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Abstract

Autophagy is an evolutionarily conserved process utilized by most organisms to clear
cellular damage and recycle building blocks for energy production. In this chapter, we
emphasize the importance of genetic model organisms, including yeast, nematodes,
flies, and mammals in the discovery and understanding of the autophagy process. We
highlight the important roles of autophagy in aging, stress tolerance, neuronal health,
organismal development, and pathogen resistance in invertebrate and vertebrate model
organisms. We provide examples on how the same autophagy‐related pathways that
increase stress response and longevity in lower organisms could be utilized by cancer
cells to survive harsh microenvironments, proliferate, and metastasize, with emphasis
on the dual role of autophagy in cancer: an antitumorigenic or a protumorigenic process.

Keywords: autophagy, model organisms, stress tolerance, aging, organismal develop‐
ment, cancer

1. Introduction to autophagy

Autophagy is an evolutionarily conserved “self‐degradation” process through which cytosolic
compartments and organelles are delivered to the lysosome for degradation [1]. Autophagy
exists in three forms: microautophagy where cytosolic components are directly engulfed in
lysosomes, chaperone‐mediated autophagy through which designated proteins are selectively
targeted to the lysosomes, and macroautophagy (noted herein as autophagy) where cytosolic
material is enclosed in a double‐membrane autophagosomal structure that is delivered to
lysosomes for degradation by acidic hydrolases [1]. Autophagy is selectively activated to
remove cellular damage or is non‐selectively activated under stress situations to supply energy
and sustain cellular/organismal viability.
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The autophagy machinery components and the physiology of this process are highly con‐
served across evolution from yeast to mammals. The autophagy‐related genes (ATGs) have
been initially identified in yeast Saccharomyces cerevisiae by pioneering genetic screens [2–7].
Later, their orthologues in other organisms have been determined, which led to the assessment
of the functional roles of autophagy. ATG proteins form distinct autophagic complexes that
function upon phagophore biogenesis, autophagosome formation, and maturation. The
autophagy process comprises several steps. First, it starts with the nucleation and formation
of the phagophore, which elongates and closes to form the double‐membrane autophagosome,
engulfing material to be recycled. Then, the autophagosome fuses with the lysosome to form
the autolysosome where the material is digested by hydrolases [8–12]. The autophagy proteins
are classified into six functional groups: the Atg1 autophagy initiation complex, the autophagy‐
specific phosphatidylinositol PI 3‐kinase complex, the Atg12 the Atg2‐Atg18 complex, the Atg9
transmembrane protein, the Atg12 autophagy conjugation system, and the Atg8 lipid conju‐
gation system [8, 9]. The autophagic components of every group, their functions, and homo‐
logues in yeast, Drosophila, and the nematode Caenorhabditis elegans are described in Table 1.

Yeasts Caenorhabditis
elegans

Drosophila
melanogaster

Mammals

Regulation of induction yTOR let‐363 dTOR mTOR
Snf1 aak‐1, aak‐2 AMPK AMPK

Atg1/ULK autophagy
initiation complex

Atg1 unc‐51 Atg1 ULK1, ULK2
Atg13 atg‐13 Atg13 ATG13
Fip200 atg‐11 Fip200 ATG17
Atg101 epg‐9 Atg101 ATG101

Class III PI3K complex Vps34 vps‐34 Vps34 VPS34
Vps15 vps‐15 Vps15 VPS15
Atg6 Bec‐1 Atg6 ATG6
Atg14 epg‐8 Atg14 ATG14L

Atg2‐Atg18 conjugation
complex

Atg2 atg‐2 Atg2 ATG2
Atg18 atg‐18, epg‐6 Atg18a, Atg18b WIPI1, WIPI2,

WIPI3, WIPI4
Atg 9 transmembrane Atg9 atg‐9 Atg9 ATG9A, ATG9B
Atg12 conjugation system Atg12 lgg‐3 Atg12 ATG12

Atg5 atg‐5 Atg5 ATG5
Atg10 atg‐10 Atg10 ATG10
Atg16 atg‐16.1, atg‐16.2 Atg16 ATG16L1, ATG16L2
Atg7 atg‐7 Atg7 ATG7

Atg8 conjugation system Atg8 lgg‐1, lgg‐2 Atg8a, Atg8b GABARAP, LC3,
GABARAPL1,
GABARAPL2

Atg3 atg‐3 Atg3 ATG3
Atg4 atg‐4.1, atg‐4.2 Atg4a, Atg4b ATG4A, ATG4B,

ATG4C, ATG4D
Atg7 atg‐7 Atg7 ATG7

Table 1. Conserved autophagy genes in yeast, nematodes, flies, and mammals.
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This review focuses on the multifaceted roles of autophagy in model organisms and how these
conserved pathways could be adopted by cancer cells to suppress or promote tumorigenesis.

2. The importance of invertebrate model organisms

Although mammalian model organisms such as mice and rats are highly advantageous to
study disease‐related biological processes in humans due to the close anatomical and physio‐
logical similarities between systems, they have disadvantages including space, cost, and time‐
consuming transgenic technologies. Yeast models including budding yeast Saccharomyces
cerevisiae (S. cerevisiae) and fission yeast Schizosaccharomyces pombe (S. pombe), the fruit fly
Drosophila melanogaster (D. melanogaster), the nematode Caenorhabditis elegans (C. elegans), and
other invertebrate models have emerged as excellent model organisms to study conserved
signaling pathways. Many biological processes including autophagy are highly evolutionary
conserved such that findings in these models are often applicable to humans.

First, yeasts, flies, and nematodes are characterized by their short lifespans and rapid repro‐
ductive lifecycles. Second, their genomes are fully sequenced [13–15] and well annotated, and
a large number of tools and resources are available in accessible bioinformatics databases
specific to every model (Yeast: www.yeastgenome.org; Drosophila: www.flybase.org; C. elegans:
www.wormbase.org). Third, a high percentage of genes in invertebrate model organisms is
homologous to disease‐associated genes in humans. Fourth, several tools have been invented
and developed in these systems including microscopy, transgenic techniques, biochemical
methods, and others, rendering them attractive models to study genetically signaling path‐
ways linked to diseases in humans including autophagy.

Although autophagy has been first observed by electron microscopy in mammalian cells in
the 1950s [16], more than 30 autophagy genes have been discovered using genetic screens in
yeast, and many of them have homologues in humans [2–7]. The rapid reproductive life cycles
and short lifespans, the massive generation of tools to study autophagy, and the ease with
which researchers pursue genetics work in vivo emphasize the importance of these models to
study not only the molecular basics of the autophagic process but also the multifaceted roles
of autophagy in organismal aging, stress tolerance, neuronal health, metabolism, pathogen
infection, and others.

Despite the large advantages of invertebrate model organisms, they also have many limita‐
tions. The anatomy and physiology of the organismal systems, including immune, circulatory,
respiratory, and nervous systems, largely differ from that of humans. Therefore, the impor‐
tance of mammalian in vitro and in vivo models in studying autophagy is also unquestionable.

3. Methods to monitor autophagy in model organisms

Similar methods to study autophagy have been used in invertebrate model organisms and
mammalian systems with the employment of the benefits of every system. These methods are
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recently reviewed in detail for yeast [17–20], C. elegans [21–25], flies [26–30], and mammalian
systems [31–36].

Despite its complexity and difficulty to pursue, electron microscopy is one of the most reliable
methods to visualize autophagic structures and has been used to monitor autophagy in many
model organisms. However, since it requires a substantial specialized expertise, most re‐
searchers currently rely on light microscopic and biochemical methods, which are more
accessible and easier to perform in most organisms. The fluorescent image analysis of auto‐
phagic components using reporters of tagged autophagic proteins has been widely used. LC3/
ATG8 exists in two forms: LC3‐I is cytosolic and soluble, and LC3‐II is conjugated with
phosphatidylethanolamine and is bound to the autophagosomal membranes. When autoph‐
agy is induced, the conjugation reaction can be monitored using the LC3:GFP reporter and the
change between the diffuse localization of LC3 into autophagosomal puncta structures reflects
the autophagic activity. This reporter is one of the most popular with its orthologues in C.
elegans (LGG1:GFP) [23, 24] and in Drosophila and yeast (ATG8:GFP) [18, 29, 30]. The autophagic
activity has been also assessed using Western blotting of the LC3:GFP protein extracts with or
without inhibitors to determine the conversion of LC3‐I to LC3‐II. Moreover, previous studies
in yeast, C. elegans, and mammalian cells have demonstrated that LC3‐II is degraded inside
the autolysosomes and that the GFP fragment is resistant to degradation and accumulates
when autophagy is induced [37–40]. Therefore, researchers have used Western blot analysis
on protein extracts to assess the levels of GFP and cleavage of GFP‐LC3‐I.

Since autophagic proteins also accumulate upon defective autophagy, researchers have
monitored the degradation of cargo proteins such as p62 in most model organisms as well [24,
25, 28, 41, 42]. Furthermore, autophagy inhibitors have been used to determine whether the
accumulation of autophagosomes is due to impaired autophagy or to a heightened autophagic
flux. The most recent studies employ the mRFP‐GFP‐LC3, which enables the distinction
between heightened autophagic flux and impaired autophagy. In this method, mCherry and
GFP have been used as red and green fluorescent protein markers, respectively, to trace the
autophagic protein LC3. Upon physiological pH in newly formed autophagosomes or when
autophagy is impaired, both GFP and mCherry colocalize in puncta leading to yellow puncta
structures, whereas upon lysosomal fusion and acidification, the GFP signal is lost and only
mCherry is detected.

High‐resolution live‐cell imaging to visualize the dynamics of autophagy has been also
employed and reviewed in detail [36].

4. Autophagy‐related biological roles in model organisms

Despite the anatomical, morphological, and physiological differences between model organ‐
isms, autophagy appears to play similar important roles across evolution. In this section, we
review the major autophagy‐associated roles at the cellular and organismal levels in inverte‐
brate and mammalian model systems.
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4.1. Stress tolerance

In most organisms, autophagy is activated by different stresses including nutrient deprivation,
oxidative stress, hypoxia, temperature shifts, and others, to eliminate damaged macromole‐
cules and to produce energy

In yeast, mutation of Atg1, Atg2, Atg4, Atg7, or Atg8 genes increases sensitivity to the oxidative
stressor paraquat [43]. In C. elegans, starvation, oxidative stress, and hypoxia stresses induce
autophagy in multiple tissues of the animal as monitored by the number of positive GFP:LGG‐
1 puncta [44–47]. The increased autophagy levels induced by stress are essential for organismal
survival to stressful conditions. In addition, the inhibition of autophagy genes causes defects
in the formation of the C. elegans dauer animals, a static larval stage adapted to survive
prolonged starvation [45]. Furthermore, autophagy is required for the survival of C. elegans
nematodes to starvation [47, 48], hypoxic environments [44], oxidative stress [46], and
hyperosmotic stress [49].

In Drosophila, Atg7 mutant flies are hypersensitive to complete starvation, sugar‐only diets,
and oxidative stress [50, 51]. Moreover, JNK signaling induces the transcription of autophagy
genes to help protect flies from oxidative stress [52]. Specifically, mutation of Atg1 and Atg6 in
young adult flies overexpressing JNK signaling suppressed their increased resistance to the
oxidative stressor paraquat [52]. Consistently, the spermidine‐induced autophagy is required
for the resistance of Drosophila animals to paraquat [53].

The role of autophagy in stress resistance has been demonstrated not only in invertebrate
models but also with mammalian cell culture and in vivo models. For example, in mice, ATG5
overexpression induces autophagy, increases oxidative stress resistance, and extends lifespan
[54]. Additionally, autophagy is significantly induced following the early starvation‐associated
postnatal period in mouse neonates and is required for their survival until supply with milk
nutrients [55]. Several studies also reported that following ischemic injuries, autophagy is
activated and contributes to neuroprotection by delaying neuronal cell death in rats [56–58].
Collectively, these studies demonstrate an evolutionarily conserved role of autophagy in stress
tolerance. However, how autophagy mediates stress tolerance is still unclear. While many
studies highlight the important role of autophagy in the clearance of stress‐induced damaged
organelles, others claim that the stress resistance is due to the role of autophagy in sustaining
energy levels and providing building blocks for mitochondrial energy production.

4.2. Extension of lifespan

Accumulating evidence demonstrates that longevity pathways converge on autophagic
processes in many organisms to regulate diverse cellular functions including the clearance of
damaged proteins and organelles and the remodeling of cellular metabolism. In C. elegans,
multiple genetic or pharmacological manipulations extend lifespan [59]. For instance, muta‐
tions of genes in the insulin‐signaling pathway, including daf‐2 and age‐1, which are ortho‐
logues of the insulin signaling receptor and PI3K, respectively, deficiency in target of
rapamycin (TOR) signaling, overexpression of activated protein kinase (AMPK) signaling,
mutation of mitochondrial genes, dietary restriction through mutation of eat‐2, mutation in
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sitruin‐1, are all genetic alterations that extend lifespan in C. elegans [59]. Pharmacological
alterations, such as spermidine, resveratrol, and w‐6 polyunsaturated fatty acids treatment
also prolong lifespan in C. elegans [60, 61]. Importantly, autophagy is induced in most of the
above‐mentioned longevity pathways and contributes to the lifespan extension phenotypes in
C. elegans. For example, the inhibition of the autophagy gene bec‐1 suppresses the increased
lifespan mediated by caloric restriction in eat‐2 mutant animals or by TOR inhibition [62].
Furthermore, the inhibition of bec‐1 in daf‐2 long‐lived C. elegans mutants severely reduces their
lifespan [45]. In addition, autophagy is highly induced in calcineurin C. elegans mutant animals
and its inhibition by RNAi feeding against bec‐1 or atg‐7 abolishes the increased longevity
phenotype [63]. Moreover, the mutation of cep‐1, the worm orthologue of P53 promotes an
autophagy‐dependent lifespan extension [64]. Additionally, both spermidine and resveratrol
extend C. elegans lifespan by inducing autophagy [60, 65]. Mitophagy also contributes to the
extension of lifespan upon low insulin signaling and mitochondrial mutations [66].

HLH‐30 is the worm homologue of transcription factor EB (TFEB), a master transcriptional
regulator of lysosomal and autophagic pathways [67, 68]. The overexpression of HLH‐30
increases lifespan in C. elegans [67]. Furthermore, the impairment of the production of the yolk
lipoprotein vitellogenin extends lifespan in C. elegans [69]. Importantly, autophagy and HLH‐
30 are both induced by the reduction in vitellogenesis and contribute to the extension of
lifespan in vitellogenesis‐defective vit mutant animals [69].

In Drosophila, mutations in Atg7 and Atg8 genes shorten lifespan [50, 51]. In addition, mutation
of the autophagic protein FIP200, a component of the Atg1 autophagy initiation complex, leads
to neuronal degeneration and shortens lifespan [70]. The administration of phosphatidyletha‐
nolamine enhances autophagic flux and increases lifespan in yeast, Drosophila, and mammalian
cells in culture [71].

In yeast, the role of autophagy in aging seems to be context‐dependent. Autophagy has been
shown to be required for the extension of chronological lifespan by low doses of the
mammalian target of rapamycin (mTOR) inhibitor rapamycin [72, 73], methionine limitation
[74], and calorie restriction [75]. In contrast, Tang et al., 2008 claim that autophagy genes may
be required or not for the lifespan extension by calorie restriction depending on their role in
the autophagy process. Specifically, they show that the deletion of genes involved in
autophagosome formation including Atg1, Atg6, Atg7, and Atg8 did not affect lifespan of
budding yeast upon calorie restriction [76]. However, the deletion of Atg15, Atg17, or other
genes involved in vacuole‐vacuole fusion reduced the lifespan extension promoted by calorie
restriction [76].

In mammals, the link between autophagy and the organismal extension of lifespan has not
been clearly established. A few studies support the role of autophagy in promoting longevity
in mammals. For instance, ATG5 overexpression has been shown to extend lifespan by 17.2%
in mice [54]. Interestingly, rapamycin feeding of mice at their old age extends their lifespan,
which could be due to autophagy activation [77]. While rapamycin is a strong mTOR inhibitor
and autophagy inducer, the link between rapamycin feeding and increased autophagy has not
been made, and therefore, the extension of lifespan by administration of rapamycin in mice
may not be due to autophagy activation per se but to other mechanisms [77].
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Although the role of autophagy in mammalian organismal lifespan is still not clearly eluci‐
dated, many studies demonstrate an important role for autophagy in delaying the acquisition
of aging features of multiple cells and tissues. Numerous studies also claim a decline in the
autophagic activity in many mammalian organs upon aging [78–83]. For example, autophagy
genes Atg5, Becn1, and Atg7 are significantly downregulated in the human aging brain [84].
Cardiac‐specific Atg5 deficiency in mice leads to cardiac abnormalities after 6 months of age
and early death [85]. Consistently, cardiac‐specific overexpression of Atg7 increased autopha‐
gic flux and improved cardiac function in desmin‐related cardiomyopathies in mice [86].
Furthermore, the hyperactivation of chaperone‐mediated autophagy in aging livers maintains
hepatic function in old mice to a level comparable to that reported in young mice [87]. Recently,
autophagy inhibition has been shown to increase aging features in macrophages including the
reduction in phagocytosis and nitrite burst and increased inflammatory response [78].
Numerous studies have also linked autophagy to improved neuronal health in mice and
protection from age‐associated neurological disorders [58, 81, 88–93]. This is further detailed
in the neuronal health section of this chapter. Moreover, the role of autophagy in suppressing
tumor initiation is well described at the end of this chapter. Therefore, although it is not clear
whether autophagy extends organismal lifespan in mammals, collective evidence supports its
implication in the extension of healthy living or health span and the delay of the appearance
of age‐associated diseases.

4.3. Resistance to pathogen infection

The induction of autophagy has been widely shown to contribute to the organismal survival
to infection with pathogens. In C. elegans, autophagy genes are required for survival to infection
with pathogens, including Pseudomonas aeruginosa, Salmonella typhimurium, and other patho‐
gens [68, 94, 95]. Using the GFP:LGG1 reporter, autophagy has been shown to be induced in
the hypodermal seam cells and intestinal cells of wild‐type animals following infection with
Pseudomonas aeruginosa [95] and Staphylococcus aureus [68]. Importantly, inhibition of autoph‐
agy genes suppresses not only the resistance of wild‐type animals but also the resistance of
highly stress‐resistant strains including daf‐2 mutant animals and daf‐16 overexpressing
animals to infection with Salmonella typhimurium [94].

In Drosophila, IRD1 is the fly homologue of mammalian VPS15, an important autophagic serine/
threonine kinase implicated in phagosome maturation. IRD1 plays an important role in
antibacterial immune responses in Drosophila [96]. Ird1 mutant flies are incapable of expressing
antimicrobial peptide genes upon infection [96]. In addition, the conditional inactivation of
autophagy genes Atg5, Atg7, Atg12 in Drosophila reduces survival of the animals upon infection
with Escherichia Coli [97]. Moreover, autophagy genes Atg5, Atg8a, and Atg18 are also required
to limit the infection of Drosophila cells with the Vesicular stomatisis virus [98]. Furthermore, the
inhibition of Atg5 using RNAi in flies increased the susceptibility of the animals to infection
with Listeria monocytogenes [99].

The transcriptional upregulation of autophagy genes by TFEB has been also associated with
increased resistance to pathogens. Upon infection with Staphylococcus aureus, HLH‐30 rapidly
translocates to the nucleus and activates the expression of autophagy genes, lysosomal genes,
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and antimicrobial peptide genes in both C. elegans [68]. In murine cell lines, TFEB translocates
to the nucleus following infection and induces the transcription of chemokines and cytokines
[68]. Mitophagy is also another mechanism of defense against invasion with P. aeruginosa [100].

How autophagy mediates resistance to pathogens is still not clear. Xenophagy (eating the
pathogen) is a cellular defense mechanism through which cells direct autophagy to degrade
the invading pathogens. Autophagy genes restrict Salmonella bacterial replication in both hosts,
the unicellular organism Dictyostelium discoideum and in C. elegans [94]. However, autophagy
only increased resistance of C. elegans to Pseudomonas aeruginosa and to Staphylococcus aureus
without decreasing bacterial load suggesting that xenophagy is not the only defense mecha‐
nism attributed to autophagy [68, 95].

In mammalian cells, autophagy also plays an essential role in the protection against invading
pathogens, including Streptococcus, Shigella flexneri, Mycobacterium tuberculosis, and Toxoplasma
gondii [12, 101–103]. Autophagy has also been shown to protect against toxins released by
bacterial pathogens [37]. In mice, recent work demonstrates the involvement of autophagy in
the clearance of pathogens, including Listeria monocytogenes, and moreover, IRF8 directs stress‐
induced autophagy in macrophages and promotes clearance of L. monocytogenes [104] and
Staphylococcus aureus [105, 106] and Mycobacterium tuberculosis [107, 108]. However, recent work
demonstrates a unique role of ATG5 in the resistance of mice to Mycobacterium tuberculosis
infection distinct from autophagy in contrast to previous reports. ATG5 prevents polymor‐
phonuclear cell‐mediated immunopathology enhancing resistance to Mycobacterium tubercu‐
losis infection [109].

4.4. Organismal development

Accumulating evidence highlights an important role for autophagy during organismal
development. Deletion of autophagy genes leads to severe defects and causes early lethality
in many organisms. For example, bec‐1 mutation leads to severe defects during embryogene‐
sis in C. elegans and mutant animals display a highly penetrant lethal phenotype where only
few animals are capable of reaching adulthood [110]. The unc‐51/atg‐1 C. elegans mutant
animals exhibit an uncoordinated movement and paralysis. Moreover, autophagy is highly
induced at several stages during C. elegans development and a genome‐wide genetic screen
has identified signaling pathways that regulate this process in C. elegans [111]. In Drosophila,
mutations in Atg1 are pupal lethal [112] and strong hypomorphic mutations in Atg8 lead to a
semi‐lethality phenotype [50, 51]. Autophagy is also induced during the development of
Zebrafish larvae and the knockdown of autophagy genes Atg5, Beclin1, and Atg7 results in
aberrant cardiac morphogenesis and reduced survival in Zebrafish [113]. ATG5 deficiency in
Zebrafish impairs nervous system development, specifically brain morphogenesis [114].
Additionally, AMBRA1 (autophagy/Beclin 1 regulator 1) is an evolutionary conserved positive
regulator of BECN1 and is essential for proper autophagic activity. The inhibition of AMBRA1
in Zebrafish leads to incomplete organogenesis and defects in skeletal muscle development
[115, 116].

In mice, Becn1 homozygous deletion leads to embryonic lethality [117], while Atg7 and Atg5
null mice are born alive but die soon after birth. Similarly to what has been reported in
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Zebrafish, Atg5 is required for the proper cardiac development [113] and cortical astrocyte
differentiation [118] during embryogenesis in mice. Autophagy is also involved in chondrocyte
differentiation and bone formation through fibroblast growth factor (FGF) signaling in mice
[119]. FIP200 is an important autophagic protein that interacts with ULK1 in the autophagy
initiation complex. Homozygous deletion of FIP200 in mice leads to embryonic lethality due
to heart failure and severe hepatic defects [120]. Other than its important role in the heart and
liver, FIP200 plays a central role in the differentiation of neural stem cells and is essential for
maintenance and function of fetal hematopoietic stem cells [121]. Supporting the role of
autophagy in stem cell differentiation during development, a recent study reports a retardation
in stem cell differentiation during the embryonic development of mice hypomorphic for
Atg16l1 [122].

The discovery that autophagy is involved in the degradation of the paternal mitochondria is
another important aspect during development. In most eukaryotes, the maternal mitochon‐
drial genome is believed to be the one inherited and thus the degradation of the sperm‐
inherited mitochondrial genome is essential. In C. elegans, autophagosomes engulf the paternal
mitochondria and target them to the lysosomes for degradation during embryonic develop‐
ment [123]. Similarly, paternal mitochondria are also destroyed by endocytic and autophagic
pathways in Drosophila [124]. However, in mammalian zygotes, the degradation of the
paternally inherited mitochondria requires the ubiquitin proteasome system rather than
autophagy [125]. Therefore, autophagy plays central role (s) in organismal development across
evolution, which includes key checkpoints during embryogenesis, cellular differentiation, and
tissue organization.

4.5. Neuronal health

The accumulation of autophagosomes has been observed in the neurons of individuals affected
with neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, Hun‐
tington’s disease, and amyotrophic lateral sclerosis. Autophagy improves neuronal health by
degrading damaged proteins, specifically mutant proteins associated with neurological
disorders and toxic aggregation‐prone proteins [88, 91, 126–128]. Non‐mammalian model
systems are excellent to study protein homeostasis in regard to fatal neurological disorders.
In addition, C. elegans [129–133] and flies [134–139] researchers have generated transgenic
animals that express polyglutamine repeats, beta‐amyloid peptides, and the αsynuclein
protein, to mimic the pathologies of Huntington’s disease, Alzheimer’s disease, and Parkin‐
son’s disease, respectively. Using electron microscopy and the LGG‐1:GFP reporter, the
expression of human beta‐amyloid (1–42) in C. elegans muscles resulted in the accumulation
of autophagic vacuoles. Autophagy contributes to the degradation of the Beta‐amyloid
peptide in daf‐2 mutant nematodes [129]. In Drosophila, inhibition of autophagy genes increases
neuronal toxicity of amyloid beta 1–42 peptides [140]. In C. elegans, inactivation of autopha‐
gy genes atg‐18 and atg‐7 accelerates the accumulation of polyQ40:YFP protein aggregates in
the body wall muscles of the animals over time [133]. In C. elegans, the unc‐51 (atg‐1) gene is
essential for normal axonal elongation and structure [141].
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In Drosophila, mutation of Atg7 or Atg8 genes enhanced the accumulation of insoluble poly‐
ubiquitinated proteins with age as determined by Western blot analysis using fly head extracts
[50, 51]. Consistently, the overexpression of Atg8 in the central nervous system of adult flies
reduced the accumulation of insoluble ubiquitinated proteins [51]. The Drosophila homologue
of P62, refractory to sigma P (Ref(2)P), a scaffold protein with diverse biological roles, marks
ubiquitinated protein aggregates for degradation [142, 143]. Ref(2)P acts as a receptor for
selective autophagic degradation. In flies, p62‐tagged ubiquitinated protein aggregates
accumulate in the brains of older animals as compared to young animals [143]. The accumu‐
lation of protein aggregates correlates not only with poor autophagic functions with age but
also with a decline in fly behaviors and aging [144]. While the accumulation of Ref(2)P‐linked
protein aggregates is enhanced in Drosophila Atg8 [143] and Vps15 [145] mutant flies, Ref(2)P
is also required to form these aggregates [143]. In Drosophila, Atg17/FIP200 localizes to Ref(2)P
protein aggregates proximate to the lysosomes and interacts with the autophagy‐activating
protein ATG1 to promote autophagy [146]. By sustaining autophagy, the N‐ethyl‐maleimide‐
sensitive fusion protein (NSF1) protects dopaminergic neurons from degeneration and
promotes longevity in Drosophila [147]. Also, the inhibition of the ectopic P‐granules autoph‐
agy protein 5 (Epg5) in the retina of adult Drosophila animals leads to the degeneration of
photoreceptor neurons and loss of the retina [148] mirroring the genetic neurological disorders
of EPG5‐related Vici Syndrome in humans. Mutation of the autophagy gene‐related proteinase
ATG4D in dogs has been recently associated with a novel neurodegenerative disorder in the
Lagotto Romagnolo dog breed [149]. Accordingly, knockdown of Atg4D in Zebrafish also leads
to neurodegeneration of the central nervous system [149].

Consistently with what has been observed in C. elegans and Drosophila, the induction of
autophagy by starvation [150] or by rapamycin [151] reduced the amount of poly‐ubiquiti‐
nated proteins [150] or α‐synuclein [151] protein aggregates in yeast. However, yeast Atg8
mutants displayed an accumulation of ubiquitinated aggregate‐prone proteins upon starva‐
tion and high temperature stresses [150]. Moreover, the mutation of Atg1 or Atg7 delayed the
clearance of α‐synuclein aggregates in yeast [152, 153].

Numerous studies highlight an important role for autophagy in mammalian neurogenesis and
neuronal “maintenance.” Several neurological disorders in humans are associated with
impaired autophagy and defects in the clearance of damaged organelles and proteins [154,
155]. Among several examples, mutations in WDR45, one of the mammalian homologues of
yeast Atg18, cause encephalopathy in children and neurodegeneration in adults [156].
Importantly, V471A polymorphism in the Atg7 gene in human patients, mostly of Italian
origin, has been strongly correlated with an earlier onset of Huntington’s disease [157, 158].
In mice, lack of autophagy genes Atg7 and Atg5 in the neurons promotes the accumulation of
poly‐ubiquitinated aggregation‐prone proteins leading to neuronal degeneration [92, 93]. The
specific knockout of Atg7 in the Purkinje cells of mice leads to neurodegeneration and
destabilization of axonal homeostasis [159]. Moreover, the induction of autophagy in neuronal
of amyotrophic lateral sclerosis models decreases proteotoxicity by enhancing TDP43 turnover
and neuronal survival [89]. An increasing number of studies support the correlation between
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autophagy deficiency and neurodegeneration in mammals. Here, we only listed few examples
to support this idea. For detailed reviews, please see [154, 155].

4.6. Autophagic cell death and clearance of cellular corpses

Apoptosis or programmed cell death is a fundamental component in the development of C.
elegans nematodes [160]. Pioneering studies in C. elegans led to the discovery of evolutionarily
conserved key players implicated in this important biological process. There are two types of
programmed cell death in C. elegans: “developmental cell death,” which occurs in the somatic
tissues throughout worm development, and “germ cell death,” which takes place in the gonads
of adult hermaphrodites [160–165]. During the embryonic and postembryonic stages of C.
elegans development, only 131 cells of 1090 cells undergo apoptosis to form the adult her‐
maphrodite [160–165]. The morphological changes in apoptotic C. elegans cells are similar to
those of mammalian cells and include DNA fragmentation, chromatin condensation, and
changes in mitochondrial and plasma membrane potentials [160]. Autophagy plays a major
role in the clearance of apoptotic corpses generated during both the developmental cell death
and germ cell death [166–169]. Specifically, the number of embryonic apoptotic corpses is
significantly increased in nine C. elegans strains harboring mutations in essential genes of the
autophagic pathway [167]. Autophagy proteins LGG‐1, ATG‐18, and EPG‐5 are recruited to
engulfed apoptotic corpses and are essential for the degradation inside the phagocyte [169].

In Drosophila, several studies have reported the requirement of autophagy in the death and
clearance of specific cells throughout the fly development. In contrast to the role of autophagy
in mediating cellular survival, autophagy contributes to fly development by killing particular
cells in specific tissues. For instance, autophagy genes are required for the killing and clearance
of cells in the salivary glands, ovary, intestine, and embryonic serosa membranes [170–175].
Autophagy also occurs in dying midgut cells and is essential for the clearance of this tissue.

In mice, autophagy contributes to the programmed cell death‐mediated clearance of apoptotic
cell corpses. Lack of Atg5 leads to defective apoptotic corpses engulfment in the developing
mice embryos [176]. Autophagy is also required for the clearance of cell corpses in the retinal
neuroepithelium of developing chick embryos [177]. Therefore, the role of autophagy in the
clearance of corpses is evolutionarily conserved and essential for the proper organogenesis
and development in most animals.

4.7. Metabolism

In invertebrates, the storage and biosynthesis of energy reserves, including yolk particles,
lipids, and glycogen, play a crucial role in development during early embryogenesis and later
during adulthood [178]. In C. elegans, the yolk particles accumulate with age and are synthe‐
sized in the intestine and transported later to the pseudoceolom (body cavity) of C. elegans
animals. These granules are essential to survival upon starvation during L1 diapause [178,
179]. In Drosophila, the yolk particles are also important for embryonic development. Impor‐
tantly, ATG1 is required for the catabolism of yolk particles in Drosophila [180].
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The role of autophagy in lipid metabolism has been reported in many organisms. In C.
elegans, inhibition of autophagy genes leads to a decline in organismal lipid content supporting
an essential role for autophagy in lipid metabolism [181]. Moreover, autophagy and lipolysis
work inter‐dependently to promote longevity in germline‐less C. elegans strains [181, 182]. The
role of autophagy in the degradation of lipid droplets has not been clearly elucidated in C.
elegans. The fact that autophagy mutants display reduced lipid contents in C. elegans could be
due to the role of autophagy in the restoration of energy levels and storage in the form of yolk,
glycogen, and fat. To determine whether autophagy plays a role in lipid degradation in
nematodes, both wild‐type and autophagy mutant C. elegans strains should be subjected to an
energy depletion stress that induces lipid degradation and the difference in the efficiency of
degradation should be investigated. A similar experiment has been conducted upon loss of
HLH‐30, the TFEB homologue in C. elegans. In this case, hlh‐30 mutant animals displayed a
less efficient degradation of lipid content upon starvation in comparison with the wild‐type
animals supporting a potential role of autophagy in the mobilization of lipids upon stress in
C. elegans [183]. This role of HLH‐30 is evolutionarily conserved. In fact, TFEB has been also
shown to prevent diet‐induced obesity in mice [183].

Following stress and energy depletion, the mobilization of “energy‐rich” intracellular contents
is essential. The autophagic degradation of lipids has been reported throughout evolution. In
contrast to what has been observed in C. elegans, where the inhibition of autophagy leads to a
decrease in lipid content, autophagic pathways are important for targeting lipid droplets for
lysosomal degradation in yeast [184, 185]. In mammalian systems, autophagy has been linked
to lipid metabolism but with opposite effects depending on the context. In hepatocytes, the
pharmacological or genetic inhibition of autophagy increases triglyceride content supporting
an important role of autophagy in lipid breakdown. Consistently, lipid content is significantly
increased in Atg7 liver‐specific knockout mice as compared to the controls [186]. However,
knockdown of Atg7, Atg5, or the pharmacological inhibition of autophagy in 3T3‐L1 pre‐
adipocytes reduced lipid accumulation [187]. This is in accordance with the observation that
the mass of white adipose tissue decreased significantly in Atg7 adipocyte‐specific knockout
mice in comparison with the control [187]. The connection between autophagy and lipid
metabolism is reviewed in detail in Ref. [188].

In accordance with the role of autophagy in lipid metabolism, autophagy also plays an
important role in glycogen metabolism. In Drosophila, the inhibition of autophagy in the fly
skeletal muscles using chloroquine reduced the efficiency of glycogen degradation [189]. Using
electron microscopy, the same group has revealed glycogen as electron dense material inside
the double membrane structures of the autophagosomes [189]. Importantly, Vps15 deficiency
led to the accumulation of glycogen in murine skeletal muscles, whereas the overexpression
of Vps34/Vps15 in myoblasts from Danon autophagic vacuolar myopathy patients decreased
glycogen storage [190]. In humans, the impairment of lysosomal and autophagic functions is
associated with glycogen storage diseases and is linked to muscle atrophy and neurodegen‐
eration [191–194]. Altogether, accumulating evidence supports the role of autophagy in the
degradation of lipids and glycogen across evolution.

Autophagy in Current Trends in Cellular Physiology and Pathology200



5. From model organisms to cancer in humans

Genetic pathways that alter autophagy in model organisms are often linked to cancer in
humans. For instance, AMPK, TOR, Insulin, SKN‐1/NRF2, CEP‐1/p53, FLCN‐1, and other
signaling pathways modulate autophagy in model organisms and are associated with cancer
initiation and progression in humans. Two major kinases are important in stress sensing and
autophagy regulation: the mammalian target of rapamycin (mTOR) and the 5′ AMP‐activated
protein kinase (AMPK). TOR is a serine/threonine kinase that is activated during nutrient‐rich
conditions and is inhibited by starvation. In S. cerevisiae, D. melanogaster, and mammalian
systems, TOR has been linked to autophagy through the regulation of the autophagy initiation
complex ULK1/ATG1 [112, 195–199]. AMPK is activated upon starvation and drives autophagy
in mammalian cells and in invertebrate model organisms. In yeast, ATG1 and ATG13 have
been found as potential genetic interactors and downstream effectors of SNF1, the yeast AMPK
homologue [200]. In mammals, two groups reported the ability of AMPK to induce autophagy
through ULK1/ATG1 activation [195, 201]. In this section of this chapter, we will emphasize
the dual role of autophagy in cancer.

Autophagy deregulation has been widely reported in human cancers. This is reviewed in detail
in Refs. [202, 203]. Whether autophagy plays a tumor‐suppressing role or a tumor‐promoting
role is still controversial since both cases have been reported. Although autophagy protects
against tumorigenesis since it plays a central role in the clearance of damaged cellular
macromolecules and organelles, increasing evidence suggests that autophagy could also
acquire tumor‐promoting functions. By supplying cancer cells with energy, autophagy may
promote their survival because they are often exposed to nutrient deprivation and hypoxia
due to lack of blood vessels.

5.1. Autophagy as a tumor‐suppressing mechanism

The observation that autophagy gene ATG6/BECN1 is monoallelically lost in a large number
of prostate, breast, and ovarian cancers supported the tumor suppression role of autophagy
at first [117, 204–206]. Consistently, autophagy genes are frequently downregulated in tumors.
In mice, homozygous deletion of Becn1 leads to embryonic lethality. However, Becn1 hetero‐
zygous mice exhibit a high frequency of spontaneous tumors that still express the wild‐type
Becn1 mRNA and protein supporting a role of Becn1 as a haploinsufficient tumor suppressor
gene [117, 206]. Moreover, BIF‐1 and UVRAC, which are essential components of the Beclin1/
class III PI3K complex, also contribute to the control of proliferation and suppression of tumor
growth [207]. Furthermore, the deficiency in autophagy genes Atg5, Atg7, and Becn1 in mice
leads to benign hepatic tumors [208].

How autophagy acts as a tumor suppressor is not clear yet. A plausible explanation could be
that loss of autophagy increases oxidative stress, which leads to the accumulation of damaged
macromolecular cellular components [209, 210]. This is supported by the fact that impaired
autophagy increases genomic instability presumably through lack of degradation of damaged
mitochondria and an intracellular increase in the levels of reactive oxygen species (ROS) [211,
212]. The selective degradation of damaged mitochondria by autophagy has been shown to

Autophagy in Model Organisms: Insights into Cancer
http://dx.doi.org/10.5772/64541

201



protect against oxidative stress and mitochondrial dysfunction [213]. Autophagy deficiency
has been shown to contribute to the tumorigenesis induced by oncogene activation or by
chemical carcinogens. Deletion of Atg7 in mice drives early tumorigenesis induced by BRAF
V600E activation [214], supporting the tumor suppression function of autophagy in the initiation
of tumorigenesis. However, Atg7 deletion also abrogated the ability of the BRAF V600E‐driven
tumors to progress into a more malignant phenotype [214]. Also, Atg4C/autophagin3 knock‐
out mice exhibited an increased susceptibility to develop fibrosarcomas induced by chemical
carcinogens [215].

Autophagy has been recently shown to mediate cellular senescence through the degradation
of nuclear lamina upon oncogenic events, suggesting that this guardian role of autophagy
might prevent tumorigenesis [216].

5.2. Autophagy as a tumor‐promoting mechanism

The balance between autophagy and apoptosis is a key factor in the cellular decision between
life and death. These two pathways are connected, and deregulation in this balance is a main
factor in carcinogenesis. Upon cellular exposure to stress, when the damage cannot be repaired,
cells normally undergo programmed cell death to eliminate them. When cells escape these
control mechanisms and are unable to die, resistant clones emerge which could lead to cancer.
Therefore, mechanisms of resistance to stress are often utilized by cancer cells to survive and
proliferate. Autophagy is induced in hypoxic and highly nutrient‐stressed tumor microenvir‐
onments [211, 212]. Autophagy is also required to promote tumorigenesis by activating
mutations of multiple oncogenes, including KrasG12D [217–219] and BrafV600E [214]. In fact, Atg7
deletion in mice extends the lifespan of mice carrying an activating mutation in BrafV600E that
drives lung tumor growth and impairs mitochondrial metabolism and survival to starvation
[214]. Similarly, the inhibition of autophagy using the autophagy inhibitor chloroquine
abrogates the growth of lymphoma tumors induced by Myc activation. Additionally, deletion
of the autophagic component FIP200 in mammary epithelial cells in mice suppressed mam‐
mary tumor growth in the MMTV‐PyMT mouse model of human breast cancer [220].

The role of P62/SQSTM1 in tumorigenesis is controversial and context‐dependent. While
autophagy suppresses tumorigenesis by eliminating P62, recent findings demonstrate that P62
synergizes with autophagy to promote tumor growth in vivo [221].

Several tumor suppressor genes are associated with aberrant autophagic flux. Mutation in the
tumor suppressor gene Flcn in humans, responsible for the Birt‐Hogg‐Dubé neoplastic
syndrome, increases the predisposition to renal cysts and tumors [222, 223]. Importantly,
autophagy is required for survival to oxidative and nutrient deprivation stresses of FLCN‐
deficient cells and for the FLCN‐driven tumorigenesis [46, 224]. A similar role for VHL, another
renal tumor suppressor, in the regulation of autophagic events in renal cell carcinomas has
also been described [225]. Autophagy inhibition by MiR‐204 suppressed the tumor growth in
VHL‐deficient cells and the inhibition of LC3B/ATG5 suppressed the development of VHL‐
deficient renal cell carcinomas in nude mice [225]. Autophagy also contributes to the tumori‐
genesis induced by loss of the tumor suppressor tuberous sclerosis complex TSC2 [226].
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Recently, ATG7 has been shown to cooperate with loss of PTEN to drive tumorigenesis in
prostate cancer [227].

Autophagy also plays a critical role in sustaining cancer cell viability and promoting tumor
growth in pancreatic ductal adenocarcinoma [228]. MiT/TFE‐dependent transcriptional
activation of the lysosomal‐autophagic pathway is essential for metabolic reprogramming in
pancreatic ductal adenocarcinomas and drives aggressive malignancies [229].

6. Conclusion and perspectives

The autophagy‐associated pathways that alter lifespan, stress tolerance, neuronal health,
resistance to pathogens, and metabolism in lower organisms are highly evolutionarily
conserved and are associated with tumorigenesis in mammals. Although the autophagic
process does not change between cells/tissues/organisms, its roles are diverse and depend on
the context. The important role of autophagy as a “guardian” of cellular integrity by clearing
damaged components helps protect organisms against many diseases, including neurological
disorders and cancer. Moreover, the important role of autophagy in energy supply and survival
to harsh environmental conditions could be employed by cancer cells to survive hypoxic tumor
microenvironments. Due to the fact that the molecular and functional basis of autophagic
processes are highly conserved between organisms, it is of great interest to use these organisms
to link autophagy to important disease‐associated signaling pathways. Finding pathways that
alter autophagic activities is essential and could help the development of cures for multiple
diseases with the common denominator: autophagy. Performing such assays in invertebrate
models is an advantageous fast, inexpensive, and a reliable method that has great potential
and value for the understanding and treatment of human diseases linked to autophagy
including cancer.
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