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Abstract

Robot mobile navigation is a hard task that requires, essentially, avoiding static and
dynamic objects. This chapter presents a strategy for constructing an occupancy map
by  proposing  a  probabilistic  model  of  an  ultrasonic  sensor,  during  robot  indoor
navigation. A local map is initially constructed using the ultrasonic sensor mounted in
the front of the robot. This map provides the position of the nearest obstacles in the
scene useful for achieving the reactive navigation. The encoders allow computing the
robot location in the initial local map. A first path for robot navigation based on the
initial local map is estimated using the potential field strategy. As soon as the robot starts
its trajectory in real indoor environments with obstacles, the sensor continuously detects
and updates the occupancy map by the logsig strategy. A Gaussian function is used for
modelling the ultrasonic sensor with the aim of reaching higher precision of the distance
measured for  each obstacle  in  the  scene.  Experiments  on detecting,  mapping and
avoiding obstacles are performed using the mobile robotic platform DaNI 2.0 and the
VxWorks system. The resulted occupancy grid is analysed and discussed at the end of
this document.

Keywords: occupancy map, obstacle detection, path planning, robot mobile naviga‐
tion, Gaussian model

1. Introduction

Nowadays, the artificial intelligent field has developed service task in robotic systems with
the aim of providing help or comfort to humans. This is called service robotic [1], and it is
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supposed that the robot acts total or partially with autonomy. In particular, the service robotic
tackles the problem of domestic robots. Such robots require highly autonomy and real‐time
processing for recognizing unknown environments. To do this, they use stereovision [2] and
laser range finders [3, 4]. Furthermore, these robots must be able to autolocalizing and to
navigate without human supervision, detect and locate obstacles and constructing its own
map of the environment, using only their sensors and eventually a communication system
with  a  central  computer.  The  environment  and  workspace  of  the  industrial  robots  are
especially adapted for them and for performing special tasks; thus, these robots are program‐
med for knowing the environment in accordance with their physical dimensions. On the
contrary, service robotics interacts with a changing and initially unknown environment.

Topologic and geometric maps could be constructed for perceiving robot environment. As
proposed by Thrun et al. [5], a topologic map contains nodes and lines that joint these nodes
representing the possible trajectories from one node to another. Furthermore, the author
proposes the efficient mapping of the space and the low complexity as advantages, however,
to recognize the place is difficult, depends of personal interpretation, and it could produce
suboptimal trajectories. In contrast, the geometric maps numerically represent the coordinates
and properties of the environment of the robot. These maps could efficiently represent big
regions with few numeric parameters. Thus, the environment is descripted through geometric
characteristics such as segments, corners, among others and their corresponding relationships
(distance positions) [6].

On the other hand, the occupancy grid is a technique based on the discretization of the space
in equal cells with a probability, which represents an occupied, empty or unknown area. This
technique has been largely used due to it requires basic concepts for constructing, representing
and updating and it allows to compute shorter trajectories. The main disadvantage of the
occupancy grid is that requires the robot position.

The ultrasound is mechanical radiations with frequency higher to the audible range (>20 kHz)
when these waves are reflected by an object in the environment. The ultrasonic sensors contain
a piezoelectric transducer that is used as a transmitter and receptor for emitting and receiving
the ultrasonic waves, respectively. This project proposes a strategy focused on ultrasonic
sensors since this provides the distance from each obstacle in the environment to the sensor
mounted on the robot. Recently, a self‐configuring network of ultrasonic sensors has been
proposed for tracking moving target [7], providing that these sensors provide an economical
and basic solution to object detection in indoor environments.

In the development of novel strategies for proposing autonomous robotic systems, this work
tackles with the problem of obstacle detection and avoiding in real time using an ultrasonic
sensor embedded in a robot mobile during indoor navigation [8]. The environment is initially
unknown; thus, first of all, the robot constructs an initial version of a two‐dimensional (2D)
occupancy map. Several experimental tests are performed for modelling the sensor error and
for measuring the precision of measurements with the aim of assuring a reliable map.
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2. Overall strategy for robot navigation

Figure 1 depicts the block diagram of the global strategy for constructing a local occupancy
map of indoor environments. As the operating range of the ultrasonic sensor is known, this
sets the size of the area covered by the sensor, which will be directly updated in the local map
at each instant time t. This area establishes the size of an initial local map previously provided
to the robot. On the other hand, before robot starts to move, the ultrasonic sensor is used for
detecting objects in front of him. To do this, the ultrasonic sensor carries out a “sweep” in the
range −90° to 90° with respect to X axis of the robot (see Figure 2a). The local map also uses
the initial robot location, due to location of the objects are given with respect to the ultrasonic
sensor. The path‐planning module computes an initial path for robot navigation. The potential
field’s technique is used to plan the best trajectory for the robot. In real time, robot odometric
location is obtained from the encoders for updating the map and continuously constructing
the global map of the robot scene. Both global and local maps store the probability of occupancy
around the robot during navigation.

Figure 1. Global strategy for constructing an occupancy map during indoor navigation.

Every update of the global map is stored in a file internally on the robot. The map construction
consists in dividing the environment in small uniform cells, which will be labelled as occupied
or free in accordance with the ultrasonic measures. An intensive calibration strategy is required
with the aim of obtaining an accurate digital representation of the real scene. The robot
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navigates from a predefined initial position to a goal position; then, the algorithm ends when
the robot reaches such predefined goal position.

Figure 2. (a) Reference axis of the mobile robot DaNI 2.0. (b) Graphical representation of the robot in the local and
global reference axis, P represents the reference point of the position.

3. Robot model description

The mobile robot used in this project is shown in Figure 2a. This is a robotic platform called
NI LabVIEW robotics Starter Kit® [9], also known as DaNI 2.0, developed by National Instru‐
ments company® (NI). This mobile robot was designed to develop and run algorithms in real
time for autonomous system applications. The components of the mobile robot DaNI 2.0 are
essentially: two DC motors, two encoders and a reconfigurable card sbRIO‐9632 (Single Board
Reconfigurable I/O), an ultrasonic sensor mounted on a servomotor for providing to sensor
rotational motion. Figure 2b illustrates a graphical representation of the robot, with the global
and local reference axis of the robot. The X and Y axes are defined arbitrarily in the plane as
the reference of the global coordinates.

The kinematic model of the robot DaNI 2.0 consists in a differential configuration: each wheel
of the robot is connected to a DC motor, which provides the traction force and a stabilization
wheel for balancing the robot. The basic model for representing the robot position considers
the robot as a single point in the space. Thus, the robot position is specified by choosing a point
P in the robot chassis as a reference; usually, this point is the centre of the wheel axis. In addition,
the point P represents the origin of the robot axis Xr and Yr indicating the local reference of the
robot position, see Figure 2a.

In particular, the sbRIO‐9632 card is a heterogeneous‐embedded platform, developed by NI®,
which contains a real‐time processor and serves as main control unit of the robot. Besides, this
platform includes a Field Programming Gate Array (FPGA) Xilinx Spartan‐3, which is a
reconfigurable device that executes programmed tasks in real time, that is, the active response
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of the system to external events. This real‐time execution uses a low‐level programming to
perform tasks, such as motor control, signal acquisition by means of digital or analogue inputs
and monitoring digital and analogue inputs/outputs, among others. However, a higher level
of programming is possible through the NI LabVIEW® robotics software, which is a graphical
language. Programming languages such as C, C++ or Java could be also used.

3.1. Robot odometric localization

During navigation, the robot needs to know its position and orientation with respect to its local
and global axis of reference. To do this, the most common method used is based on geometric
equations providing an estimation of the robot location by combining information obtained
from the encoders on the wheels and from the propulsion components. This method is known
as odometric estimation [10], and it is commonly used due to it only employs the kinematic
model of the robot without including forces or torques in the mechanism. The main constraint
of this method is that, a small error at the beginning of the estimation increases with the time,
due to it is accumulated. Another strategy for avoiding this incremental error is to correct the
robot position at regular times of movement, using landmarks [11]. Nevertheless, the cost of
installation of the landmarks could be considerably high. For this reason, the odometric
location strategy is commonly used providing enough results in short trajectories at low cost.

In order to compute the robot position P(X, Y) in the global coordinate system, it is necessary
to know the rotational angle between the local and global coordinate axis, given by θ and the
origin coordinates of the robot local axis. The geometric equations for computing the point P
position in global coordinates are as follows:

  cos( )
  sin( )
r

r

X X
Y Y

q
q

=ì
í =î

(1)

The robot motion dr is computed over the time by considering the robot geometry and its
angular velocity on the wheels, using the following equation:

2
r

rd t
rev w
p j= (2)

where r is the wheel radius (1.16 dm for the DaNI 2.0 robot), �� the angular velocity of the

wheel and t is the time.

In accordance with the robot geometry and the wheel type, the movement of the robot Xr is
only in one direction (X direction is used). Furthermore, in the case of one wheel is keeping
fix to the floor, while the second wheel moves with an angular velocity; then, the robot will
draw a circle around the fixed wheel with a radius of 2l; being l the distance from the point P
in the chassis to the wheel (1.778 dm for DaNI 2.0 robot). This movement only affects θ angle:
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In order to estimate the location errors due to the odometry, a square trajectory was imple‐
mented on the robot. It was found that such errors in the trajectory are mainly due to the errors
in the turns, performed to 86° approximately but expected to 90°. Besides, small changes in
the wheels’ trajectory are not registered by the encoders, these changes are minimal, and
however, they produce a notable final error.

The odometric errors exist essentially due to the robot construction, that is, there is a small
difference between the diameters of the wheels. Furthermore, the finite resolution of the
encoders and the irregularities in the floor where the trajectory is performed avoid an ideal
execution of the trajectory.

3.2. Ultrasonic sensors

As it was mentioned in the introduction section, the ultrasonic sensors consist of one trans‐
mitter and receptor of the sound. Once the ultrasonic wave has been sent, when such wave
found an object a signal, this is reflected as an echo and can be detected by the same transmitter,
which acting also like a receptor. In general, the applications of the ultrasonic sensors are based
on estimate the lapse of time between such emission and reception of the ultrasonic waves.
This lapse of time is known as time of flight (ToF), the corresponding distance to the object that
reflected the wave is estimated by means of:

1
2 fd v t= × (4)

where v represents the velocity of sound and tf the time of flight.

On the other hand, one particular problem with the ultrasonic sensors is the mirror reflection.
This reflection happens mainly in the corners and it is occasioned for several reflections of the
ultrasonic waves before to return to the sensor (see Figure 3). As a consequence of this
phenomenon, some objects of the environment of small size or orientation cannot be detected
by the sensor, or in some cases, they are detected farther than really they are. Thus, only the
readings taken when the ultrasonic wave impacts perpendicular to the surface will be taken
as correct measures.

The cone of sensibility, also known as acoustic sensor aperture, introduces incertitude in the
position and distance of the reflected object if the robot is in motion. This is illustrated in
Figure 4: if one object is detected in the cone of sensibility, therefore, the measured distance
will correspond to an object “in front” of the sensor, even if the object is located with an
orientation with respect to the robot.
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Figure 3. Mirror reflection of the ultrasonic waves. (a) Extended trajectory of the ultrasonic wave. (b) Ultrasonic echo
that does not return to sensor.

Figure 4. Main effect of the acoustic aperture of the ultrasonic sensor that produces incertitude in the object position,
positioning the object in an unreal location.

3.3. Gaussian model of the ultrasonic sensor

The experimental test for modelling the sensor was performed at different sampling times with
the aim of considering the effect of the robot motion in the measurements. The sampling times
used were 60, 80, 100, 200 and 400 ms, in the range of −65° to 65° with intervals of 5° at distances
of 6, 8 and 10 dm from the wall. Figure 5 illustrates the average of these different test performed
using a sampling time of 80 ms. The chart (a) shows a stable range of measurements among
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−20° to 40° confirmed by the standard deviation shown in chart (b). Note that different sensor
positions (6, 8 and 10 dm) do not affect the measurements. Similar results have been obtained
for a sampling time of 100 ms; however, as this project will be performed in real time, 80 ms
was chosen due to it represents the best trade‐off between stability and time of detection.

Figure 5. Charts of the measurement averages. (a) The sampling time used is 80 ms, for three distances 6, 8 and 10 dm.
(b) The standard deviation of measurements performed in chart (a), note the range of stability is among −20° to 40°.

In order to reduce the measurement error of the ultrasonic sensor and to validate that the
detected object is inside a specific region, it is used a probabilistic technique based on a
Gaussian function. The Gaussian model implies to know the errors due to the distance and
angle detection [12]. This model considers the measured distance, denoted here as d, and its
uncertainty (��), and orientation angle θ and its uncertainty (��). Therefore, the real measure

is in the range of � ± ��, and the orientation � ± �� is denoted by:

( )
( )2 2

2 2( )
21| ,

2
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q
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= (5)

where z is the variable in the workspace of the ultrasonic sensor measurements. This equation
represents the probability that the object be in the position measured by the sensor and uses
two standard deviations, range and angle (see Figure 6a). The error measured on the angle for
one object located at 10 dm is 0.12 dm that represents an error of ±0.7°. This effect is small;
therefore, it will be ignored for constructing the occupancy map, considering only the 1D
model based on distance only (see Eq. 5). Figure 6b depicts in blue the 1D model of the
ultrasonic sensor considering only the distance and the uncertainty (��). Using a confiability

value of 0.8, the resulted plot is shown in green. Once the object has been detected, the
environment behind him is unknown. Thus, the probability of such cells is considered 0.5
because the cell value cannot be known (red plot in Figure 6b). Furthermore, this plot repre‐
sents the probability of the object be in the distance describe in the x axis. This result will be
used for occupancy map construction.
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Figure 6. Gaussian model of the ultrasonic sensor. (a) Object position in coordinates (d, θ) for a 2D probability model.
(b) Probability model of object position detected by ultrasonic sensor in 1D.

4. Global map construction

The occupancy maps are a probabilistic technique based on small cells that divide the sur‐
rounding space of the indoor or outdoor environments. The probability of one cell is occupied
which is estimated using robot sensors. Each cell in the map represents the information
contained in the physical space in front of the sensors used to measure the environment. The
values in the cell describe the following situations:

<0.5 free cell
=0.5 unknown
>0.5 occupied cell

ì
ï
í
ï
î

(7)

4.1. Static occupancy map

The initial local map uses the initial position of the robot, which is always knowing as
navigation is performed only in indoor environments for constructing a static occupancy map
considering that the robot is not moving in the environment. The ultrasonic sensor in front of
the robot rotates in the range of −90° to 90° with respect to the x axis of the robot; nevertheless,
the real range used was in the range of −20° to 40° in order to acquire more stable and accurate
measures. Another advantage is that a reduced amount of measurements avoiding synchro‐
nization problems and allowing the real‐time execution. The rest of the angle range will be
covered as the robot navigates in the environment.
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In this work, an initial local map is constructed since a static position of the robot in the
environment which is represented by a grid as illustrated in Figure 7b. This map indicates the
starting point of the robot trajectory and the corresponding state of the surrounding environ‐
ment in accordance with Eq. (7). Each cell of the map represents 1 dm2 of the environment
minimizing the location errors due to the odometry of the robot. Note that, the red cells in the
front and in both sides of the robot represent the obstacles in the scene (probability of the cells
are higher to 0.5). This map is updated based on the log‐odds algorithm for mapping the
environment in a global map.

Figure 7. Initial local map. (a) Indoor scene with obstacle, (b) blue cells represent free space, red cells represent obsta‐
cles and green cells are unknown space.

4.2. Dynamic occupancy map

Figure 8 illustrates the block diagram for constructing the dynamic occupancy map. The
measures obtained from the encoders in order to locate the robot in the global reference system.
Once the current robot location in the environment is known, a homogenous transformation
is carried out with the aim of updating the cells covered by the ultrasonic sensor based on the
Eq. (7) and finally assigning them in the global map.

Note that, in the odometric localization block of Figure 8, the local reference axis of the robot
has been rotated and angle β with respect to global axis. Therefore, one point (X1, Y1) in the
local robot axis oriented with an angle α will be located in the global reference axis by means
of:

1

1

cos sin
sin cos

1 0 0 1 1

X

Y

X O X
Y O Y

a a
a a

-é ù é ù é ù
ê ú ê ú ê ú=ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û

(8)
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Figure 8. Local and global reference axis for constructing the dynamic occupancy map.

4.3. Updating the global map

One commonly used technique for updating the occupancy map is the Bayesian strategy,
described in Eq. (10), which defines the probability P of the cell state s(Ci) be occupied, given
the distance (d) measured by the sensor at the time t+1.

( )
( ) ( )

( )1

1

1( )

|

[ ( ) ]t
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t i i t
i d

t i i ts C
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P s C OCC

P d s C P s C d+

+

+

é ù é ù= =ë û ë ûé ù= =ê úë û é ùë ûå (9)

Each lecture provides partial information of the environment; therefore, in order to establish
the state of each cell, an updated equation is used for combining the prior and the current
probabilities of the cell, yielding:

( ) 1( ) ( )i i t i tP C P C P C-= + (10)
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4.4. The log-odds algorithm

Eq. (10) could give numerical instabilities for probabilities closer to 0 or 1. To overcome this
problem, Thrun [13] propose that the status “occupied” for each cell i at instant time t can be
modelled as the logarithm of an occupied cell, divided by the probability of the cell be empty
and represented by:

( )
( ),

|
log

1 |
i

t i
i

P C d
l

P C d

é ùë û=
é ù- ë û

(11)

The probability could be obtained, easily:

( )
,
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= -
-
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Besides, it is considered that the prior value of the occupied cells �0 takes a constant value given

by:

0
( 1) ( )log log
( 0) 1 ( )

i i
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P C P C
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= =
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The algorithm for updating the occupancy map is described as follows:

Algorithm 1. Updating the occupancy map

Inputs: {lt-1,i,r,z}

for each cell Ci do

if Ci is in the vision field of the sensor then

lt,i=lt‐1,i+lsensor_model−l0

else

lt,i=lt−1,i

end if

end for

5. Path planning

A safe and coherent navigation of the robot in his workspace requires a path planning
technique and an obstacle avoidance strategy. In this project, the path planning technique used
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is the potential fields which basically consist in the computation of the attraction forces
produced by the goal position and the repulsion forces caused by the closer objects in the
scenario. Thus, an artificial potential field guides the robot to goal position, while the obstacle
avoidance method allows a safe navigation of the robot.

The potential field acting on the robot is given by the attraction field towards the goal and the
repulsion field produced by the obstacles, that is:

( ) att rep( ) ( )U q U q U q= + (14)

Figure 9. Block diagram of the path planning algorithm.
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In the same way, the forces could be separated in attraction and repulsion forces yielding:

( ) ( )att rep ( )F q F q U q= - (15)

Furthermore, the attraction force could be described as:

( ) ( )att att goalF q k q q= - × - (16)

where ����� �  is the Euclidean distance between ∥ � − ����� ∥, and the repulsion force could

be described as:
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where katt and krep are positive scalar factors, � �  is the minimal distance from q to the object
and �0 is the distance in which an object influences in the path.

The general strategy for programming the path planning algorithm is illustrated in Figure 9.
If the current robot position is known, then the resultant force is estimated considering all the
new directions that the robot can take. Such directions are chosen based on the angle of
observation of the ultrasonic sensor and the probable position of the robot if he walks in that
specific direction. Once each force has been computed, the smaller is selected due to this force
moves the robot closer to the goal. Once the new direction has been selected, the motors are
turned on to follow this direction. The algorithm ends when the goal has been reached by the
robot.

6. Experimental results

Several tests were performed to validate the path planning algorithm. In the tests, the mobile
robot DaNI 2.0 navigates in an indoor environment with obstacles located between the starting
and goal position. Both starting and goal positions are the same during the experiments and
only the obstacle locations change. The graphical representation of the occupancy map is
labelled as: green colour represents the unknown environment, blue cells represent free path
(empty cells) and red cells represent obstacles (occupied cells).

The first experimental test is performed in an environment without obstacles; the results are
illustrated in Figure 10. The odd rows of this figure show different instant times of the whole
sequence performed by the robot; in particular, the first picture shows the starting position,
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and the ninth picture shows the goal position of the robot. Even rows depict the occupancy
map constructed at that time. Note how effectively the obstacles detected are located in the
borders of the region navigated by the robot, that is, any obstacle is detected in the middle of
the scene as is expected.

Figure 10. Test 1 of the path planning algorithm. The navigation is performed without obstacles. The graphical repre‐
sentation of the occupancy map is updating using the measurement obtained from the ultrasonic sensor, during robot
navigation in real time.
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The second experimental test is performed in an environment with two obstacles; the results
are illustrated in Figure 11. In this case, the first picture shows the starting position, and the
ninth picture shows the goal position of the robot. Note that the final occupancy map con‐
structed is smaller than the map of the test 1. The last is due to obstacles are detected therefore
included as red cells; however, behind the object, even if there are a free space, this area is not
reached for the ultrasonic sensor.

Figure 11. Test 2 of the path planning algorithm. The navigation is performed with two obstacles in the environment.
The graphical representation of the occupancy map is updating using the measurements obtained from the ultrasonic
sensor, during robot navigation in real time.

The results of the last experimental test showed here are illustrated in Figure 12. As in the
test 2, the occupancy map is small with respect to the real environment due to zones behind
objects cannot be not established by the robot.
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Figure 12. Test 3 of the path planning algorithm. The navigation is performed with two obstacles in the environment at
different position with respect to test 2. The graphical representation of the occupancy map is updating using the
measurements obtained from the ultrasonic sensor, during robot navigation in real time.

7. Conclusions and perspectives

The construction of occupancy map using ultrasonic sensors is easily perturbed by environ‐
mental noise. To overcome this constraint, it is used a Gaussian model of the sensor, providing
higher precision of the distance measured for each obstacle in the scene. In addition, another
typical error found in the measurements performed by ultrasonic sensors is related with the
cone produced at the time of sending the ultrasonic signal. In this project, it was found that
this error is less than 1°; therefore, it could be ignored. Furthermore, the error produced by the

Occupancy Map Construction for Indoor Robot Navigation
http://dx.doi.org/10.5772/64871

85



irregularities in the floor is reduced by using the proportional integral‐derivative (PID) control
of the robot. Updating the global map requires the synchronization between the ultrasonic
measures and the robot location in the environment.

The occupancy map of a real indoor environment is constructed by an ultrasonic sensor and
a mobile robot. The logsig strategy allows a safe indoor navigation of our robot by establishing
a probability of occupancy to each cell in the map avoiding a collision of the robot with an
obstacle. The global strategy is performed in real time. The time employed for the robot for
constructing the map depends of the number of obstacle in the scene; however, a real‐time
execution of the platform is assured by using the VxWorks platform of the robot DaNI 2.0.

Future works are focused on multiple robot navigation on dynamic environments. To do this,
a proposed approach consists in sending the local map constructed for one robot to a master
terminal by IP connection in order to incrementally construct the global map by adding local
maps of the environment.
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