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Abstract

Metastasis is a complicated course that involves the spread of a neoplasm to distant parts
of the body from its original site. A cancer cell must complete a series of steps before it
becomes a clinically detectable lesion for successful colonization in the body. These are
separation  from  the  primary  tumor,  invasion  and  penetration  of  their  basement
membranes, entry into the blood vessels and survival within blood, and entry into
lymphatics. A major challenge in extracellular matrix (ECM) biology is to understand the
roles of the ECM and how disruption of ECM dynamics may contribute to cancer. A
noteworthy area of forthcoming cancer research will be to determine whether abnor‐
mal ECM could be an effective cancer therapeutic target. We should understand how
ECM composition and organization are normally maintained and how they may be
deregulated in cancer. So the aims of this chapter were to focus on extracellular matrix.
Invasion and metastatic skills, properties and functions of the ECM, abnormal ECM
dynamics, tumor microenvironment and ECM, details of ECM invasion, role of ECM and
ECM‐associated proteins in metastasis, tumor dormant and metastatic process, essential
component of the niches, role of the ECM in tumor angiogenesis and lymphangiogene‐
sis are be briefly explained in this chapter.

Keywords: extracellular matrix, niche, tumor dormancy, metastasis, cancer

1. Introduction

Extracellular matrix (ECM) was synthesized and secreted by embryonic cells starting from the
early stages of its development. Our knowledge on the composition, structure, and function of
ECM increased significantly in recent years. The most prominent among these is that extracel‐
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lular microenvironment holds a critical importance in cellular growth, survival, differentia‐
tion, and morphogenesis [1].

The major role played by the local microenvironment or niches in the arrangement of cellular
behavior is gradually accepted more and more in cancer biology [2–5]. The fact that extracel‐
lular matrix is a dynamic source in the progression of cancer became the center of attention
for researchers [1, 5–7].

ECM affects negatively multiple proteases in remodeling, but it should be debated whether
proteolysis constitutes a mandatory step in tissue invasion [8]. Many groups reported that the
crossed structural barriers of cancer cells may be transferred to ECM only via the proteolytic
pathway. Yet, others suggested that the neoplastic cells progressed toward the matrix by
pushing or suppressing without proteases [9–12]. No matter what the route is, neoplastic cells
invade the two major subtypes of ECM, namely basal membrane and interstitium [13–17].

2. Invasion and metastatic skills

The dissemination of tumors is a complex process occurring in a sequential series which can
be named as a sequence of invasive‐metastatic events (Figure 1). These phases are composed

Figure 1. Abnormal ECM promotes cancer progression. (A) ECM remodeling is tightly controlled to ensure organ ho‐
meostasis and functions. Normal ECM dynamics are essential for maintaining tissue integrity and keep rare tumor‐
prone cells, together with resident fibroblasts, eosinophils, macrophages, and other stromal cells, in check by
maintaining an overall healthy microenvironment. (B) With age or under pathological conditions, tissues can enter a
series of tumorigenic events. One of the earlier events is the generation of activated fibroblasts or CAFs (stage 1),
which contributes to abnormal ECM buildup and deregulated expression of ECM remodeling enzymes (stage 2). Ab‐
normal ECM has profound impacts on surrounding cells, including epithelial, endothelial, and immune cells and other
stromal cell types. Deregulated ECM promotes epithelial cellular transformation and hyperplasia (stage 3). (C) In late‐
stage tumors, immune cells are often recruited to the tumor site to promote cancer progression (stage 4). In addition,
deregulated ECM affects various aspects of vascular biology and promotes tumor‐associated angiogenesis (stage 5).
Creation of a leaky tumor vasculature in turn facilitates tumor cell invasion and metastasis to distant sites (stage 6). (D)
At distant sites, cancer cells leave the circulation and take hold of the local tissue. Together with local stromal cells,
cancer cells express ECM remodeling enzymes and create a local metastatic niche. Abnormal niche ECM promotes ex‐
travasation, survival, and proliferation of cancer cells (stage 7). At later stages when cancer cells awake from dorman‐
cy, abnormal ECM turns on the angiogenic switch (stage 8), presumably using a mechanism similar to that used at the
primary site (stage 5), and promotes the rapid growth of cancer cells and an expansion of micrometastasis to macrome‐
tastasis (see ref. [5]).
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of local invasion, entry into blood and lymphatic vessels (intravasation), intravenous journey,
exit from the veins (extravasation), development of micrometastases, and finally the growth
of the micrometastases into macroscopic tumors [18, 19]. As it might be expected, any one of
these phases may be interrupted by factors associated with the tumor or host. The series of
metastatic events may also be divided into two phases, namely (1) ECM invasion and (2)
intravenous dissemination of tumor cells and their homing in distant tissues/organs [20].

2.1. Characteristics, function, and invasion of ECM

As known, human tissues are composed of a series of compartments separated from each other
by two types of ECMs, namely basal membranes and interstitial connective tissues. Although
organized in different manners, each ECM type is composed of collagens, glycoproteins, and
proteoglycans [21].

In addition to the ECM molecules, the general critical functions are important also for devel‐
opmental events (Figure 2). Extracellular compartment comprises various ECM components

Figure 2. Summary of ECM functions in development. The ECM is multi‐functional and can influence multiple bio‐
chemical and mechanical processes simultaneously. This figure illustrates different functional states of the ECM and
their biological contexts. The five categories are not mutually exclusive. When interpreting ECM loss‐of‐function phe‐
notypes, one should consider that multiple processes may be compromised thus specific roles of individual ECM com‐
ponents are difficult to glean. A couple of important properties of ECM are not illustrated in this cartoon. First, ECMs
are highly dynamic and can be modified by the cells that come into contact with them creating a bi‐directional mode of
cell‐matrix communication. Second, ECM‐ECM interactions vary the chemical and mechanical composition of the ex‐
tracellular microenvironment. In this review, we incorporate several examples of how the functions of ECM are utiliz‐
ed during embryonic development (see ref. [1]).
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and this organization and composition modifies the development with the initiation of
fertilization. The most prominent characteristic of cell‐ECM interaction is that it is mutual. On
one hand, cells are continuously formed, destroyed, or rearranged. ECM components modify
one or multiple characteristics of ECM. On the other hand, as ECM arranges different cellular
behaviors, this will impact adjacent cells as a result of any different cellular activity and modify
its behaviors [22]. This feedback regulating mechanism between the cells and ECM enables
rapid adaptation to the surrounding of cells and tissues [23].

The extracellular matrix (ECM) structure is dynamic and may be destroyed by the enzyme
family known as the matrix metalloproteinases (MMPs). These enzymes are actually secreted
by stromal cells or heparinase (this is an endoglycosidase enzyme which separates heparin
sulfate chains expressed and secreted particularly by tumor cells). Thus, the microenvironment
may contribute to tumor dormancy or metastatic growth with the impact of MMPs. The
expression and secretion of MMPs by leukocytes and macrophages may lead to the release of
angiostatic factors inhibiting angiogenesis and metastatic growth from ECM. These anti‐
angiogenesis factors comprise endostatin, restin, arrestin, three chains of collagen IV, and
macrophage elastase [24]. Similarly, stromal MMPs may release cytokines and angiogenic
factors affiliated with ECM such as fibroblast growth factor (FGF) and vascular endothelial
growth factor (VEGF) and may initiate the angiogenic switch required for the transition from
micrometastatic dormancy to metastatic growth. MMPs may also contribute to the formation
of a suitable place for the transition from dormancy to metastatic growth. For instance,
modifications in ECM components, such as the arrangement and production of type I collagen
and fibronectin, were detected in gene expression signals associated with metastasis and poor
prognosis in breast cancer [25]. Furthermore, the leukocyte secretion of MMP2 and MMP9 may
activate latent transforming growth factor (TGF)‐beta localized in ECM. The activation of TGF‐
beta may enhance the Type I collagen and lysyl oxidase expression synthesis and thus provide
a suitable setting for metastatic growth [26]. On the other hand, the heparinase synthesis of
tumor cells regulates the re‐arrangement and destruction of ECM in association with angio‐
genic factors promoting angiogenesis and tumor cell migration [27]. In summary, the crosstalk
between dormant tumor cells and ECM regulated by stromal and tumor cells may control the
initiation or termination of the dormant status of the cell.

2.2. Dormancy of tumor cells and the metastatic process

Tumor dormancy may be defined as the long‐term asymptomatic, non‐detectable and latent
state of disseminated tumor cells (DTCs). This period is a stage where the residual disease
exists, but is not clinically visible. The cells in dormant state avail of the capacity to grow slowly,
escape treatment and the immune system of the host and to renew themselves. Tumor
dormancy may contribute to the progression and relapse of the tumor metastatically both in
local and distant sites. Cancer cells go into a dormant stage at the beginning of the disease or
following the first treatment and may remain dormant even for years or for decades after the
first treatment. The mechanisms and the sleep markers regulating the transition between the
dormancy and proliferation phases have not been fully designated [28]. A part of the latent
period in all patients may take place as the slow accumulation of the genetic modifications
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leading to immortality (TP53, RB1, P16 loss, and/or telomerase gain, etc.) and the transforma‐
tions during and/or following carcinogenesis (Ras‐activating mutations, ERBB2 amplification,
BRAF‐activating mutations, etc.). Breast and prostate tumors, melanoma, B‐cell lymphoma,
and leukemia are malignancies displaying dormant cancer cells [29, 30].

The metastatic growth of disseminated tumor cells (DTCs) from the primary tumor constitutes
the main reason of cancer‐associated deaths. DTCs should survive around the circulation when
they mix with blood and avoid physical damage and immune system attacks. Thus, DTCs
adapt themselves to the new microenvironment of the secondary site and the reprogramming
periods to the micrometastasis or quiescent state begin according to the characteristics of the
microenvironment [31].

Various metastasis suppressant genes responding to microenvironmental stress may regulate
the dormancy. Metastasis suppressant genes have the capacity to encourage apoptosis or the
dormancy of cells and prevent the development of metastasis. KISS‐1 is a tumor suppressor
gene contained inside kisspeptins, and it has been demonstrated that the cells expressing
kisspeptins remain dormant in many organs. Kangai 1 (Kai1/CD82) is a cell surface trans‐
membrane protein which joins the inhibition of invasion and cancer cell migration by forming
complexes with integrins. Furthermore, Kai 1 reduces the formation of distant metastasis upon
binding to duffy antigen‐chemokine receptor on the surface of vascular endothelial cells [32].
It was demonstrated that in melanoma, colon, breast, and lung cancer models that the
metastasis is suppressed via the Nm23–1H (NME1) protein [33, 34]. Mitogen‐activated protein
kinase 4 (MKK4) is a specific kinase which plays a role in dormancy in the micrometastatic
stage. MKK7 and MKK6 are other kinases with less metastasis suppressor effects. BRMS1,
SMAD7, SSeCKS, RhoGD12, and CTGF are metastasis suppressor genes which play a potential
role in dormancy. In case of more activated P38 in the cell, tumor cells may be encouraged to
enter dormancy [35].

2.3. ECM’s invasion and the stages of invasion

It is necessary for a carcinoma first to pass through the basal membrane beneath and then
through the interstitial tissue and consequently reach the circulation upon penetrating into the
basal membrane in the veins. The referred cycle is repeated also when the tumor cells embo‐
lisms extravasate from a different site. Due to these reasons, a tumor cell may metastasize only
when they pass through different and high number of basal membranes and at least two
interstitial matrices [36, 37]. The ECM invasion is achieved in four steps.

The first step of the series of metastatic events is the relaxation of tumor cells. E‐cadherins act
as intercellular adhesives and their parts within the cytoplasm bind to β‐catenin. Neighboring
E‐cadherin molecules hold together cells, and as also explained earlier, they may send anti‐
proliferative signals over the β‐catenin sequestration [38]. The E‐cadherin function in almost
all epithelial‐derived cancers is lost due to the mutations achieved via the β‐catenin gene
activation of the E‐cadherin genes or the inadequate expression of the SNAIL and TWIST
transcription factors suppressing the E‐cadherin expression [39, 40].
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The second step in the invasion is composed of the local disintegration of the basal membrane
and the interstitial connective tissue. The tumor cells themselves secrete proteolytic enzymes
or stimulate stroma cells such as fibroblasts and inflammatory cells so that they secrete
proteases. It was expressed indirectly that many different protease families, such as matrix
metalloproteinases (MMPs), cathepsin D and urokinase plasminogen activators, play a role in
the achievement of the invasive characteristic in the tumor cell. Matrix metalloproteinases
regulate the tumor invasion not only by reshaping the insoluble components of the basal
membrane and interstitial matrix but also by releasing the growth factors at ECM [41].
Actually, the cleavage collagens and proteoglycans also have effects which promote chemo‐
tactic, angiogenic, and growth. For instance, MMP‐9 is a gelatinase which may release type IV
collagen in the basal membrane of the epithelial and the veins; furthermore, it also stimulates
the VEGF secretion of ECM from sequestered pools. Type IV collagenous activity, which is
very rare in the benign tumors of the breast, large intestine, and stomach is at an abundant
amount in the malignant tumors of the same organs. Meanwhile, indeed, an overexpression
of metalloproteases and other proteases was reported for many tumors [42–44].

The third step of tumor invasion involves changes in the adhesion of tumor cells to ECM
proteins. There are receptors in the normal epithelial cells, such as integrin, which belong to
the basal membrane laminin polarized on the basal surfaces and to collagens, and these help
the cell to maintain its undifferentiated status at rest. While the loss of adhesion initiates
apoptosis in normal cells, tumor cells are resistant to the death of cells to take place via this
path [36]. Furthermore, the matrix itself is changed in a manner so as to promote invasion and
the occurrence of metastasis. For instance, the cleavage of basal membrane proteins (collagen
IV and laminin) by MMP‐2 or MMP‐9 creates new sites to which the receptors in the tumor
cells may bind and stimulate the migration [42, 44].

The final step of the tumor invasion is the locomotion of malignant cells. During the locomotion
process, the tumor cells pass through fragmented basal membranes and proteolyzed matrix
regions and translocate. The migration of cancerous cells is a multi‐phased process, which
impacts the cytoskeleton in the actin structure at the end and where many receptor families
and the signalization protein family play a role (Figure 3). This last step appears to be a process
which is promoted and directed by cytokines deriving from the tumor cell such as the autocrine
motility factor. Furthermore, the cleavage products of the matrix proteins (such as collagen
and laminin) and some growth factors (such as insulin‐like growth factor I and II) have a
chemotaxis effect on these cells.

Moreover, the stroma cells also produce paracrine effector factors such as HGF/SCF (hepato‐
cyte growth factor/diffusion factor) which bind to the receptors on the tumor cells. HGF
inhibition is as effective as standard chemotherapy in inhibiting local tumor growth [45]. The
fact that the concentration of these factors is high in the peripheral region of glioblastoma
multiform, which is a strong brain tumor with advanced invasion skills, supports the view
that they play a role in motility [46].
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Figure 3. Schematic model of enzymatic disruption of extracellular matrix at the tumor invasion zone: (A) The tumor‐
surrounding extracellular matrix consists of a meshwork of collagen fibers (1) and interdispersed glycosaminoglycan‐
containing proteoglycans (2) that provide swelling pressure to maintain tissue volume; (B) collagen molecules (3) are
aligned in staggered fashion overlapping by one quarter of their length to form a cross‐striated collagen fiber (1). Co‐
valent cross links (4) between neighboring collagen molecules are responsible for tensile strength and insolubility of
the fiber meshwork. The interdispersed proteoglycans shows limited aggregation with hyaluronate (5). It is restricted
from swelling by an intact collagen network; (C) collagen fibers are degraded by two enzymatic pathways: (a) protei‐
nases (i.e., cathepsins, elastase, plasmin, thrombin) act as “cross‐linkases” (4) to liberate collagen monomers from fibers
(6). Collagen monomers then denature (7), solubilize, and become susceptible to many proteinases. (b) Vertebrate col‐
lagenases specifically cleave the collagen triple helix at the ¾-¼ point between the NH2‐ and COOH‐termini (8). The
resulting TCA and TCS fragments denature (9) and are further cleaved by neutral proteinases: (D) Collagen and con‐
comitant proteoglycan degradation (10) transforms the matrix from an insoluble (solid) to a liquified (fluid) state. The
remaining proteoglycans swell (11) due to breakdown of the restricting collagen network. These physical changes may
allow locomotion and tumor cell penetration (see ref. [6]).

2.4. How does ECM deregulation signal cancer?

The structure of tumor‐associated ECM is basically different than that of the normal tissue
stroma. Relaxed, non‐oriented fibrils and collagen I are significantly oriented with epithelia
which are significantly linearized and attached in the breast tissue or are designed vertically
to the tissue [41].

Abnormal ECM dynamics have been well documented in clinical studies as a sign of many
diseases and cancer. For instance, excessive ECM production or decreased ECM destruction
is evident in many organ fibroses [47]. The storage of various collagens containing collagen I,
II, III, V, and IX increases during tumor formation [48]. These abnormal changes in the
composition and rate of ECM may significantly modify the biochemical characteristics of ECM
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and potentialize the oncogenic effects of various growth factor signal pathways [49]. Increased
collagen deposition or ECM stiffness may support cell survival and proliferation alone or with
the upregulation of the integrin signal [50, 51].

Increased collagen cross links and ECM stiffness stimulate ERK and PI3 kinase signal as a result
of LOX overproduction and facilitate oncogenic transformation [47].

2.5. May ECM prevent cancer cell invasion?

Studies have demonstrated that ECM is essential in the protection and achievement of tissue
polarity and structure. Abnormal ECM dynamics may cause basal membranes to compromise
as a physical barrier and facilitate tissue invasion of cancer cells by supporting epithelial
mesenchymal transition [52, 53].

The changes in ECM topography may facilitate the migration of cancer cells. Thickening and
linearization are observed in collagen fibers in cancer cases, and these are mostly seen in tissue
invasion and vascular tumor sites, which demonstrates that they may play an active role in
this cancer cell invasion [41, 54].

2.6. Tumor microenvironment and ECM

Tumor microenvironment plays a critical role in the progression of cancer and is the main
factor determining the growth and survival of DTCs in prioritized metastatic sites [43, 55]. It
was recently revealed that the stroma cells surrounding tumor cells constitute a variable
environment which promotes or prevents tumor formation of mutual signalizations between
the tumor and stroma cells and not as a static barrier that prevents the motility of tumor cells
[56]. The congenital and adaptive immunity cells as well as fibroblasts are among stroma cells
which interact with tumors. It was revealed in various studies that tumor‐accompanying cells
contain ECM molecules, proteases, protease inhibitors, and genes encoding various growth
factors in modified forms [57]. Dormant tumor cells are in close contact via the extracellular
matrix via the integrin signalization pathway regulating tumor cell growth, migration,
differentiation, and survival. Metastasis‐associated urokinase receptor (uPAR) causes tumor
growth via fibronectin receptor alfa5beta1‐integrin activation and interaction. This complex
enables the functioning of EFGR which promotes focal adhesion kinase (FAK) and adhesion
to fibronectin and transfers mitogenic signals via Ras extracellular signal‐regulated kinase
(ERK), respectively. In an in vitro study, the downregulation of uPAR and the loss of function
of integrin reduced the proliferative signals from a fibronectin‐rich microenvironment which
led to the transition from a tumorigenic status to a dormant status in human carcinoma cells.
Furthermore, the blockade of uPAR, beta1‐integrinler, FAK or EGFR alone or in combination
results in in vivo tumor suppression which is demonstrated to be associated with the induction
of tumor cell dormancy [58, 59].

In vivo ERK1/2 signalization revealed that dormancy derives from an almost complete full
inhibition of the Raf‐MEK‐ERK pathway and triggers the stopping of cell cycle in the G0‐G1
phase as in the dormant cells. It was demonstrated that the mitogen‐activated protein kinase
(MAPK) signalization cascade activated with (P38/c‐Jun N‐terminal kinase (JNK) has an
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impact as a tumor suppressor via various tumor suppressor (TP53 and Rb‐mediated) pathways
and by the decrease of various oncogenic signals and become responsible for the stopping of
the growth. The disruption of the UPAR complex activates the p38 MAPK signalization
pathway. Proliferation in primary and secondary tumors requires a high ERK1/2/p38 MAPK,
pathway activation—contrary to tumor dormancy. Thus, the molecular mechanisms of growth
inhibition have become comprehensible during dormancy, which is observed both I the p38
MAPK pathway activation and ERK1/2 pathway inhibition [60].

Thus, tumor cells maintain their existence within a complex and constantly changing envi‐
ronment in which ECM, fibroblasts, and the immunity system cells communicate with one
another. The cells which cooperate with the referred environment in order to fulfill their bad
intentions and may adapt themselves to this environment can be the most successful tumor
cells.

2.7. May fibroblasts play a role in tumor invasion?

When cells are transformed and the solid tumor mass formation is initiated, they lead to a
modification in the phenotypes of the cells surrounding them. A transformation occurs in the
extracellular matrix in addition to the modification in the cellular phenotype, and this tumor
formation occurs simultaneously [57, 61]. It was recently discovered that increased matrix
stiffness may also lead to the increase in the oncogenic YAP/TAZ complex increased in
association with signal regulators comprising the Hippo signal pathway, enhanced cellular
proliferation, decreased contact inhibition, increased cancer stem cell phenotype, and in‐
creased metastasis [62]. However, it was demonstrated in the recent publication by the authors
that YAP/TAZ was not activate only at CAFs: Cancer associated fibroblasts, but that YAP/TAZ
was necessary also for CAF development [63]. The authors demonstrated that CAF activation
led to a matrix remodeling developing to increased stiffness with the myosin light‐chain 2
(MYL9/MLC) expression which plays a vital role in the formation of ECM. Another point
pinpointed by these authors was that the YAP/TAZ activation was not specific only to CAFs,
but that it was also revealed in the normal tissue fibroblasts surrounding the cancerous tissue.

2.8. Role of ECM in vascular dissemination and homing of tumor cells

The growth of a tumor size requires an increase in the need for nutrients, oxygen, and waste
exchange. Tumor vascularization constitutes the main path in metastases of cancer cells [36,
64].

When tumor cells reach the circulatory system, the host is likely to be destroyed by immune
cells. Some tumor cells in the blood circulation aggregate and adhere on leukocytes in the
circulation, particularly on thrombocytes, and cause embolism; thus, part of tumor cells in the
circulation achieves a certain degree of protection against the antitumor effects of the effector
cells of the host. However, the majority of tumor cells circulate alone in the circulation. During
the extravasation of free tumor cells or the development of tumor embolism, the referred cells
first adhere on the vascular endothelium and then enter the organ parenchyma upon passing
through the basal membrane via mechanisms similar to those in the invasion process [64].
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It is possible to estimate the site of extravasation of tumor cells and the distribution of the
metastases in the organs by looking at the site of the primary tumor and the vascular or
lymphatic drainage (Figure 4). Most tumors metastasize in the first organ they encounter in
the capillary bed upon entering the circulation. However, natural drainage paths may not
easily explain the distribution of metastases in many cases. Some tumors such as lung cancers
frequently metastasize in the adrenals, while they almost never spread to the skeletal muscle
[65]. This organ tropism may be associated with the following described mechanisms:

Figure 4. ECM role in tumor angiogenesis, lymphangiogenesis. Angiogenesis and lymphangiogenesis depend on the
ECM. Tumor cells produce various components, including VEGF and angiogenic and antiangiogenic ECM fragments,
to regulate blood vessel formation (stage 1). During branch initiation, endothelial cells secrete proteases to break down
the basement membrane to grow out (stage 2). The outgrowth process of endothelial branching is propelled by at least
two groups of cells: tip cells, which lead the migration toward the angiogenic chemoattractant source, and stalk cells,
which depend on the ECM and its derivatives to survive and proliferate to provide building blocks for vessel forma‐
tion (stage 3). Additionally, ECM components participate in cell migration and other aspects of tubulogenesis of blood
vessels. Although details remain unclear, lymphangiogenesis depends on the ECM and, together with angiogenesis,
provides routes for cancer cell metastasis and immune cell infiltration (see ref. [5]).

1. The expression of the ligands in the tumor cells and preferably of the adhesion molecules
present in the endothelium of the target organs. 2. The expression of chemokines and their
receptors. Chemokines contribute to the guided movements of leukocytes (chemotaxis), and
cancer cells appear as cells which utilize similar tricks in order to settle in special tissues.
Chemokine receptors named CXCR4 and CCR7 have a high expression in human breast cancer.
The ligands of these receptors (CXCK12 and CCL21) are present in high amounts only in the
organs where breast cancer cells have metastasized. Based on this observation, it was claimed
that the blockage of chemokine receptors may limit metastases [44, 66].

Tumor Metastasis32



When tumor cells reach their target, they may be colonized in that target. The factors regulating
the referred colonization have not yet been fully understood. However, in order for tumor cells
to proliferate after extravasation, they need a stroma that will accept them. In some cases, the
target tissue may not carry a suitable environment identity for metastasis and is not the suitable
soil, so to say, for the development of the tumor seeds. For instance, although the skeletal
muscle is not rich in terms of vessels, it rarely becomes a stage for metastases [44].

Because, the biochemical characteristics of ECM, which play an important role in tubulogenesis
during tumor angiogenesis [67, 68] in the vein lumen formation blood vessel lumen formation
[69], are different in terms of displaying different branching patterns and various elasticities
in these fields [70].

2.9. Details of ECM invasion

Willis et al. drew attention to the astuteness in the invasion of the devilish hidden cancer cells
in the review they published [7]. Many groups reached the conclusion that cancer cells acquire
an amoeboid phenotype characterized by insensitivity to proteinous inhibitors and surpass
type I collagen barriers [12]. Now we know that a wide spectrum of types of cancer cells are
definitely dependent on MT1‐MMP when they are faced with cross‐linked Type I collagen
barriers [12, 71].

Still, when cancer cells encounter structural barriers, they hold the potential to adapt them‐
selves to a protease‐dependent position. Although there is limited information on the size of
ECM pores, it is estimated via confocal reflection microscope that micropores range between
of 40–10 μm2 and macropores of 40–1000 μm2 inside in vivo tissues [72–74]. These results
increase the probability indicating that the collagen structure combined in an in vitro setting
may not be repeated in a complex in vivo setting.

However, it should be noted that the defects in the migration of vascular smooth muscle cells,
adipocytes differentiation, and stem cell origin displayed an in vitro setting duplication with
the use of dense acid extracted type I collagen hydrogels in MT1‐MMP‐targeted mice [75–77].
Interestingly, the diameter of collagen fibers at in vivo neoplastic fields matched with the self‐
polymerized collagen hydrogels prepared in acid extractor type I collagen under standard
conditions [78].

These results led to the thought that cancer cells may rapidly migrate to precleared tunnels via
the proteolytic pathway through proteinaceous‐independent processes similar to those in the
in vitro setting [11, 79–81].

2.10. Role of ECM and ECM‐associated proteins in metastasis

As cancer cells accumulate mutations or other molecular signals during the metastatic process,
they are predisposed to become more easily malignant and lose contact with the surrounding
cells and ECM in the primary tumor. These surrounding cells provide the opportunity for
invasion. Thus, ECM and ECM‐associated adhesion proteins play a critical role in the meta‐
static process [82]. Therefore, Zacharia et al. [83] published a review describing roles of the
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new molecules named migfilin, mitogen‐inducible gene‐2 (Mig‐2), and Ras suppressor‐1 (RSU‐
1) in the cell‐ECM adhesion fields. The authors reached the conclusion that cell‐ECM adhesion
proteins are predisposed to function such as adaptor proteins in the form of multiple protein‐
protein interaction in the cell‐ECM adhesion fields.

Even though the different effects in various types of cancer cells were discussed, they added
that cell adhesion, which is crucial in terms of cell metastasis in many cases, supported cell
invasion and apoptosis.

2.11. Is ECM the main constituent of niches?

Despite the “skill” they display in moving away from the site in which they were first formed,
tumor cells are rather ineffective in terms of forming colonies in distant organs. Millions of
cells drop off even from small tumors every single day; even though macroscopic metastases
have not developed, it is possible to identify these cells in the blood circulation and in small
foci in the bone marrow. The dormant state of micrometastases, which is defined as the capacity
to preserve their existence for a long period without any progression, was observed in breast
and prostate cancer [29, 30, 44].

In the studies demonstrating that ECM undertook a dynamic niche role in the progression of
cancer in recent years [5–7], investigators indicated that the microenvironment or niche played
a major role in the development of cancer. Abnormal ECM directly promotes cellular trans‐
formation and metastasis and impacted the progression of cancer [84].

A successful metastasis does not require local niche supporting only cancer cell development
in the primary focus, but also necessitates the survival, colonization of the cancer cells invading
the metastatic niches and their achievement of macrometastasis [85–87].

The molecular mechanisms of colonization have just begun to be enlightened in mice models,
but the view claiming that tumor cells impact normal stroma cells and secrete cytokines,
growth factors and proteases, which transform the site of metastasis into an environment
where cancer cells may live, appears to be suitable [88, 89].

3. Concluding remarks

As metastatic mechanisms are better understood at a molecular level, it will be significantly
easier for physicians to use these mechanisms as a treatment goal [90]. The identification of
tissue‐specific signals involved in metastatic progression will open the way to new therapeutic
strategies. For this purpose, the authors [91] reviewed recent progress in the field, with
particular emphasis on the mechanisms of organ‐specific dissemination and colonization of
breast cancer (Figure 5). Despite what has been described so far, it may not be possible to
estimate exactly which cancer type may metastasize. But a noteworthy area of forthcoming
cancer research will be to determine whether abnormal ECM could be an effective cancer
therapeutic target. So we should understand how ECM composition and organization are
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normally maintained and how they may be deregulated in cancer. Then, we may protect the
ECM as a castle against to invasion of cancer.

Figure 5. Gene mediating organ‐specific breast cancer metastasis. Breast cancer genes promoting organ‐specific meta‐
stasis to bone, lung, and brain have been identified. They include proinflammatory molecules and chemokines/recep‐
tors (e.g., COX‐, CXCL12/CXCR4), matrix‐degrading and modifying enzymes (e.g., MMP1/2, LOX), adhesion and
extracellular matrix molecules (e.g., VCAM‐1, TNC, OPN), transcription factors (e.g., ID1, KLF17), intracellular signal‐
ing proteins (e.g., SRC, NF‐_B), and cell communication proteins (JAGGED1, CTGF). Some genes promote seeding
(e.g., ST6GALNAC5, AGPTL4), whereas others promote colonization (e.g., OPN, CXCR4) (see ref. [91]).
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