for advanced control, such as H-infinity control.
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