
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

12

Towards High-Speed Vision for Attention and
Navigation of Autonomous City Explorer (ACE)

Tingting Xu, Tianguang Zhang, Kolja Kühnlenz and Martin Buss
 Institute of Automatic Control Engineering

Technische Universität München
80333, Munich,

Germany

1. Introduction

In the project Autonomous City Explorer (ACE) a mobile robot should autonomously,
efficiently and safely navigate in unstructured urban environments. From the biological
aspect, the robot should not only plan its visual attention to acquire essential information
about the unknown real world but also estimate the ego motion for the navigation based on
vision with definitely fulfilled real-time capability. To achieve this, a multi-camera system is
developed, which contains a multi-focal multi-camera platform, the camera head, for
attentional gaze control and two high-speed cameras mounted towards the grounds for
accurate visual odometry in extreme terrain.
How to apply the human visual attention selection model on a mobile robot has become an

intensively investigated research field. An active vision system should autonomously plan

the robot's view direction not only based on a specific task but also for stimulus-based

exploration of unknown real-world environment to collect more information. Moreover,

psychological experiments also show that the familiarity of the current context also strongly

influences the human attention selection behavior. To solve this context-based attention

selection problem, we propose a view direction planning strategy based on the information

theory. This strategy combines top-down attention selection in 3D space and bottom-up

attention selection on the basis of a 2D saliency map. In both spaces the information content

increases are defined. The optimal view direction is chosen which results in a maximum

information gain after a camera view direction change. The main contribution is that a

concerted information-based scalar is inserted to evaluate the information gains in the both

sides. Moreover, the robot behavior, the choice of attention selection mechanism, can be

adaptive to the current context.

In addition, we implemented the compute-intensive bottom-up attention on Graphics
Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA), which
provides an excellent speed-up of the system, due to the highly parallelizable structure.
Using 4 NVIDIA GeForce 8800 (GTX) graphics cards for the input images at a resolution of
640 x 480, the computational cost is only 3.1ms with a frame rate of 313 fps. The saliency
map generation on GPUs is approximately 8.5 times faster than the standard CPU
implementations.

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Source: Computer Vision, Book edited by: Xiong Zhihui,
ISBN 978-953-7619-21-3, pp. 538, November 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Computer Vision

190

Angle-encoders on the wheels of the platform are normally used for the odometry. But if
ACE moves on the ground which is not flat or has sands, it will slide. The encoders can not
provide accurate information any more. Using a high-speed camera with 200 Hz, an
elaborated concept for visual odometry based on optical flow is implemented. Utilizing
Kalman Filter for data fusion, a distinctly local, low-latency approach that facilitates closed-
loop motion control and highly accurate dead reckoning is proposed. It helps ACE determine
the relatively precise position and orientation. Image processing at high frequency can
decrease the time delay of close-loop control and improve the system stability.
The various vision-based modules enable an autonomous view direction planning as well as
visual odometry in real time. The performance is experimentally evaluated.

2. Overview of ACE and its high-speed vision system

The ACE project (Lidoris et al., 2007) (see Fig. 2.1 left) envisions to develop a robot that will
autonomously navigate in an unstructured urban environment and find its way through
interaction with humans. This project combines the research fields of robot localization,
navigation, human-robot interaction etc..
Seen from the biological aspect, the visual information provided by the camera system on
ACE is very essential for attention as well as navigation. Another prerequisite of the vision
system is the image processing efficiency. The real-time requirement should be fulfilled
during the robot locomotion.
The vision system of ACE consists of a multi-focal stereo camera platform (Fig. 2.2 middle)
for the interaction and attention and a high-speed camera (Fig. 2.2 right) for visual
odometry. The camera platform comprises several vision sensors with independent motion
control which strongly differ in fields of view and measurement accuracy. High-speed gaze
shift capabilities and novel intelligent multi-focal gaze coordination concepts provide fast
and optimal situational attention changes of the individual sensors. Thereby, large and
complex dynamically changing environments are perceived flexibly and efficiently. The
detailed description of the camera platform is in (Kühnlenz, 2006a; Kühnlenz, 2006b).
Currently in our application, only the wide-angle stereo-camera is used to demonstrate the
attentional saccade caused by the saliency in the environment.

Fig. 2.1. Autonomous City Explorer (ACE) (left), the camera platform (middle) and the high-
speed camera (right)

Moreover, a dragonfly® express camera (Point Grey Research Inc.), fitted with a normal
wide-angle lens, is mounted on the mobile platform, facing the ground. This camera can
work at 200 fps with the resolution of 640x480 pixels and be applied for visual odometry.

www.intechopen.com

Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE)

191

3. Information-based visual attention of mobile robots

3.1 Related work
In the robotics domain a variety of approaches to the view direction planning of active
vision systems has been already proposed. The most concepts are based on the predefined
robot tasks and in a top-down way. Above all, robot self-localization using active vision is
well studied. In (Davison, 1998) visual information is used for simultaneous localization and
map-building for a robot operating in an unknown environment. Point features are used as
visual landmarks. The active cameras can re-detect the previously seen features and adjust
their maps. In (Pellkofer & Dickmanns, 2000) an approach to an optimal gaze control system
for autonomous vehicles is proposed in which the perceptive situation and subjective
situation besides the physical situation are also predicted and the viewing behavior is
planned and optimized in advance. For gaze control of humanoid robot the basic idea of
(Seara & Schmidt, 2005) is based on maximization of the predicted visual information
content of a view situation. A task decision strategy is applied to the view direction selection
for individual tasks.
In the last few years, bottom-up saliency based attention selection models also become focus
of robot view direction planning. A saliency map model was firstly proposed in (Itti et al.,
1998). In the saliency map model the salient positions in a static image are selected by low-
level features. The saliency map predicts the bottom-up based visual attention allocation. No
high-level object recognition is required to drive a robot's attention, if bottom-up signals are
also taken into account.
By now, the top-down and the bottom-up attention selections are only combined in the 2D
image-space. In (Ouerhani et al., 2005) a visual attention-based approach is proposed for
robot navigation. The trajectory lengths of the salient scene locations are regarded as a
criterion for a good environment landmark. In (Frintrop, 2006) a biologically motivated
computational attention system VOCUS is introduced, which has two operation modes: the
exploration mode based on strong contrasts and uniqueness of a feature and the search
mode using previously learned information of a target object to bias the saliency
computations with respect to the target. However, the task accomplishment is evaluated in
the image space which can only contain the information which is currently located in the
field of view, although the performance evaluation in robotics domain is usually executed in
the task-space.
Another key factor which has an influence on attention mechanism is the scene context. The
context has already been used to facilitate object detection in the natural scenes by directing
attention or eyes to diagnostic regions (Torralba & Sinha, 2001) and scene recognition (Im &
Cho, 2006). In both cases the scene context is only statically observed. In (Remazeilles &
Chaumette, 2006) vision-based navigation using environment representation is proposed.
An image memory, a database of images acquired during a learning phase, is used to
describe the path which the robot should follow. However, there is no dynamical context-
based behavior adaptation considered.

3.2 Strategy overview
The objective is to plan the robot view direction with visual information from the input
image, considering the competition of the task-based top-down attention and the stimulus-
based bottom-up attention as well as behavior adaptation on the current context. Fig. 3.1
illustrates the view direction planning strategy architecture.

www.intechopen.com

 Computer Vision

192

Fig. 3.1. View direction planning strategy architecture

We define the optimal view direction as the view direction with the estimated maximum
information gain, calculated as the relative entropy/Kullback-Leibler (KL) divergence.

))ˆ())(1()ˆ()((maxarg ˆ
ˆ

|1
* Ω⋅−+Ω⋅=Ω −−

Ω

+
upbottomdowntop

kk IsIs νν (1)

with

⎩
⎨
⎧

>
<

=
Ss

Ss
s

 if 0

 if 1
)(ν (2)

Itop-down and Ibottom-up indicate the relative entropies acquired from the top-down and bottom-
up sides with)(sν the context-based weighting factor for the top-down attention. The total

visual attention is 100%. Therefore, the weight of the bottom-up attention is)(1 sν− . The

detailed definition of ν(s) is described in Section 3.5. Ω̂ and *Ω̂ stand for the possible view

directions and the optimal view direction of the camera.

3.3 Information-based modeling of the top-down attention
For the top-down attention we model the system state x as 2D Gaussian distributions with

the average value μ and the covariance matrix xR in the task-space. p and q are the prior

and the predicted posterior probability density functions (pdf) with the continuous variable
x for specific tasks

))()(
2

1
exp(

)2(

1
)(1 kkk

x
Tkk

k
x

n
xRx

R
xp μμ

π
−⋅−−⋅

⋅
= − (3)

and

www.intechopen.com

Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE)

193

)))ˆ(())ˆ((
2

1
exp(

)(2

1
)ˆ,(|1|11|1|1

n
kkkkTkkkk xRx

R
xq ++−++ Ω−⋅Ω−−⋅

⋅
=Ω μμ

π
 (4)

with the dimension n of the state variable x and with

 .)ˆ(|1 kk
xRR +Ω= (5)

The relative entropy is then computed as follows:

 [bit]in
)ˆ,(

)(
log)()||(

D Ω
⋅== ∫∫−−−

xq

xp
xpqpKLI downtopdowntopdowntop (6)

3.4 Information-based modeling of the bottom-up attention
Besides the task accomplishment, the robot should also have the ability to explore the world,
acquire more information, update the knowledge and also react to the unexpected events in
the environment. In order to achieve this, a bottom-up attention selection is integrated. Here
we consider the static outliers as well as the temporal novelty in the image-space.
For the static outliers we use the saliency map model proposed in (Itti et al., 1998). As
known, human is much more attracted by salient objects than by their neighbourhood. The
bottom-up saliency map is biology-inspired and can predict the position of the salient
regions in a real-scene image.
In Fig. 3.2 the saliency map model is visualized. Firstly, an input image is sub-sampled into
a dyadic Gaussian pyramid in three channels (intensity, orientation for 0°, 45°, 90°, 135°,
opponent colour in red/green and blue/yellow). Then a centre-surround difference is
calculated for the images in the Gaussian pyramid. In this phase feature maps are generated
in which the salient pixels with respect to their neighbourhood are highlighted. Using
across-scale combinations the feature maps are combined and normalized into a conspicuity
map in each channel. The saliency map is the linear combination of the conspicuity maps.
The bright pixels are the salient and interesting pixels predicted by the saliency map model.
For the temporal novelty we applied a similar Bayesian definition like (Itti &Baldi, 2005) for
the information content of an image, but directly on the saliency map. The notion “surprise”
is used here to indicate the unexpected events. Only the positions spatially salient and
temporally surprising are taken to draw the robot's attention. Therefore, we build a surprise
map on two consecutive saliency maps without camera movement to find the unexpected
event.
Firstly, as an example, the saliency maps of images at the resolution of 640 x 480 are rescaled
into 40 x 30 pixels. Thus, each pixel represents the local saliency value of a 16 x 16 region.
Secondly, we model the data D received from the saliency map as Poisson
distribution)),((ii yxM λ .),(ii yxλ stands for the saliency value with 40,,1 ⋅⋅⋅=ix and

30,,1 ⋅⋅⋅=iy . Therefore, a prior probability distribution),(iii yxp can be defined as a

Gamma probability density (Itti & Baldi, 2005) for the i-th pixel:

)(

),,(),(
1

α
λββαλγ

βλαα

Γ
==

−− e
yxp iii (7)

with the shape 0>α , the inverse scale 0>β , and)(⋅Γ the Euler Gamma function.

www.intechopen.com

 Computer Vision

194

 Linear filtering

 Center-surround differences and normalization

 Linear combination

Intensity Orientation (0°, 45°, 90°, 135°) Color (RG, BY)

Input image

saliency map

conspicuity maps

 Across-scale combinations and normalization

feature maps

Fig. 3.2. The saliency map computation model

The posterior probability distribution)|),((Dyxp ii is obtained from the 2. saliency map

with the new saliency value),(ii yxλ ′ . The parameters α and β are supposed to change

into α ′ and β ′ , while

1

and ,

+=′
′+=′

ξββ
λξαα

 (8)

Then, the surprise map with surprise value τ is estimated as the KL-divergence as follows:

))|,(),,((),(DyxpyxpKLyx iiiiiiii =τ (9)

The predicted information gain is then quantified as the KL-divergence of the prior and the
predicted estimated posterior probability distributions over all the interesting pixels in the
surprise map.
P and Q are the normalized prior and the predicted posterior probability mass functions

(pmf) with discrete variables: the pixel indexes ii yx , .

www.intechopen.com

Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE)

195

[bit]in

)ˆ),,((

),(
log),(

)||(

1 2
Ω

⋅=

==

∑ ∑
= =

−−−

ii

ii

x y
ii

upbottomupbottomupbottom

yxQ

yxP
yxP

QPKLI

i iχ χ

 (10)

where

),(

),(
),(

k

ii
k

ii
ii

yxd

yx
yxP

τ
= (11)

)ˆ),,((

),(
)ˆ),,((

|1

|1

Ω
=Ω

+

+

ii
kk

ii
kk

ii
yxd

yx
yxQ

τ
 (12)

with the surprise value τ of the pixel)y,(x ii and the weighting factor d indicating the

distance between the pixel)y,(x ii and the image centre of the camera lens.

3.5 Context-based combination of top-down and bottom-up attention selections
There are two dominated arts of context recognition approach: the object-based context
recognition and the gist-based context recognition. For the object-based context recognition
the robot recognizes certain objects as the symbols of certain scenes and adapts its behaviour
and tasks to this situation. On the other side, the gist-based context recognition provides the
robot a rough idea about what kind of scene the robot is located. In the case that the robot
has no previous knowledge about the situation, we consider here only the latter one and try
to determine how familiar the current context is and how the robot should adapt its
attention selection to this kind of context.
Firstly, we consider the static environment as familiar environment for the robot and the
dynamic environment as less familiar environment because of the moving objects causing
change and danger. Therefore, we define the context familiarity using motion map
histograms computed by three successive input images.
Each normalized histogram of motion map can be regarded as a discrete distribution.
Because the perception of human is expectation-based, we calculated the relative entropy s

of the histograms of the two consecutive motion maps as the chaos degree of the context. A

threshold S should be experimentally specified and applied to determine the weighting

factor)(sν (see Eq. 2).

3.6 Experiments and results
To evaluate the performance of our view direction planning strategy, the following
experiments were conducted. Firstly, four different scenes are investigated to calculate the

chaos degree threshold S . Then, experiments in a robot locomotion scenario are conducted,

in an environment without surprising event as well as in an environment with a surprising
event.

3.6.1 Experiment setup
The experiments are executed in a corridor using ACE (see Fig. 3.4). Four artificial
landmarks are installed at the same height as the camera optical axis.

www.intechopen.com

 Computer Vision

196

Fig. 3.4. Experiment scenario using ACE and four artificial landmarks

The mobile platform moved straight forward. About every 0.5m a view direction planning is
executed and an optimal view direction will be applied for the next 0.5m. We define the
view direction Ω as the angle between the locomotion direction and the camera optical axis
in the horizontal plane. At the start point (0, 1.25)m the camera has an initial view direction
0° towards the locomotion direction.

3.6.2 Context investigation

Firstly, we specified the chaos degree threshold S . We gathered four different scenes, shown

in Fig. 3.5, and calculated their chaos degrees s .

• scene 1: a floor with no moving objects present (Fig. 3.5, column 1)

• scene 2: a square with crowded people (Fig. 3.5, column 2)

• scene 3: a floor with people suddenly appearing (Fig. 3.5, column 3)

• scene 4: a street with a vehicle moving very fast (Fig. 3.5, column 4)
The rows show the consecutive time steps k-2, k-1 and k at a frame rate of 30pfs. It is
obvious that the context almost does not change in the first scene. Therefore, the chaos
degree is very small, namely 0.0526. In comparison to the first scene, in the scene 4 the
environment changes very much because of the vehicle movement. Hence, the chaos degree
in this context is very large, namely 1.1761. For the second scene we have obtained a small
chaos degree, namely 0.0473, because the context change is relatively small although there is
motion. This context can be regarded as a familiar context, since no surprise exists. In the
third scene the chaos degree is large, because a person appeared suddenly in the second
image and therefore, the context change is relatively large. For the further experiments we
will set S equal 1.0.

Fig. 3.5. The context chaos degrees in four various scenes

www.intechopen.com

Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE)

197

3.6.3 Robot locomotion with and without surprising events
Firstly, the robot moved in a static environment with a constantly low context chaos degree,
accomplishing the self-localization task. The image sequence and the respective optimal
view directions are shown in Fig. 3.6. If there is no surprising event in the environment, the
camera directed its gaze direction to the task-relevant information -- the landmarks (row 1).

Fig. 3.6. The image sequence and the respective camera view directions in an environment
without surprising event (row 1) and with surprising event (row 2)

Fig. 3.6 (row 2) also illustrates an image sequence with the optimal view directions during
the locomotion in an environment with surprising event. Most of the time the environment
was static with a low context chaos degree (see Fig. 3.5, column 1) and the robot planned its
view direction based on the top-down model for the localization task. At the fifth step a
person appeared suddenly. Because of the high context chaos degree caused by the
surprising event at this moment (see Fig. 3.5, column 3) the camera planned its view
direction based on bottom-up attention, tried to locate the surprising event in the
environment and changed its view direction from 50° to 10°.

4. GPU aided implementation of bottom-up attention

4.1 Related work
Because of the essential real-time capability of the bottom-up attention, various
implementations are proposed. A real-time implementation of the saliency-based model of
visual attention on a low power, one board, and highly parallel Single Instruction Multiple
Data (SIMD) architecture called Protoeye is proposed in (Ouerhani et al., 2002) in 2002. The
implemented attention process runs at a frequency of 14 fps at a resolution of 64 x 64 pixels.
In 2005 another real-time implementation of a selective attention model is proposed (Won et
al., 2005). In this model intensity features, edge features, red-green opponent features and
blue-yellow opponent features are considered. Their model can perform within 280ms at
Pentium-4 2.8GHz with 512MB RAM on an input image of 160 x 120 pixels.
In the same year a distributed visual attention on a humanoid robot is proposed in (Ude et
al., 2005). In this system five different modalities including colour, intensity, edges, stereo
and motion are used. The attention processing is distributed on a computer cluster which
contains eight PCs. 4 run Windows 2000, 3 Windows XP and 1 Linux. Five of the PCs are
equipped with 2x2.2 GHz Intel Xeon processors, two with 2x2.8 GHz Intel Xeon processors,
and one with 2 Opteron 250 processors. A frequency of 30 fps with input images with 320 x
240 pixels is achieved.
In 2006 a GPU based saliency map for high-fidelity selective rendering is proposed
(Longhurst et al., 2006). This implementation is also based on the saliency map model
proposed in (Itti et al., 1998). In this implementation a motion map and a depth map as well

www.intechopen.com

 Computer Vision

198

as habituation are also integrated. However, they use a Sobel filter instead of the complex
Gabor filter to produce the orientation maps. No iterative normalization is computed. For an
input image at a resolution of 512 x 512 the saliency map generation takes about 34ms using
NVIDIA 6600GT graphics card. No CUDA technology is used.
The most comparable implementation to our implementation is proposed in (Peters & Itti,
2007), because both of them use the same parameter values as those set in (Itti et al., 1998;
Walther & Koch, 2006). For a 640 x 480 colour input image, running in a single-threaded on
a GNU/Linux system (Fedora Core 6) with a 2.8GHz Intel Xeon processor, the CPU time
required to generate a saliency map is 51.34ms at a precision of floating-point arithmetic and
40.28ms at a precision of integer arithmetic. Computed on a cluster of 48 CPUs a 1.5-2 times
better result is achieved. Currently, the fastest computation of saliency map is 37 fps using
multi-threaded mode.

4.2 Graphics processing unit (GPU)
In the last few years, the programmable GPUs have become more and more popular. GPU is
specialized for compute-intensive, highly parallel computation. Moreover, the CUDA, a new
hardware and software architecture issued by NVIDIA in 2007, allows issuing and
managing computations on the GPU as a data-parallel computing device without the need
of mapping them in a graphics API (CUDA, 2007). It is the only C-language development
environment for the GPU.
The saliency map computation consists of compute intensive filtering in different scales,
which is nevertheless highly parallelizable. For real-time application we implemented the
computation of saliency map on GeForce 8800 (GTX) graphics cards of NVIDIA, which
support the CUDA technology. The GeForce 8800 (GTX) consists of 16 multiprocessors
which consists of 8 processors each. All the processors in the same multi-processor always
execute the same instruction, but with different data. This concept enables a high-gradely
parallel computation of a large amount of similar data. The multi-GPU performance is
strongly dependent on an efficient usage of the thread-block concept and the different
memories.

A. Thread Batching

Programming with CUDA, the GPU is called compute device. It contains a large amount of
threads which can execute an instruction set on the device with different data in parallel. A
function which is compiled to those instruction set is called kernel. In comparison with GPU,
the main CPU is called host. The goal is to execute the data-parallel and compute-intensive
portions of applications on the GPU instead of on the CPU.
Fig. 4.1 shows the thread batching model of the GPU. For each kernel function the GPU is
configured with a number of threads and blocks. The respective grid of a kernel consists of
two dimensional blocks. Each block contains up to 512 threads. The input data are divided
into the threads. All the threads in a grid execute the same kernel functions. With the thread
index threadIdx and the block index blockIdx we know which data will be processed in which
thread. With this structure an easy programming and a good scalability are realized.

B. Memory

The memory access is also a focus for an efficient programming on GPU. There are six
different memories in GPU:

• read-write per-thread registers

www.intechopen.com

Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE)

199

• read-write per-thread local memory

• read-write per-block shared memory

• read-write per-grid global memory

• read-only per-grid constant memory

• read-only per-grid texture memory

Fig. 4.1. The thread batching model of GPU

Above all, the shared memory and the texture memory are cached, while the read or write
access in the not cached global memory always takes 400-600 clock cycles. Only the texture
memory and the global memory can be used for a large amount of data. Moreover, the
texture memory is optimized for 2D spatial locality and supports many operations such as
interpolation, clamping, data type conversion etc.. However, the texture is read-only. The
results must be saved in the global memory, which requires data copy between memories.

4.3 Multi-GPU implementation details
In Fig. 4.2 a data flow diagram of our GPU-implementation is illustrated. After an

initialization, an input image is firstly converted into 32-Bit floating point such that a high

accuracy and a high efficiency will be achieved in the following computation phases. The

Gaussian dyadic pyramid is created in the shared memory together with the generation of

intensity maps (I-maps), opponent red-green (RG-maps) and blue-yellow maps (BY-maps).

We use the Gabor filter to calculate the Orientation-maps (O-maps). The Gabor filter kernel

is firstly calculated in the CPU. To spare computational cost, the convolution of the

subsampled images with Gabor filter in the space domain is displaced by the multiplication

in the frequency domain using Fast Fourier Transform (FFT). Here we conducted a Cuda-

image which contains all the images to be filtered by the in the initialization transformed

Gabor filter such that only one FFT and eight IFFT are needed for the convolution. The

images should be assembled before the transformation and disassembled after the

transformation in the texture memory. After that, 9 I-maps, 18 C-maps and 36 O-maps are

generated.

www.intechopen.com

 Computer Vision

200

construct

image lists

 Host (CPU) Device (GPU)

convert uchar4

to float4

memory allocate

Gaussian pyramid / I-, C-maps

convolution in X-Direction

(shared memory)

convolution in Y-Direction

(shared memory)

I-, RG-, BY-maps generation

(shared memory)

assembly maps for FFT

FFT->Convolution->IFFT

disassembly maps

Across-scale combinations

sum

data copy

from host to

device

data copy

from device

to host

I-maps (9)

C-maps (18) O-maps (36)

feature maps (42)

conspicuity maps (3)
saliency map

the saliency map

the input image

Gabor filter

intialization

 image

capture

Initialization

O-maps (texture)

Gabor filter FFT

Center-surround differences

rescale the

 images

point-by-point

 subtraction

iterative

normalization

point-by-point

 addition

iterative

normalization

Fig. 4.2. Data flow diagram for GPU-implementation of the saliency map computation

Furthermore, to ease the center-surround differences and the cross-scale combinations, the

available maps at different scales are rescaled into the same size. A point-to-point

subtraction followed by an iterative normalization is calculated. On the resulting 42 feature

maps a point-to-point addition and its following normalization are executed. One

conspicuity map in each channel is obtained. At the end, a summation of the conspicuity

maps into the saliency map is completed. The detailed description is as follows:

A. Initialization

Firstly, the GPU should be initialized. For the reason that the memory allocation in GPU
takes very long, the memory is firstly allocated for different images such as the input
images, the images in the Gaussian dyadic pyramids, the feature maps, the conspicuity
maps, the rescaled feature and conspicuity maps at the same size as well as the final saliency
map.

www.intechopen.com

Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE)

201

Since the filter kernel will not be changed during the saliency map computation, we also
calculate the Gabor filter in the initialization phase in the CPU and then transform it into the
frequency domain. The implementation of the Gabor filter and the FFT-transformation of
the Gabor filter will be described in Section 4.3-E in detail.

B. Data type conversion

The input image has the resolution of 640 x 480 and three 8-bit channels, namely red, green
and blue. The image data are copied from the CPU into the global memory of the GPU.
Since the global memory is not cached, it is essential to follow the right access pattern to get
maximum memory bandwidth. The data type must be such that sizeof(type) is equal to 4, 8,
or 16 and the variables of type type must be aligned to sizeof(type) bytes (CUDA, 2007). If the
alignment requirement is not fulfilled, the accesses to device memory are very costly. The
image width fulfills the alignment requirement, while the data amount of each pixel is 3 x 8
= 24 Bytes which does not fulfill the alignment requirement. Therefore, we must extend the
pixel width with padding and insert an extra 8-bit channel (see Fig. 4.3).

R B
R
R

GR
G B

G
G

0
0

B B 0
0

 column 0 column 1

row 0

row 1

{ {

Fig. 4.3. Image data padding

After the padding we convert the image data type with uchar4 into float4 to achieve the high
precision for the following computation using the implicit type conversion of the texture.

C. Gaussian dyadic pyramid computation

In (Walther & Koch, 2006) a 6 x 6 separable Gaussian kernel [1 5 10 10 5 1]/32 is used for the
image size reduction. A two-dimensional convolution contains 6 x 6 = 36 multiplications for
each output pixel, while a convolution with separable filters only requires 6 + 6 = 12
multiplications for each output pixel. Therefore, we separate the Gaussian dyadic pyramid
computation into two convolutions: one convolution in the horizontal direction to reduce
the horizontal dimension, and one convolution in the vertical direction, respectively.
Since each access in the uncached global memory takes 400-600 clock cycles, it is necessary
to compute the convolutions in the faster texture memory or shared memory. Bounding the
images to a texture requires the data copy between the global memory and the texture
memory. Moreover, the data are only readable by kernels through texture fetching. It is
more costly than loading the data into the shared memory and compute the convolution
there. Therefore, the convolution is computed in the shared memory.
For the convolution in the horizontal direction, the thread and block number are so specified
that a block consists of as many threads as the number of the output image columns and a
grid has as many blocks as the number of the output image rows. For example, for the
subsampling from an input image at 640 x 480 into an output image at 320 x 480, each block
has 320 threads, while each grid has 480 blocks. Each thread computes only one pixel in the
output image.
Attention must be paid to the threads synchronization, because the convolution in the
thread n is dependent on the pixels loaded by thread n-1 and n+1.
To deal with the convolution on the image border, we use [10 10 5 1]/26 on the left border
and [1 5 10 10]/26 on the right border.

www.intechopen.com

 Computer Vision

202

After that, a following subsampling in the vertical direction can be similarly solved. The

input image at 640 x 480 is subsampled into 8 other scales: 320 x 240 (scale 1 =σ), 160 x 120

(2 =σ), ..., 2 x 1 (8 =σ).

D. C-maps and I-maps computation

In the saliency map computation the I-, RG- and BY-maps are required (Walther & Koch,
2006). To make the computation more efficient, we integrate the computation of the I-maps
and the C-maps into the Gaussian filter convolution in the vertical direction, because the
image data are already in the shared memory after the convolution. Thus, we can spare the
time for loading the data from the global memory.

E. O-maps computation

1) Gabor filter: To compute the O-maps in different scales, the Gabor filter truncated to 19 x
19 pixels is used (Walther & Koch, 2006). The Gabor filter is formulated as follows:

)2cos()
2

exp(),,(
2

222

ψ
λ

π
δ

γ
θψ +

′
⋅

′+′
=

xyx
yxG (13)

With

)cos()sin(-),sin()cos(θθθθ yxyyxx +=′+=′ (14)

(x, y) is the pixel coordinate in the Gabor filter. The parameter values of our implementation
are according to (Walther & Koch, 2006). γ stands for the aspect ratio with the value 1, while

λ is the wavelength and has the value of 7 pixels. The standard deviation δ is equal 7/3

pixels, and }
2

,0{
πψ ∈ . θ stands for the orientation angles with }135,90,45,0{ °°°°∈θ .

As defined in Eq. 14, a Gabor filter consists of a combination of a 2D Gaussian bell-shaped

curve and a sine (2/ πψ =) and cosine function (0 =ψ). In each direction, the image

should be filtered twice and summed as follows:

)(*)()(*)()(2/0 θσθσσ πθ GMGMM II += (15)

with)(σIM the I-Maps at scale σ .

2) FFT and IFFT: Since a convolution with the 19 x 19 Gabor filter is too costly, we use FFT
and IFFT to accelerate this process significantly. The Gabor filter and the to be convoluted
images should be converted into the frequency domain using FFT at first, and multiplied
with each other. Then, the result is converted from the frequency domain into the space

domain using IFFT. In doing this, the complexity sinks from)(4nΟ (2D convolution) to

)log(2 nnΟ (2D FFT).

As mentioned in 4.3-A, the FFT of the Gabor filter should be computed in the initialization,
because it will never be modified in the saliency map generation. Using CUFFT library
(CUDA CUFFT, 2007) we compute from the original Gabor filter eight FFTs with four
different orientations and two different forms (sine and cosine).
Due to the fact that the input image (640 x 480) and the subsampled image at scale 1 (320 x
240) are not used for the following saliency map computation, 7 x 4 x 2 = 56 convolutions for

www.intechopen.com

Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE)

203

the O-maps are needed (7 scales, 4 orientations and 2 forms). We assembly the images in 7
scales together into an Cuda-image (see Fig. 4.5, left) such that just 1 FFT and 8 IFFTs instead
of 7 FFT and 56 IFFTs are computed. For an input image with 640 x 480 pixels, an image
with 256 x 256 is big enough to have all the images into itself.
Using the texture a modus named “clamp-to-border” is supported, which makes the image
copy very simple. If a pixel outside the texture border is accessed, this pixel has the same
color as the border. Therefore, instead of copying the pixel from (0, 0) to (n-1, n-1), we copy
the pixel from (-9, -9) to (n+8, n+8) of an image with n x n pixels. In doing this we get the
border extension for the convolutions.
Before we compute the FFT of the Gabor filter, we should resize the Gabor filter kernel (19 x
19) into the same size as the to be convoluted image (256 x 256), because the convolution
using FFT only can be applied on the input data of the same size (Podlozhnyuk, 2007). The
expansion of the Gabor filter kernel to the image size should be executed as shown in Fig.
4.5 right: cyclically shift the original filter kernel such that the kernel center is at (0, 0).

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

0

1 2

6 7

3 4 5

8 9 10

13 14 15

18 19 20

23 24 25

11 12

16 17

21 22

σ = 2

σ = 3
σ = 4

5
6

Fig. 4.5. The image (left) and the filter kernel (right) prepared for FFT

In the center-surround differences, 6 feature maps in the intensity channel, 12 feature maps
in the color channel and 24 feature maps in the orientation channel are computed between
the selected fine scale maps and the coarse maps. To execute this subtraction, the images
should be enlarged or reduced into the same size and then a point-by-point subtraction is
accomplished. We reduce the images at scale 2 and 3 into scale 4 and enlarge the images at
scale 5, 6, 7, 8 also into scale 4. At the end all the images are at scale 4 and have 40 x 30
pixels. For those enlargements and reductions we use the texture concept again by bounding
them to the textures.

2-5 2-6 3-6 3-7 4-7 4-8 ... 2-5 2-6 3-6 3-7 4-7 4-8

 5 6 6 7 7 8 ... 5 6 6 7 7 8

 2 2 3 3 4 4 ... 2 2 3 3 4 4list center

list surround

list difference

I-maps O-maps

Fig. 4.6. The image lists configuration

Since the images are rescaled into 40 x 30 pixel at this step, we construct three lists to make
the computation as parallelly as possible. Fig. 4.6 shows the configuration of the lists. Each
list contains 6 x 7 = 42 images with different scale number (but in the same size 40 x 30) and

www.intechopen.com

 Computer Vision

204

channels. The threads and blocks are so parametrized that 42 blocks are configured. Each
block is responsible for one image in the list. 42 images are processed in only one kernel
function parallelly. This list-concept is also used for the iterative normalization and the
cross-scale combinations.

G. Iterative normalization

The iterative normalization N(.) is an important component in the whole computation. It
simulates local competition between neighboring salient locations (Itti et al., 1998). Each
iteration contains self-excitation and neighboor-induced inhibition, which can be
implemented using a difference of Gaussian filter (DoG) (Itti & Koch, 1999):

2

22

2

22

2
2

2
2

2

2

22
),(inhex

yx

inh

inh

yx

ex

ex e
c

e
c

yxDoG πσπσ

πσπσ

+
−

+
−

−= (16)

with %2 =exσ and %25 =inhσ of the input image width, 5.0 =exc , 1.5 =inc and the

constant inhibitory term 02.0 =inhC . At each iteration the given image M is computed as

follows (Itti & Koch, 1999):

0

* ≥−+← inhCDoGMMM (17)

The inseparable DoG filter is divided into two separable convolution filters, one Gaussian
filter for excitation with 5 x 5 pixels and one Gaussian filter for inhibition with 29 x 29 pixels
for an input image at 40 x 30. The larger the input image is, the bigger are the filter kernels.
The kernel size can be computed as follows:

 1))100/1ln(2(2)|()|(+⋅−⋅⋅= inhexinhex floorsize σ (18)

The 153 iterations on 51 images are very costly. Although the shared memory size is limited,
the images at 40 x 30 and the respective filter kernels (4916 Byte) can fit into it. In doing this,
a 10 times acceleration is obtained, whereas the lists mentioned in 4.3-F are also used.

H. Combination into the saliency map

In the following cross-scale combinations no image rescaling is needed. It is only a question

of point-by-point integration of the feature maps into conspicuity maps I , C and O . The
saliency map is a linear combination of the normalized conspicuity maps.

I. Multi-GPU utilization

A parallel utilization of multi-GPU enables a significant acceleration of the saliency map
computation. To avoid the intricateness of a multi-process mode, a multi-threaded mode is
used to manage the multi-GPU utilization. In a multi-threaded mode, in addition to a main
thread several threads are utilized. Each thread is responsible for one GPU. Fig. 4.7
illustrates the multi-threaded mode in a petri-net. Two semaphores are used to ensure the
synchronization of the threads. The semaphore 1 sends a signal to the main thread if one or
more GPUs are idle and is initialized with the number of the applied GPUs. The semaphore
2 starts one of the GPU-threads. Interestingly, in the main thread, at t0,4 a thread is started,
while at t0,5 a saliency map is ready to be taken. Using this multi-threaded mode the frame
rate can be significantly increased.

www.intechopen.com

Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE)

205

the main

 thread

t0,6: evaluate

t0,1: capture image

t0,2: wait for free thread

t0,3: place image

t0,4: start thread

t0,5: fetch saliency map

semaphore 1semaphore 2

t1,1: wait for start

t1,2: fetch image

t1,3: compute saliency map

t1,4: place saliency map

t1,5: thread finisihed

thread 0

(GPU 0)

tn,1: wait for start

tn,2: fetch image

tn,3: compute saliency map

tn,4: place saliency map

tn,5: thread finisihed

thread n

(GPU n)…

Fig. 4.7. The petri-net structure for multi-threaded mode

4.4 Results and discussion
We tested our multi-GPU implementation using 1 to 4 NIVDIA GeForce 8800 (GTX)
graphics cards. The computers are equipped with different CPUs and 64-bit linux systems.
The computational time is the average processing time of 1000 input images at a resolution
of 640 x 480 pixels.
Tab. 4.1 shows the detailed processing time protocol. The most costly step is the
initialization which has a computational time of 328ms. The memory allocation happens
only once and needs almost 50MB RAM. The saliency map computation takes only about
10.6ms with a frame rate of 94.3 fps, respectively. In the GFLOPS performance estimation,
only the floating-point operations are considered. The address-pointer-arithmetic, the
starting of the CUDA functions and the memory copy accesses, which are very time-
consuming and have, therefore, a strong influence on the computational time, are not
considered.

Saliency map computation Time FLOP GFLOPS

initialization 328ms

Gaussian pyramid I-, C-maps 2,10ms 6.482.049 3,09

FFT, convolution, IFFT 2,39ms 27.867.923 11,66

image rescaling 0,89ms 294.000 0,33

center-surround differences 0,16ms 151.200 0,95

iterative normalization 4,74ms 34.876.690 7,36

Integration into saliency maps 0,33ms 62.390 0,19

total 10,61ms 69.734.252 6,57

Table 4.1. Computational time registration using 1 GPU

www.intechopen.com

 Computer Vision

206

1 2 3 4
0

5

10

15

number of GPUs

th
e

co
m

pu
ta

tio
na

l c
os

t i
n

[m
s]

10.61ms

3.196ms
4.67ms

6.177ms

Fig. 4.8. Comparison of computational time using 1 to 4 GPUs

Fig. 4.8 illustrates the computational time using 1 to 4 GPUs, which shows a very good
scalability of the multi-GPU implementation.
In Tab. 4.2 the performance of the iLab's implementation (Peters & Itti, 2007) and our
implementation is compared. Working on the images with the same resolution and the same
precision, iLab uses the 2.8GHz Intel Xeon processor and achieves a frequency of 19.48 Hz,
while using our implementation a frequency of 313 Hz is obtained. Using multi-threaded
mode, the maximum speed of iLab is 37 fps which is still about 8.5 times slower than our
implementation.

 iLab´s implementation our implenentation

resolution 640 x 480 640 x 480

hardware 2.8GHz Intel Xeon processor 4 NVIDIA GeForce 8800 (GTX)

precision floating-point floating-point

computational time 51.34ms 3.196ms

frequency 19.48 Hz 313 Hz

Table 4.2. Comparison between iLab's implementation and our implementation

5. Visual odometry for ACE

The goal of ACE is to navigate in an unpredictable and unstructured urban environment.
For achieving the aim, accurate pose estimation is one of the preconditions. As humans, we
use visual information to estimate the relative motion between ourselves and a reference
object. If we close our eyes, we can still estimate the motion by feeling the foot step. Even if
we move in a car and close our eyes, we can use inertial sensor in the body, such as inner
ear, to tell how our motion is. By now, ACE only has the information from the angle-
encoders on the wheels. If there are sands, cobblestone on the ground, the wheels will slip,
which causes an inaccurate localization. Therefore, we want to use the visual information to
support the localization. We mount a high-speed camera in the front of ACE. The camera
looks straight towards the ground.
In this section a visual odometry system is presented to estimate the current position and
orientation of ACE platform. The existing algorithms of optical flow computation are
analyzed, compared and an improved sum-of-absolute difference (SAD) algorithm with
high-speed performance is selected to estimate the camera ego-motion. The kinematics
model describing the motion of ACE robot is set up and implemented. Finally the whole
odometry system was evaluated within appropriate scenarios.

www.intechopen.com

Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE)

207

5.1 Background
How to locate the position and orientation of a moving object has long been a research focus
of the computer vision community. The probably existing problems could be being robust
against complicated environment, different ground situations and changing brightness.
Most visual odometry methods include three phases: firstly, a suitable optical flow
computation algorithm should be selected to determine the optical flows in a series of
successive images. Then, the translation and rotation of the camera should be estimated
according to these optical flows acquired in the first step. At last, a geometry model
denoting the relation between camera and robot should be established so that the
localization of the robot can be deduced from the position of the camera.

5.1.1 Optical flow techniques
The computation of optical flows has been a key problem discussed in the processing of
image sequences for many years (Barron et al., 1994). Nowadays there are two most popular
techniques: Matching-based method and differential method. Block-based matching is
applied in many aspects of computer vision area. It’s also one of the most important
techniques for optical flow computation. Two simple algorithms, sum-of-absolute difference
(SAD) and sum-of-squared difference (SSD), are usually used to find the best match. They
are more efficient than the other techniques. Lucas & Kanade is a typical and classical
differential technique, which is based on the gradient constraint. It has a comparative
robustness and accuracy in the presence of noise and is feasible in reality.

5.1.2 Pose estimation using optical flow information
Pose estimation is the procedure to compute the position and orientation of a camera
relative to the world coordinate. Using image Jacobian matrix, the relationship between
object velocity in 3-D world and its image-plane velocity on the image sensor is described as
follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−
+

−−
=⎥

⎦

⎤
⎢
⎣

⎡

z

y

x

z

y

x

T

T

T

u
uvu

z

v

z

v
uuv

z

u

z
v

u

ω
ω
ω

λλ
λλ

λ
λ

λ
λ

.

0

0

22

22

$
$ (19)

where xT , yT , zT are translation velocities of the camera in world coordinate in three

directions, xω , yω , zω angular velocities in three directions. u$ and v$ are the pixel

velocity along x and y directions in image plane, while u and v are the corresponding pixel

coordinates in image plane. Normally we have more than 3 feature points on the image
plane, so the equation system is redundant.

5.1.3 Related work
Jason Campbell et al. (Campbell et al. 2005) designed a model using monocular camera
mounted at the robot’s front and viewing front and underside of the ground. The flow

www.intechopen.com

 Computer Vision

208

vectors are divided into three parts: a dead zone near the horizon is defined and discarded
in the computational processing; the vectors above the horizon are used to calculate the
robot rotation while the vectors below the horizon are used to estimate the robot translation.
Similar to the model established by Campbell, the monocular camera in Wang’s model
(Wang et al. 2005) focuses only on the locally planar ground, and calculates the translation
and rotation together. Both of the models use Lucas & Kanade method to obtain the optical
flow. Utilizing the Harris corners detection and normalized correlation, Nister presented a
system (Nister et al. 2004) that provides an accurate estimation but works relative slowly. In
Fernadez’s work (Fernadez & Price 2004), utilizing the task-sharing abilities of the operating
system, the problem of synchronization across multiple frame-grabbers can be solved. In
order to have a better efficiency, the SAD algorithm is used here. In Dornhege’s work
(Dornhege & Kleiner, 2006) the salient features are tracked continuously over multiple
images and then the differences between features that denotes the robot’s motion are
computed. An inertial measurement unit (IMU) is employed here to estimate the
orientation.

5.2 Hardware and modeling
5.2.1 Hardware description
Fig. 5.1 illustrates the hardware configuration. A high-speed camera and a 1394b PCI-
express adapter are used in our system to capture and transfer the images to the
computational units. The dragonfly® express camera (Point Grey Research Inc.), fitted with
a normal wide-angle lens, can work at 200 fps with the resolution of 640x480 pixels.
Utilizing the IEEE-1394B (Firewire 800) interface, the camera is connected to our vision
processing computer with an AMD Phenom 9500 @2.2GHz Quad-Core processor and 4 GB
memory.

Fig. 5.1. Hardware configuration

5.2.2 Kinematics modeling
Because ACE will explore the outdoor urban environments, e.g. the city centre of Munich,
and communicate frequently with the humans, so the camera for visual odometry may not
gaze directly forward. For avoiding the disturbance of moving crowd, the camera is
mounted in the front of ACE and the optical axis is perpendicular to the ground.
The camera is firmed on ACE such as represented in Fig. 5.2. The relative position between

the camera and the robot does not change in the whole process. Any actuated motion of the

robot will result in a movement of the camera relative to its original position. Because the

displacement between camera and ground in z-direction is much smaller than the distance

between camera and ground z, we can approximately assume that the ground is a flat plane

www.intechopen.com

Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE)

209

and the ACE-platform displaces without any roll and pitch angle. Based on this assumption

only 3 variables must be considered: the movements in x and y directions and the

orientation around the z axis. We divide the movement of robot in two parts (see Fig. 5.3).

Fig. 5.2. Cutaway and planform of the visual odomery configuration

Fig. 5.3. Geometry relationship between robot and camera in motion with frames and
variables definition

Firstly, it rotates with an angle of θ without any translation. Then, the robot has movement

of (xT , yT). After that, the three variables of camera relative to its original position can be

denoted as:

xcc

ycc

rc

TRxY

TRyX

−+⋅−=

−+⋅−=
=

)cos(

)sin(

0

0

θβ

θβ
θθ

 (20)

where 2
0

2
0 yxR += and)arctan(

0

0

x

y
=β .

www.intechopen.com

 Computer Vision

210

5.3 Motion estimation
Our long-term objective is to fuse the visual information at 200 Hz and the information
provided by the angle-encoders at 30 Hz to achieve a high accuracy visual odometry.
Currently, we focus on the visual information. The vision processing is as follows: the input
images will be undistorted at first. Then, using SAD the optical flow is computed. The
relationship between optical flow and the camera ego-motion is indicated by image
Jacobian. To reduce the noise and optimize the results of the redundant equations, a Kalman
filter is applied.

5.3.1 Optical flow algorithm – elaborated SAD
Compared with other optical flow computation algorithms, SAD performs more efficiently
and less system resources are required. The size of our images is 640x480 pixels and the
central 400x400 pixels are chosen as interest area. A searching window of 20x20 is defined so
there are totally 400 windows in this interest area. SAD algorithm is used in every window
with a block size of 8x8 pixels. This block is regarded as original block in frame n-1 and
compared with the corresponding neighbour blocks within the searching window in frame
n. The block with the least SAD values in frame n will be taken as the matching block. The
distance between the original block and the matching block is defined as optical flow value
of this searching window. After SAD matching 400 sets of optical flow values have been
acquired and a further elaboration is fulfilled as follows: The searching windows on the
boundary of the interest area are abandoned and the remaining 18x18 windows can be
separated into 36 groups. Each group consists of 3x3 windows as show in Fig. 5.4. In every
group we set a limit to eliminate some windows whose optical flow values seem not to be
ideal enough. The average optical flow values of remaining windows in every group should
be determined and could be seen as a valid optical flow value of this group. Every group
can be considered as a single point and we just calculate the optical flow values of 36 feature
points with a better accuracy.

Fig. 5.4. Elaborated SAD algorithm

5.3.2 State estimation – Kalman filter
After calculating optical flow values with an elaborated SAD algorithm, we apply Kalman
filter to determine the redundant equations based on image Jabobian matrix. The basic

thought of Kalman filter is to predict the state vector
kx according to the measurement

www.intechopen.com

Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE)

211

vector
kz . Based on the assumption we have made in kinematics model, only xT , yT and

zω are required and therefore the state vector is composed of only three elements. The

measurement vector
kz comprises the 36 sets of points velocities acquired from optical flow

values of 36 feature points. The measurement matrix is a simplified image Jacobian matrix J,
the redundant equations can be described as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

z

y

x

T

T

u
z

v
z

u
z

v
z

v

u

v

u

ω

λ

λ

λ

λ

36

36

1

1

36

36

1

1

0

0

0

0

BBB

$
$
B
$
$

 (21)

The basic process of Kalman filter in our experiment is as follows:

kkk

kkk

vxJz

wxx

+⋅=
+=

−

−

1

1 (22)

Random variables wk-1 and vk represent the process noise and measurement noise
respectively. The estimation process can be divided into two parts: predict part and correct
part. At the beginning, the camera velocity vector, which is also the state vector in Kalman
filter, is initialized with null vector, after the predict part, prior camera velocity estimation
and prior error covariance estimation are transferred to the correct part. In correct part the
posterior camera velocity estimation are computed by incorporating current point velocity
vector, which is also the measurement vector. A posterior error covariance is also calculated
in correct part and together with posterior camera velocity estimate transferred as
initialization of the next step. In every step the posterior camera velocity estimation is the
result of the redundant equations.

5.4 Experiments results
In the ACE platform there is an encoder which can estimate the current position of ACE. We
read the data from the encoder at a frequency of 4-5Hz and consider them as ground truth.
The camera mounted on ACE works at a frequency of 200Hz. Our experiment data is
obtained when ACE is moving in the environment of stone sidewalk. The experiment is
divided into two parts. In the first part, ACE ran about 6,7m in a straight line, which is taken
as pure translation. The second part is pure rotation test. ACE only rotated at the starting point
and passes about 460 grads. Two series of images are captured and saved, and then the
experiment is carried out offline. The motion estimation computation works also at 200Hz.
Fig. 5.5 left shows the results of estimating the robot displacements in pure translation. The
red curve indicates the displacement in x-direction measured by encoder, and the blue curve
indicates the displacement in x-direction estimated by visual odometry.
The right part of Fig. 5.5 shows the angular result in pure rotation. The red curve indicates
the ground truth from encoder, and the black curve indicates the estimation result from
visual odometry.

www.intechopen.com

 Computer Vision

212

Fig. 5.5. Position estimation in pure translation (left) and in pure rotation (right)

The right part of Fig. 5.5 shows the angular result in pure rotation. The red curve indicates
the ground truth from encoder, and the black curve indicates the estimation result from
visual odometry.

6. Conclusions and future work

In this chapter, two high-speed vision systems are introduced, which can acquire and
process visual information in real time and are used for the visual attention and navigation
of the Autonomous City Explorer (ACE).
An information-based view direction planning is proposed to rapidly detect the surprising
event in the environment during accomplishing predefined tasks. This high performance is
facilitated and ensured by high-speed cameras and high-speed processors such as Graphics
Processing Units (GPUs). A frequency of 313 fps on input images at 640 x 480 pixels is
achieved for the bottom-up attention computation, which is about 8.5 times faster than the
standard implementation on CPUs. For the high speed visual odometry, our algorithm
performs well according to the experiments results. The time delay of close-loop control can
be decreased and the system stability can be improved.
Further development based on these two high-performance vision systems is planned to
improve the self-localization and navigation accuracy. Besides, a suitable data fusion
algorithm should be selected to combine data from encoder and visual. The visual attention
system should also be extended for the application of human-robot interaction.

7. Acknowledgment

This work is supported in part within the DFG excellence initiative research cluster
Cognition for Technical Systems – CoTeSys, see also www.cotesys.org.

8. References

Barron, J.; Fleet, D. & Beauchemin, S. (1994). Performance of optical flow techniques,
International journal of computer vision, Vol.12, No. 1, February 1994, pp. 43-77, ISSN:
0920-5691.

Campbell, J.; Sukthankar, R.; Nourbakhsh, I. & Pahwa, A. (2005). A robust visual odometry
and precipice detection system using consumer-grade monocular version,

www.intechopen.com

Towards High-Speed Vision for Attention and Navigation of Autonomous City Explorer (ACE)

213

Proceedings of the 2005 IEEE International Conference on robotics and automation,
pp.3421 – 3427, ISBN: 0-7803-8915-8 , Barcelona, April 2005

CUDA (2007). Programming Guide Version 1.1. NVIDIA
CUDA CUFFT Library (2007). NVIDIA
Davison, A.J. (1998). Mobile Robot Navigation Using Active Vision. PhD thesis. Robotics

Research Group, Department of Engineering Science, University of Oxford
Dornhege, C. & Kleiner, A. (2006). Visual odometry for tracked vehicles, Proceeding of the

IEEE international workshop on safety, security and rescue robotics, Gaithersburg, USA,
2006

Fernadez, D. & Price, A. (2004). Visual odomerty for an outdoor mobile robot, Proceeding of
the 2004 IEEE conference on robotics and mechatronics, Singapore, December 2006

Frintrop, S. (2006). VOCUS: A Visual Attention System for Object Detection and Goal-directed
search. PhD thesis

Im, S. & Cho, S. (2006). Context-Based Scene Recognition Using Bayersian Networks with
Scale-Invariant Feature Transform, ACIVS 2006, LNCS 4179, pp. 1080-1087

Itti, L.; Koch, C & Niebur, E. (1998). A model of saliency-based visual attention for rapid
scene analysis, Pattern Analysis and Machine Intelligence, vol. 20, pp. 1254-1259

Itti, L. & Koch, C. (1999). A comparison of feature combination strategies for saliency-based
visual attention systems, SPIE human vision and electronic imaging IV (HVEI'99), San
Jose, CA pp 473-482

Itti, L. & Baldi, P. (2005). A Principled Approach to Detecting Surprising Events in Video,
Proceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), June, 2005

Kühnlenz, K. (2006a). Aspects of Multi-Focal Vision, PhD thesis, Technische Universität
München.

Kühnlenz, K., Bachmayer, M. and Buss, M. (2006b). A Multi-Focal High-Performance Vision
System, Proceedings of the International Conference of Robotics and Automation (ICRA),
pp. 150-155, Orlando, USA, May 2006.

Lidoris, G., Klasing, K., Bauer, A., Xu, T., Kühnlenz, K., Wollherr, D. & Buss, M. (2007). The
Autonomous City Explorer Project: Aims and System Overview, Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2007.

Longhust, P.; Debattista, K. & Chalmers, A. (2006). A GPU based Saliency Map for High-
Fidelity Selective Rendering, AFRIGRAPH 2006, Cape Town, South Africa

Nister, D., Naroditsky, O., Bergen, J. (2004). Visual odometry, Proceedings of the 2004 IEEE
computer society conference on computer Vision and Pattern Recognition, Vol.1, pp. 652-
659, ISBN: 0-7695-2158-4, Washington DC, July 2004

Ouerhani, N.; Hügli, H.; Burgi, P.Y. & Ruedi, P.F. (2002). A Real Time Implementation of the
Saliency-Based Model of Visual Attention on a SIMD Architecture, DAGM 2003,
LNCS 2449, pp. 282-289

Ouerhani, N.; Hügli, H.; Gruener, G. & Codourey, A. (2005). A Visual Attention-Based
Approach for Automatic Landmark Selection and Recognition, WAPCV 2004,
LNCS 3368, pp. 183-195

Pellkofer, M. & Dickmanns, E.D. (2000). EMS-Vision: Gaze Control in Autonomous Vehicles,
Proceedings of the IEEE Intelligent Vehicles Symposium 2000, Dearborn, USA

www.intechopen.com

 Computer Vision

214

Peters, R.J. & Itti, L. (2007). Applying computational tools to predict gaze direction in
interactive visual environments, ACM Transactions on Applied Perception, May 2007,
Pages 1-21

Podlozhnyuk, V. (2007). FFT-based 2D convolution. NVIDIA
Remazeilles, A. & Chaumette, F. (2006). Image-based robot navigation from an image

memory, Robotics and Autonomous Systems
Seara, J.F. & Schmidt, G. (2005). Gaze Control Strategy for Vision-Guided Humanoid

Walking, at-Automatisierungstechnik, vol. 2, pp. 49-58
Torralba, A. & Sinha, P. (2001). Statistical Context Priming for Object Detection. Proceedings

of the International Conference on Computer Vision (ICCV), pp. 763-770,
Vancouver, Canada

Ude, A.; Wyart, V.; Lin, L.H. & Cheng, G. (2005). Distributed Visual Attention on a
Humanoid Robot, Proceedings of 2005 5-th IEEE-RAS International Conference on
Humanoid Robots

Walther, D. & Koch, C. (2006). Modeling attention to salient proto-objects, Science Direct,
Neural Networks, vol. 19, pp. 1395-1407

Wang, H.; Yuan, K.; Zou, W. & Zhou, Q. (2005). Visual odometry based on locally planar
ground assumption, Proceeding of the 2005 IEEE international conference on
information acquisition, Hong Kong and Macau, China, June 2005

Won, W. J.; Ban, S. W. & Lee, M. (2005). Real Time Implementation of a Selective Attention
Model for the Intelligent Robot with Autonomous Mental Development, IEEE ISIE
2005, June 20-23, Dubrovnik, Croatia

www.intechopen.com

Computer Vision

Edited by Xiong Zhihui

ISBN 978-953-7619-21-3

Hard cover, 538 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book presents research trends on computer vision, especially on application of robotics, and on advanced

approachs for computer vision (such as omnidirectional vision). Among them, research on RFID technology

integrating stereo vision to localize an indoor mobile robot is included in this book. Besides, this book includes

many research on omnidirectional vision, and the combination of omnidirectional vision with robotics. This

book features representative work on the computer vision, and it puts more focus on robotics vision and

omnidirectioal vision. The intended audience is anyone who wishes to become familiar with the latest research

work on computer vision, especially its applications on robots. The contents of this book allow the reader to

know more technical aspects and applications of computer vision. Researchers and instructors will benefit from

this book.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Tingting Xu, Tianguang Zhang, Kolja Kühnlenz and Martin Buss (2008). Towards High-Speed Vision for

Attention and Navigation of Autonomous City Explorer (ACE), Computer Vision, Xiong Zhihui (Ed.), ISBN: 978-

953-7619-21-3, InTech, Available from: http://www.intechopen.com/books/computer_vision/towards_high-

speed_vision_for_attention_and_navigation_of_autonomous_city_explorer__ace_

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

