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Abstract

Inflammatory bowel disease (IBD) is characterized by the repeated cycles of inflamma-
tion and healing of the gut, which ultimately progress into intestinal fibrosis. Colonic
fibroblast/myofibroblast’s functions such as transformation, proliferation, invasion,
migration, stress fiber formation, collagen synthesis, and cytokine/chemokine secretion
are well estimated. However, the detailed mechanism can rarely be found so far. Thus,
we focused on transient receptor potential (TRP) protein super family activated by
various physical/chemical stimulations based on the above-described recognitions and
also conducted the following examinations for the potential roles in Ca® signal
transduction in fibroblast/myofibroblasts cells, which play an important role in
intestinal inflammation and tissue remodeling. This chapter not only facilitates the
understanding about the new role of intestinal fibroblast/myofibroblasts TRP channel
for regulating inflammation, fibrotic processes but also suggests a novel molecular
target of IBD treatment in future.
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1. Introduction

The prevalence of inflammatory bowel disease (IBD), a group of idiopathic disorders such as
Crohn’s disease (CD) and ulcerative colitis (UC) that cause chronic inflammation or ulcers in
large- and small-intestinal mucosa, has been rapidly increasing since the Second World War.
Because IBD follows a course of repeated severe diarrhea and constipation from a young age,
it deteriorates an individual’s quality of life for a long period of time as a refractory disorder.
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Currently, most IBD treatments are limited to symptomatic relief. With increasing incidence,
there is an escalating need to clarify a cause and establish definitive treatments [1, 2].

Located at the interface between the epithelium and lamina propria in most mucosal tissues,
intestinal fibroblast/myofibroblast cells have ultrastructural features reminiscent of both
smooth muscle cells and fibroblasts. Accumulating evidence suggests that myofibroblasts play
crucial roles in intestinal homeostasis, inflammation, and neoplasia. In addition, these cells are
known to play an essential role in modulating wound healing and fibrosis processes at the
time of tissue damage or inflammation [3-5]. For instance, during skin-wound healing,
fibroblast cells differentiate into myofibroblasts that secrete cytokines and growth factors to
reduce wound size by contracting granulation tissue. Similarly, fibroblast-derived hepatic
stellate cells (also known as Ito cells) located in the sinusoidal space of the liver support
sinusoidal structure. Fibroblasts with similar transformation ability are also distributed in
renal tubular epithelia, where they can be transformed in response to tissue damage, inflam-
matory substances, or growth factors to promote collagen production and stress fiber forma-
tion for tissue fibrosis [6-8]. Furthermore, fibroblast/myofibroblast cells produce cytokines,
chemokines, growth factors, and inflammatory mediators involved in immune and inflam-
matory responses. The activation of myofibroblasts can induce excessive fibrosis, causing
pathological tissue modifications (remodeling) such as wound closure, keloid formations,
hepatic fibrosis (cirrhosis), and digestive tract obstructions [9]. However, mechanisms under-
lying myofibroblast transformation and cytokine secretion remain almost completely un-
known, despite their importance in inflammatory tissue modifications.

Fibroblasts/myofibroblasts play important roles during the processes of intestinal inflamma-
tion and tissue remodeling [10, 11]; however, detailed mechanisms have rarely been identified.
Based on previously described recognitions, we therefore focused on the transient receptor
potential (TRP) superfamily as a new Ca* channel gene group activated by various physical
and chemical stimuli. Mammalian TRP proteins form a non-selective cation channel super-
family that includes approximately 30 isoforms categorized into six subfamilies [12], including
TRPC (canonical or classical: TRPC1-7), TRPV (vanilloid: TRPV1-6), TRPM (melastatin:
TRPM1-8), TRPP (polycystin: TRPP1-4), TRPML (mucolipin: TRPML1-3), and TRPA (ankyrin:
TRPA1). Implicated in a variety of cellular functions, TRP proteins form large non-voltage-
gated cation channels constitutively activated by various physicochemical stimuli. Known
activators for TRP channels include chemical stimuli (such as receptor stimulation, change in
pH, and spicy or cooling agents), as well as temperature changes and various forms of
mechanical stimuli including osmotic stress, membrane stretching, and shear forces. Proposed
mechanisms are primarily associated with lipid bilayer mechanics, specialized force-trans-
ducing structures, biochemical reactions, membrane trafficking, and transcriptional regula-
tion. TRP channels are assumed to form a tetrameric structure with four homologous subunits
consisting of a six transmembrane segments, S1-56, which are flanked by N- and C-terminal
cytosolic regions. Although the six-time membrane-spanning configuration and a short helical
pore loop between S5 and 56 segments are the hallmarks of voltage-gated cation channels, in
TRP channels, periodically arranged, positively charged amino acid residues in the S4, which
are essential for voltage-sensing, are missing [13]. Further, many additional protein-to-protein
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interaction domains and phosphorylation motifs exist within the N- and C-terminals of TRP
channels. It is believed that, within specific membrane domains (e.g., caveola), a variety of
signaling complexes are formed through these interaction sites, wherefrom diverse intracel-
lular signal transductions are initiated. Owing to ubiquitous expression over the whole body
including the central/peripheral nerve, cardiovascular, respiratory, digestive, renal urogenital,
and erythroid/immune systems, TRP channels are thought to contribute to diverse biological
functions, which are not restricted to innocuous and noxious multimodal sensory transduction
(heat, cold, touch, proprioception, pain, taste, etc.) but also involve cardiac function, gut
motility, psychomotor activity, and cell survival, proliferation, and death. In addition, several
specific mutations have been identified in the trp genes for some hereditary disorders [12, 14—
17].

The expression of TRP proteins in the alimentary tract is not confined to sensory neurons. The
repertoire includes the other major classes of cells constituting the tract such as epithelial,
endothelial, and smooth muscle cells and has recently been extended to fibroblasts/myofibro-
blasts [13], which belong to a special category of cells tightly associated with colonal/intestinal
remodeling with the ability to transform and replicate to produce various cytokines under
inflammatory circumstances. For instance, calcitonin gene-related peptide and substance P are
known to be released by increased intracellular Ca** concentration through TRPV1 channel
activation in sensory neurons [18, 19]. It has been proposed that excessive expression of this
channel may be causally related with the occurrence and/or progression of IBD [20, 21].
Moreover, a nonselective cation channel TRPC4, which can be activated by muscarinic G-
protein-coupled receptor stimulation, may be important for the excitatory control of intestinal
smooth muscle cells [22-24]. Subsequent reports have implicated Ca** influx through TRPC4
channels in the initiation of spontaneous excitations in interstitial cells of Cajal, which regulate
the gut automaticity [25]. More recently, we explored the potential roles of TRP channels in
myofibroblastic Ca*" signaling during intestinal inflammation and fibrosis. By using myofi-
broblast cell lines (CCD-18Co and InMyoFib) established from human colon epithelial and
murine neonatal intestinal tissues, respectively, we could gain some key insights into the
mechanisms underlying intestinal inflammatory and fibrotic remodeling processes [26].

In this chapter, we first describe the expression and function of TRPC channels in fibroblasts/
myofibroblasts and then briefly discuss their potential roles in gastrointestinal disorders. Since
the tumor-transforming factor (tumor necrosis factor (TNF))-a has been shown to affect the
expression level of TRPC1 protein and its associated Ca*-transporting activity, the first part
will be dedicated mainly to elucidating how TNF-a stimulates cyclooxygenase-2 (COX-2)-
dependent prostaglandin E2 (PGE2) production through the activation of TRPC1 channels and
enhances Ca* dynamics in CCD-18Co myofibroblasts. We next clarify the impact of PGE2
production on myofibroblastic function, with particular interest in Ca*-dependent regulation
of transcription factors, that is, the nuclear factor of activated T-cell (NFAT) and the nuclear
factor kB (NF-kB). The results suggest that negative feedback regulation of PGE2 production
in intestinal myofibroblasts through TRPC1-associated Ca?* influx may be of significant clinical
importance to protect the gut from exacerbation of inflammatory process and, thus, progres-
sion of IBD [27].
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In the second part, we describe the functional implications of transforming growth factor (31
(TGF-p1)-induced TRP channel activation in InMyoFib cells. Our studies so far suggest that
TRP channels effectively regulate the expression of fibrosis-associated molecules and TGF-3
signaling in InMyoFib cells. Consistent with this, expressions of TRP channels and fibrosis-
associated factors were found to be increased in the stenotic but not in non-stenotic regions of
biopsy samples from CD patients” intestines, implying a therapeutic potential of targeting the
channels [28]. From these advances, we further anticipate gaining a good clue to elucidating
the complex interplay among commensal microbiota, intestinal cells, and the immune system
of the gut, and how such interactions, with genetic susceptibility and modification by envi-
ronmental factors, contribute to the pathogenesis of IBD.

2. Roles of TRP proteins for the occurrence/progression of inflammatory
bowel disease

Consultation with the literature indicates that there is close correlation between IBD initiation/
progression and autoimmune abnormalities, which is characterized by aberrances in inflam-
matory responses of intestinal bacteria within the digestive tract. CD14-positive macrophages
are markedly increased in the intestinal tract with CD pathology, where inflammatory
cytokines including interleukin-6 and interleukin-23 (IL-6/IL-23) and TNF-a are excessively
produced. The production of these cytokines, which can in turn activate adaptive immune
reactions along with the production of IL-12 and IL-23, occurs at lower levels in the normal
intestinal tract. However, suppressed immune responses of intestinal bacteria are inducible
with higher production of IL-10, an anti-inflammatory cytokine involved in immune tolerance
[29]. However, when chronic intestinal inflammation occurs, TNF-a or IL-6 can be excessively
produced, initiating an excessive inflammatory response. Originally, adaptive immune
responses were considered to play the dominant role in the pathogenesis of IBD; however,
novel immunological and genetic studies have demonstrated that innate immune responses
are of comparable significance in inducing gut inflammation. Recent progress in understand-
ing IBD pathogenesis sheds light on related disease mechanisms, including innate and
adaptive immunities, and interactions between genetic influences and microbial or environ-
mental factors [2].

TNF-a is central to inflammatory processes and acts as an endogenous tumor promoter [30].
Therapeutic antibodies against TNF-a exert dramatic ameliorating effects on inflammatory
bowel syndrome; myofibroblasts have been found to play a key role in this disorder [31]. TNF-
a activates PGE2 production in myofibroblasts, fulfilling both protective and destructive roles
in the gut. Although genetic deletion of the PGE2 receptor EP4 is detrimental to the gut, high
concentrations of PGE2 analogs have also been shown to worsen clinical colitis (eventually
leading to tumorigenesis), likely through the induction of pro-inflammatory reactions [32-
34]. The formation of PGE2 in myofibroblasts is primarily catalyzed by COX-2, which is
expressed at low levels in unstimulated conditions before being rapidly induced in response
to inflammatory cytokines, growth factors, and tumor promoters [35].
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The myofibroblast cell line CCD-18Co expresses both COX forms and secretes PGE2, a feature
thatis significantly enhanced by TNF-a or IL-1f3 [30]. Evidence suggests that COX-2 expression
and PGE2 production in myofibroblasts are controlled by intracellular Ca** concentration [36,
37]. However, the exact sources of Ca*, which contribute to this process, remain entirely
unclear. In general, there are two distinct sources of Ca* for elevating intracellular Ca** levels:
Ca*" influx across the plasma membrane and Ca* release from the endoplasmic reticulum (ER).
Ca?" influx can occur through voltage-gated Ca* channels, receptor-operated Ca*-permeable
channels (ROCs), and store-operated Ca*" channels (SOCs). Recent studies have demonstrated
that the canonical members of the TRP superfamily of proteins (TRPC) may contribute to SOC
and ROC. The TRPC family consists of seven distinct isoforms designated as TRPC1-TRPC7
[12, 14, 38, 39]. Presently, TRPC1 is regarded as one of the most plausible candidate molecules
for SOC in many cell types [38, 39] and plays a critical role in intestinal epithelial restitution
[40]. In some cell types, TRPC1 dynamically assembles with both stromal-interacting molecule
1 (STIM1) and Orail to generate a greater complexity in store-dependent Ca?* influx mecha-
nisms [41], although whether TRPC1 serves as a pore-forming SOC subunit still remains
unclear.

In CCD-18Co cells, treatment with TNF-a greatly enhanced both Ca* influx induced by store
depletion and cell-surface expression of TRPC1 protein and induced a cationic conductance.
Selective inhibition of TRPC1 expression occurs by small interfering RNA or functionally
effective TRPC1 antibody targeting the near-pore region of TRPC1 antagonized enhancement
of store-dependent Ca* influx by TNF-a, whereas TNF-a potentiated the induction of PGE2
production. Overexpression of TRPC1 in CCD-18Co produced opposite consequences [27]. We
further elucidated that NF-kB and NFAT serve as important positive and negative transcrip-
tional regulators, respectively, of TNF-a-induced COX-2-dependent PGE2 production in
colonic myofibroblasts, at the downstream of TRPC1-associated Ca* influx [27]. NFAT and
NF-kB are widely distributed Ca*-dependent transcription factors capable of regulating a
multitude of physiological and pathophysiological processes [42—44]. NFAT is activated
through dephosphorylation by calcineurin, which is activated upon binding of Ca*/calmodu-
lin. NFAT is reported to regulate COX-2 expression in colon carcinoma cells [45], and its
activation can occur through Ca* influx associated with TRPC1-, TRPC3-, or TRPC6-associated
SOC or ROC activities [46, 47]. The NF-kB transcription factor family plays a key role in several
cellular functions (inflammation, apoptosis, cell survival, proliferation, angiogenesis, and
innate and acquired immunity) as well as in regulating the expression of more than 500
different genes involved in inflammatory and immune responses [48, 49]. The anti-inflamma-
tory natural compound curcumin acts as a principal mechanism to suppress the NF-kB-
mediated signaling, thereby modulating immune responses [50-52].

The fact that high doses of exogenous PGE2 analogs exacerbate clinical colitis in the TNBS
model might be relevant to the use of misoprostol to prevent ulcers in patients who take anti-
arthritis medication. The side effects listed for misoprostol include a variety of gastrointestinal
tract problems, and these deleterious actions of PGE2 are likely associated with the stimulation
of the release of interleukin-23 from activated dendritic cells, which in turn facilitate the
differentiation of helper T lymphocytes to the pro-inflammatory phenotype Thl7. These
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opposing actions of PGE2 may imply that the extent of its production is crucial to determine
the fate of intestinal mucosa, that is, the maintenance of integrity or disintegration. In this
regard, the negative feedback regulation of PGE2 production in intestinal myofibroblasts
through TRPC1-associated Ca?" influx may be of significant clinical importance to protect the
gut from exacerbation of inflammatory process and thus the progression of inflammatory
bowel syndrome.

3. Intestinal fibroblast/myofibroblast TRP channel and fibrosis

Repeated cycles of inflammation and healing of the gut ultimately progress into intestinal
fibrosis (Figure 1). Innate immune-signaling pathways are also important drivers of myofi-
broblast transdifferentiation, as they cause cellular activation and fibrosis. Numerous media-
tors, including PDGF, EGF, IGF-1 and -2, CTGF, IL-1, IL-13, stem cell factor, endothelins,
angiotensin II, TGF-a, TGF-, bFGF, and peroxisome proliferator activator receptor-y, promote
myofibroblast proliferation and extracellular matrix (ECM) production. These activated
myofibroblasts are central to fibrogenesis [53, 54].

IBD and fibrosis TGFp
MyoFibroblast proliferation
IBD treatment : Invasion and migration
Anti-TNFa Ab

Stress fiber formation

Collagen synthesis

"

Inflammed area Crohn s Fibrosis

Figure 1. Inflammatory bowel disease and fibrosis. Repeated cycles of inflammation and healing of the gut ultimately
progress into intestinal fibrosis. Endoscopic view of the inflamed area and a lower gastrointestinal series from a CD
patient with fibrosis are shown. Colonoscopy and biopsy sampling showed a fibrotic lesion responsible for a colon
stenosis.

TGF-p is principal to the development of fibrotic stenosis in CD and in numerous cell types.
TGEF-f secretion augments myofibroblast transformation. Canonical TGF-f3 signaling com-
mences with its binding to a TGF-f3 type 2 receptor, which subsequently heterodimerizes with
a TGF-{ type 1 receptor to form an active TGF-R1 receptor complex. Activated TGF-{ type 1
receptor complex phosphorylates proteins against decapentaplegic homologs 2 and 3
(SMAD-2 and SMAD-3); activation of these transcription factors promotes collagen synthesis
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[55]. TGF-f can also signal through noncanonical pathways involving extracellular signal-
regulated kinases (ERKSs), c-Jun N-terminal kinase, and p38-mitogen-activated protein kinase
(p38-MAPK). Both canonical and noncanonical TGF-B-signaling pathways are implicated in
myofibroblast cytokine production and fibrosis in the gut [5, 53]. TGF-f3 levels are elevated in
the inflamed intestines of CD and ulcerative colitis patients, and abnormal TGF-3 signaling
impairs intestinal immune tolerance and tissue repair [56]. In addition, TGF-f receptor-
triggered-signaling cascades can be enhanced by calcineurin inhibitors cyclosporin A and
FK506 [57, 58]. However, neutralizing TGF-B1 in vivo as an anti-fibrotic approach in CD may
be highly problematic, as this may actually lead to disease exacerbation, despite the potent
anti-inflammatory and immunoregulatory properties of this cytokine. In addition to TGF-{31,
emerging evidence has shown that IL-13 and IL-17 are involved in intestinal fibrosis. IL-13
signaling via IL-13 receptor type 2 (IL-13R2) and subsequent TGF-f31 production comprises
the main fibrotic pathway in a model of chronic colitis [59]. IL-17A expression was found to
be increased in the inflamed areas of patients with inflammatory bowel disease [60].

In response to tissue injury and profibrotic mediators including TGF-3 and PDGEF, fibroblasts
differentiate into myofibroblasts, and the activation and/or recruitment of fibroblasts with
resistance to apoptosis result in fibrogenesis and subsequent fibrosis [61, 62]. It has been
estimated that about 45% of human deaths are associated with fibroproliferative disorders
including fibrosis [63]. Recently, anti-TNF-a antibodies were successfully introduced as anti-
inflammatory IBD therapies. However, for patients with fibrotic stenosis, there are only
surgical treatments such as balloon dilation [64]. Approximately one-third of CD patients have
severe intestinal strictures and obstructions (caused by excessive fibrosis) that are eventually
fatal. In addition, treating CD patients with anti-TNF agents increases the risk of developing
recurrent intestinal stenosis and sub-obstructive symptoms [65], necessitating repeated
surgery [66]. In fact, many IBD patients are still suffering from re-stenosis of surgically treated
regions, which greatly impairs the quality of life and can risk the lives of patients. Thus, there
is an urgent need to establish alternative anti-fibrotic strategies to treat CD patients and other
individuals suffering from intestinal fibrotic complications beyond currently available anti-
inflammatory therapies. Unfortunately, little is currently known about intestinal wound-
healing processes and pathogenic mechanisms by which chronic intestinal inflammation
causes detrimental fibrosis, although a complex scenario involving numerous humoral factors
has been suggested in experimental models [6-8].

Fibroblasts (vimentin+, a-SMA-), located in the submucosal area of normal tissues, are central
in maintaining structural formation, healing, and regeneration. Increased resident fibroblast
populations are pivotal to fibrosis development. Fibroblasts isolated from IBD mucosa
proliferate faster than normal, and this increase occurs after exposure to growth factors and
pro-inflammatory cytokines, and after direct cell-to-cell contact with inflammatory cells.
Fibroblast-to-myofibroblast (vimentin+, a-SMA+) transformation plays a critical role in wound
healing and tissue remodeling after injury [8, 67]. Myofibroblasts synthesize ECM components
and generate high contractile forces for wound retraction or tissue remodeling in develop-
mental processes. However, persistent myofibroblast activity can underlie hypertrophic
scarring, loss of tissue compliance, and even rampant fibrosis that is the basis for fibrotic
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disorders of the heart, skin, lung, kidney, skeletal muscle, and liver [6, 68, 69]. The myofibro-
blast is considered a hybrid cell type with both smooth muscle and fibroblast properties [8].
A defining feature of myofibroblast differentiation is the formation of a-SMA stress fibers that
provides a structural network for generating contractile forces [70]. Furthermore, intestinal
stricture formation in CD is driven by the local excessive production of TGF- [5, 71]. It is well
known that fibrosis is associated with excessive accumulation of ECM components, such as
collagens, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases
(TIMPs) [63, 72, 73]. In addition, other ECM proteins, such as fibronectins, elastins, and
fibrillins, are upregulated during the development of fibrosis. This is due mainly to increased
synthesis and decreased degradation of ECM components. Notably, during this process, MMPs
that degrade the ECM are upregulated, whereas TIMPs are downregulated [74].
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Figure 2. (A) TRP isoforms’ mRNA in InMyoFibs. Results of real-time PCR analysis of the mRNA expression levels of
TRPC1, -C3, -C4, -C5, -C6, -V2, -V3, -V4, -V5, -V6, -M1, -M3, -M4, -M6, and -M7 after treatment with TGF-B1 (5 ng/mL,
24 h) are shown. (B) Immunoblot data of time-dependent changes in TRPC6 protein expression (left panel). Data were
normalized to an internal control ($-actin) and are an average of four independent experiments (right panel). *P < 0.05
compared with untreated cells (1 = 4). This figure was modified from a figure in Ref. [28].

TRP channels are cellular sensors for a wide variety of physical and chemical stimuli [75-77].
For example, they are involved in the sensation of touch, smell, taste, temperature, and pain
[75, 78-80]. Recent studies have revealed that TRP channels also play essential roles in cell
signaling and responses to innocuous or harmful environmental changes [15, 16, 81]. In
addition, the activation of TRP channels changes the membrane potential, passes important
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signaling ions across the cell membrane, changes enzymatic activity, and initiates endocytosis
or exocytosis [12, 75, 82]. Ca* is an essential signaling molecule implicated in various long-
term cellular consequences, such as differentiation, gene expression, and cell proliferation,
growth, and death, and it plays a significant role in regulating fibroblast functions [83-85].
TRPC channels are non-voltage-gated nonselective Ca*-permeable channels. Enhanced Ca*
influx has been implicated in both differentiation and cytoskeletal rearrangements of various
cell types. Accumulating evidence suggests that fibrosis-associated events in myofibroblasts
are controlled by intracellular Ca* concentration, which is mediated by some members of the
TRP channel superfamily [14, 86-88]. For example, TRPC1-mediated Ca* influx is essential for
intestinal homeostasis/inflammation and progesterone-induced endometrial decidualization
[27, 89]. Ca* signaling through TRPM7 channels likely plays a key role in TGF-p1-elicited
fibrogenesis in human atrial fibroblasts [88]. Similarly, TRPC6/calcineurin-mediated signaling
is essential for dermal and cardiac myofibroblast transformation, which occurs through
complex interwoven pathways involving TGF-B, p38 mitogen-activated protein kinase, and
serum response factor [70]. The formation of cell-to-cell contact is governed by Ca* signaling
through TRPC4, which co-immunoprecipitates with junction proteins (3-catenin and cadherin
in vascular endothelial cells [90]. However, whether TRP channels play a role in intestinal
fibrosis is not clearly understood.

LCTR MIL-13 *

A 8 7
c \ [~ L
0§ 6 IL-17 (L1 .
>
5 8 \ *
E2 a1
28 |
&2 100N EIN ik il
0 - -1
TRPC1 TRPC3 TRPC4 TRPC5 TRPC6
B 4 - UCTR  MIL-13

MIL-17 MIL-1B

Relative
Quantitation
N

“ L0 L
ol J " N
TRPV2 TRPV3 TRPV4 TRPV5 TRPV6
C g1 LUCTR  WIL13 %
s _ | MIL17 LB *
[] g 6 | B T
> © |
SE 4
€ S ) T
¢ ks il T
0 - l cl | \ ﬁ

TRPM1 TRPM3 TRPM4 TRPM6 TRPM7

Figure 3. Real-time PCR analysis of TRPC1, -C3, -C4, -C5, -C6, -V2, -V3, -V4, -V5, -V6, -M1, -M3, -M4, -M6, and -M?7 after
a 24-h treatment with IL-13 (10 ng/mL), IL-17 (10 ng/mL), and IL-1f3 (10 ng/mL). This figure was modified from a sup-
plementary figure in Ref. [28].
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In intestinal myofibroblasts, not only TGF-1 but also IL-13 and IL-17 significantly upregulated
TRPC6 expression (Figures 2 and 3). Myofibroblast TRPC6 is a key factor to modulate fibrosis
through TGF signaling, and thus targeting TRPC6 may be a useful therapeutic regimen for CD
patients with intestinal fibrosis [28]. The results showed that while increased TRPC6 activity
promoted the TGF-B1-mediated expression of a-SMA and N-cadherin and strengthened
interactions between the three molecules, it also negatively regulated collagen synthesis and
secretion of anti-fibrotic factors, such as IL-10 and IL-11 (ERK and p38-MAPK dependent) [91-
93]. Upregulated TRPC6 expression is essential for the formation of a-SMA stress fibers and
N-cadherin-mediated adherens junctions, which, respectively, enable myofibroblasts to gain
contractility and reinforce mutual intercellular connections [6, 94, 95]. Interestingly, adherens
junctions appear in fibrotic tissues but are absent in normal tissues where fibroblasts do not
develop the stress fibers [10]. These findings are consistent in part with a previous study that
TRPC6-mediated Ca* influx was obligatory for myofibroblast differentiation in dermal and
cardiac wound healing, although greater complexity appears to exist in the relationship
between TRPC6-mediated signaling and intestinal fibrosis.

Furthermore, in our biopsy study, we examined samples from CD patients for the expression
of TRPC4, TRPC6, a-SMA, N-cadherin, cytokines, and ECM, and found that these molecules
were all increased in TGF-31-treated InMyoFibs. The mRNA levels of TRPC6, ACTA2, CDH2,
IL-10, IL-11, and COL1A1 were significantly higher in stenotic areas than in non-stenotic
mucosal areas of CD patients, whereas that of TRPC4 was not significantly changed in 12 paired
biopsy samples obtained from six patients (Figure 4). Stenotic lesions can be either inflamma-
tory, fibrogenic, or neoplastic, or possess all of these characteristics. This means that therapeutic
strategies distinguishing between these processes would yield improved outcomes compared
with the currently available approaches. In this regard, more direct evidence that TRPC6 vitally
contributes to the progression of excessive fibrosis in both an experimental model and in
human tissues should help to elucidate the mechanism underlying the fibrotic process. This
may be relevant not only to intestinal fibrosis but also to other fibrotic lesions of the skin, lung,
and liver, where these channels are expressed at significant levels.

In addition to aforementioned mechanisms, the imbalance between MMP and TIMP, which
maintain the state of remodeling and restitution, can accelerate structural changes of the bowel
wall [1]. Microarray experiments showed that InMyoFib cells primarily express MMP-1,
MMP-2, TIMP-1, and TIMP-2. When we next measured transcript expression of these mole-
cules in stenotic areas from biopsy samples and TGF-p1-treated cells, we found that their
mRNA levels were significantly unregulated; however, TRPC6 siRNA pretreatment did not
affect expression in TGF-p1-treated cells.

The studies with intestinal fibroblast/myofibroblast propose a new proof of concept that
TRPC6 may act as an anti-fibrotic mediator. The upregulation of this channel appears to inhibit
the signaling cascades associated with intestinal fibrosis including SMAD-2 phosphorylation
and myocardin expression, which in turn modulate collagen synthesis, actin fiber formation,
and expression of N-cadherin. Further evidence from biopsy samples suggests that the same
mechanism may also operate in stenotic lesions of IBD. These results not only facilitate our
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understanding about this new role for TRPC6 in regulating fibrotic processes but also provide
a novel molecular target for anti-fibrotic therapies to treat IBD in the future.
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Figure 4. (A) Fibrosis in the colon: a clinical problem. Ulcerations and tissue damage are caused by chronic inflamma-
tion. This is followed by bowel wall fibrosis, leading to pseudopolyps or strictures reducing the colon. (B) Crohn’s dis-
ease (CD) patient biopsies from non-stenotic and stenotic intestinal areas. The mRNA levels of TRPC4, TRPC6, ACTA2
(a-SMA), CDH2 (N-cadherin), IL-10, IL-11, and COL1A1 in biopsies were examined by real-time RT-PCR in non-stenot-
ic and stenotic-inflamed mucosal tissues of CD patients. *P < 0.05 versus non-stenotic samples (12 paired biopsy sam-
ples obtained from six patients). Figure 4B was modified from a figure in Ref. [28].

4. Summary

Several studies including our study have underscored the importance of intestinal fibroblast/
myofibroblast cells in IBD pathophysiology and epithelial barrier integrity, and accumulating
evidence from preclinical and clinical studies has started to note an important contribution of
TRP channels to many gastrointestinal remodeling processes. In this chapter, we summarized
recent advances in this field, with particular emphasis on TNF-a-activated TRPC1 and TGEF-
p-activated TRPC6 expression and function in primary-cultured fibroblasts/myofibroblasts in
the gastrointestinal tract, in conjunction with limited but interesting results from biopsy
samples from CD patients. A noteworthy possibility from it is that the functionality of TRP
channels may have unexpectedly tight correlation with inflammation- and fibrosis-associated
processes in myofibroblasts in vitro and in vivo. Further investigation will be warranted to
substantiate our yet-premature knowledge about this newly emerging field, which would
hopefully lead to the exploitation of an unprecedentedly unique treatment for highly intract-
able inflammatory/fibrotic disorders with greatly compromised quality of life, such as IBD.
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