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Abstract

Poly(bis-(methoxyethoxyethoxy)phosphazene) (MEEP) intercalated into lithium
hectorite was investigated for its potential application as a solid polymer electrolyte
in lithium-ion polymer batteries. Varying amounts of MEEP were intercalated into
lithium hectorite, and the physical properties of the nanocomposites were monitored
using powder X-ray diffraction, thermogravimetric analysis, differential scanning
calorimetry, and attenuated total reflectance spectroscopy. Alternating current (AC)
impedance spectroscopy was used to determine the ionic conductivity of the
nanocomposites when complexed with lithium triflate salt.

Keywords: lithium hectorite, poly(bis-(methoxyethoxyethoxy)phosphazene), nano-
composites, solid polymer electrolytes

1. Introduction

The electrolyte in a lithium-ion battery is the medium through which lithium ions flow
between anode and cathode. It is electrically insulating, and thus prohibits the passage of
electrons. Much work has been done to develop solid-state electrolyte materials such as solid
polymer electrolytes (SPEs) which have the advantage of enhanced safety compared to
conventional liquid organic electrolytes. Some of the most recent research on electrolyte
materials has focused on utilizing polymers such as poly(ethylene oxide) (PEO) [1] and
polyphosphazenes [2, 3]. Current research on polyphosphazenes focuses on exploiting their
fire-resistant properties [4], ionic conductivity [5], and as phosphazene-based dye-sensitized
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solar cells [6]. Polyphosphazenes are amorphous polymers with low glass transition temper-
atures (T,), which dictates their polymer-chain flexibility and aids in lithium-ion mobility [7].

Since the first report on poly(bis-(methoxyethoxyethoxy)phosphazene) (MEEP), Figure 1, an
array of phosphazene-based polymers have been synthesized with diverse alkyl ether and
alkoxy side groups, ultimately yielding ionically conductive polymers that are flexible. When
polyphosphazenes such as MEEP are complexed with lithium salts (e.g., lithium triflate), they
have been shown to possess enhanced ionic conductivity compared to PEO-based SPEs [8, 9].
Previous studies have reported that (MEEP),LiCF;SO; yields ionic conductivity in the range
of 2x10°to 1 x 10* S/cm at ambient temperatures [10, 11]. However, the dimensional stability
of MEEP is low, so it leaks out of cells at ambient temperatures. Researchers have attempted
to enhance the dimensional stability of polyphosphazenes by investigating polymer blends
with PEO [12], inducing cross-linking via ®°Co-gamma irradiation [8] and preparing of
polyphosphazene-silicate networks [13]. One other promising approach is the intercalation of
polyphosphazenes into layered structures, which act as hosts for the polymers. Due to the
weak electrostatic interactions holding the layers of two-dimensional structures, the layers may
be exfoliated allowing for the intercalation of ionically conductive polymers. This yields
nanocomposite materials with ionically conductive properties, along with enhanced mechan-
ical and thermal durability provided by the layered structure. Intercalation of MEEP into two-
dimensional layered structures has been investigated using layered structures such as graphite
oxide [10], molybdenum disulfide [14], sodium montmorillonite [15], and sodium hectorite
[16], and has typically yielded ionically conductive nanocomposite materials with enhanced
physical properties. In this chapter, we report on the intercalation of various amounts of MEEP
into lithium hectorite.
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Figure 1. Structure of MEEP.

Hectorite belongs to the family of smectite clays, and has a 2:1 structural arrangement
composed of two tetrahedral silicate layers (T,;) encompassing an octahedral layer (O,), as
shown in Figure 2 [17]. Their industrial applications range from pharmaceutical drug addi-
tives [18] to automobile parts [19], and potentially as SPEs in batteries [20, 21]. Hectorite has
negatively charged layers, which are compensated with cations such as Na*and Li* to balance
the overall charge. Hectorite is an appealing layered structure for the intercalation of MEEP
due to its high thermal stability, high surface area, exfoliating/restacking capability, and high
cation exchange capacity [22]. In this chapter, we exploit the cation exchange capability of
hectorite by driving out the naturally lying sodium ions with lithium ions, and working with
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the lithiated form of hectorite [23]. The intercalation of varying stoichiometric molar ratios of
MEEP was conducted with the lithiated form of hectorite.

T4-Si04

On-Li, Al, Mg

Tg-Si04

Figure 2. Structure of hectorite.

The aim of this chapter is to present the effects that varying polymeric molar ratios to Li-
hectorite have on the physical properties of the synthesized nanocomposites, and to investigate
the ionic conductivity of the salt-complexed nanocomposites. The synthesized nanocompo-
sites were characterized using thermogravimetric analysis (TGA), differential scanning
calorimetry (DSC), powder X-ray diffraction (XRD), and attenuated total reflectance (ATR).
The ionic resistance of the materials was determined using AC impedance spectroscopy.

2. Experimental

2.1. Purification and lithiation of hectorite

Sodium hectorite (SHCa-1) was purchased from Source Clays Repository. Since the fine
powder has calcium carbonate and other impurities, a purification process was performed as
outlined in the literature [16]. When the purification process was complete, a cation exchange
was done in order to replace the sodium ions with lithium ions [23]. This process was carried
out twice to ensure maximum substitution of lithium ions. Elemental analysis was used to
monitor the sodium- and lithium-ion content at Guelph Chemical Laboratories Ltd. Ontario,
Canada. The data indicated an increase in lithium-ion proportion from Li, 5 Nayz Si; (sodium
hectorite) to Li; Na,, Si; (lithium hectorite).
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2.2. Synthesis of MEEP and MEEP-salt complex

The synthesis of MEEP was performed as described in the literature [24]. (MEEP), LiCF;50;
has been found to exhibit high ionic conductivity compared to other polymer:salt ratios [13,
25], so this polymer:salt ratio was used in this work. The synthesized polymer was stored in a
vacuum desiccator, and salt-polymer complexes were used as soon as they were prepared in
order to minimize exposure to humidity. Hereafter, the pure (uncomplexed) polymer will be
referred to as MEEDP, while the salt-complexed polymer will be referred to as Li-MEEP.

2.3. Preparation of nanocomposites

A general procedure was employed for the intercalation of MEEP into Li-hectorite. Li-hectorite
(0.10 g, 2.6 x 10* mol) was suspended in deionized water and left to stir until fully suspended
in water (typically 30 min). The polymer with molar ratio of 0.5, 1, 2, or 4 to Li-hectorite was
dissolved in 5 mL of deionized water. A pipette was used to transfer the polymer solution to
the Li-hectorite suspension at a rate of one drop per second. The progress of the reactions was
monitored via XRD. The products were then isolated via freeze drying, and stored in a vacuum
desiccator.

2.4. Materials characterization

Powder X-ray diffraction was conducted on a Bruker AXS D8 Advance diffractometer. The
instrument is equipped with a graphite monochromator, variable divergence slit, variable
antiscatter slit, and a scintillation detector. Cu (ka) radiation (A =1.542 A) was utilized and the
data were collected at room temperature on glass substrates.

Thermogravimetric analysis (TGA) was performed on a TA Q500 using a heating rate of 10°C/
min, with the use of platinum pans under dry-compressed air. Samples were freeze dried prior
to TGA analysis in order to minimize their moisture content.

Differential scanning calorimetry (DSC) was performed on a TA Q100 using heat/cool/heat
cycles. Samples were crimped in aluminum pans, and ran under nitrogen flow at a rate of 50
mL/min.

Attenuated total reflectance spectroscopy (ATR) data were collected using a Bruker Alpha A-
T (resolution 0.9, 128 scans).

AC impedance spectroscopy (IS) was conducted to determine the ionic conductivity of the salt-
complexed materials [26]. The samples were tested using rectangular glass substrates with two
rectangular stainless steel electrodes on the opposite ends of the substrates. For the intercalated
nanocomposites, samples were cast onto the substrates, between the electrodes, after 3 days
of reaction time in order to ensure complete intercalation. Typical samples had a width of about
9 mm, were 20-90-pum thick, and had a length between the electrodes in the direction of current
of about 6 mm. In most cases, the films were not uniform in thickness, and this was the main
source of uncertainty in the ionic conductivity values that were obtained. The frequency range
used was 10 kHz to 0.01 Hz. In order to remove moisture, the samples were placed under
vacuum for at least 24 h at room temperature prior to the data collection. The temperature of
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the samples was controlled using a Cryodyne 350CP refrigerator and a Lakeshore 321 tem-
perature controller. The data collection was performed using a Solartron 1250 frequency
response analyzer and a home-built accessory circuit for high-impedance samples. The
conductivity was then determined by fitting the IS data to an equivalent circuit model using
LEVMW [27].

3. Results and discussion

3.1. MEEP/Lithium hectorite

3.1.1. Powder X-ray diffraction

Powder X-ray diffraction was used to monitor the intercalation process and the effect of the
molar ratio of MEEP to Li-hectorite on the polymer loading in the layered structure.
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Figure 3. XRD data for (a) MEEP:Li-hectorite (0.5:1), (b) MEEP:Li-hectorite (2:1), and (c) MEEP:Li-hectorite (4:1).

The diffractograms for MEEP:Li-hectorite (0.5:1), MEEP:Li-hectorite (2:1), and MEEP:Li-
hectorite (4:1) nanocomposites are displayed in Figure 3 to illustrate the enhancement in basal
spacing (d-spacing) of the layered host upon the intercalation of MEEP. The net interlayer
expansion is obtained by subtracting the basal spacing of dry Li-hectorite heated to 650°C (d-
spacing = 9.5 A) from the basal spacing of the synthesized nanocomposite. For example,
MEEP:Li-hectorite (0.5:1) nanocomposite has a basal spacing of 18.9 A, which corresponds to
an interlayer expansion of 9.40 A. The XRD data for all the nanocomposites are summarized
in Table 1.
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Material Basal spacing (A) Net expansion (A) Average crystallite size (A)
MEEP:Li-hectorite (0.5:1) 18.9 9.40 73

MEEP:Li-hectorite (1:1) 21.7 12.2 74

MEEP:Li-hectorite (2:1) 36.4 26.9 126

MEEP:Li-hectorite (4:1) 41.5 32.0 135

Na-hectorite 10.0 - 140

Dry Li- hectorite 9.50 - 182

Table 1. Summary XRD data of hectorites and MEEP:Li-hectorite nanocomposites.

The synthesized nanocomposites are crystalline as indicated by XRD, and a significant increase
in basal spacing is observed as the ratio of MEEP to Li-hectorite is increased. From the XRD
diffractograms of the nanocomposites, the average crystallite size was determined using the
Scherrer formula [28]. The crystallite size appeared to increase upon increasing the MEEP
molar ratio to Li-hectorite, which is possibly due to the significant enhancement in basal
spacing upon loading of the polymer into the layered structure.

Lithium Hectorite A

o/\/ O\/\o/

+F|,:N+ 189 A
| n

I N N

Lithium Hectorite

Figure 4. Schematic arrangement of MEEP in lithium hectorite (0.5:1).

The dimensions of MEEP were estimated using Spartan '08. The average dimension was
determined for the largest possible distance between the ether oxygens on the R-groups in
MEEP, and was found to be approximately 7.9 A for one unit of MEEP [29]. This indicates that
a single layer of MEEP is inserted between the Li-hectorite sheets for the MEEP:Li-hectorite
(0.5:1) nanocomposite, which had a net layer expansion of 9.40 A. The difference of 1.5 A
between the observed basal spacing of the 0.5:1 nanocomposite and the calculated dimensions
of MEEP could be due to the manner in which MEEP is oriented within the layers. MEEP is a
highly flexible polymer and may not necessarily be oriented within the layers as depicted in
Figure 4. For example, a helical conformation may also be possible.
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3.1.2. Thermogravimetric analysis

Thermogravimetric analysis was used to compare the thermal stability of MEEP, MEEP:Li-
hectorite, Li-MEEP, and Li-MEEP:Li-hectorite. This was completed in order to monitor the
thermal stability of nanocomposites with different polymer concentrations and to compare the
stability of salt-complexed materials with their uncomplexed counterparts. The MEEP:Li-
hectorite thermograms were also used to calculate the stoichiometry of the synthesized
nanocomposites.

The thermogram of pristine MEEP (Figure 5(c)) shows that it undergoes a major decomposition
between 230 and 350°C, followed by an onward gradual weight loss. Once MEEP is complexed
with lithium triflate (LiCF;S0;), its decomposition is slightly compromised due to the presence
of the inorganic salt, which appeared to decrease the polymer onset decomposition tempera-
ture by approximately 30°C; thereafter, complete decomposition of the triflate salt is observed
at 420°C (Figure 5(d)).
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Figure 5. TGA data for (a) Li-MEEP:Li-hectorite (1:1), (b) MEEP:Li-hectorite(1:1), (c) MEEP, and (d) Li-MEEP.

Upon polymer intercalation, the nanocomposite thermograms appeared to have three weight
loss steps, where the thermogram of, for example, MEEP:Li-hectorite (1:1) (Figure 5(b))
illustrates a small loss of water near 100°C, followed by the decomposition at 178°C corre-
sponding to the presence of externally lying MEEP. The final decomposition is the gradual
decomposition of the intercalated MEEP occurring at 305°C. This is quite similar to the thermal
behavior of Li-MEEP:Li-hectorite (1:1) (Figure 5(a)), except for the decomposition of the salt
which occurs at around 420°C. The TGA data are summarized in Table 2.
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Material T, (°O) T, (°C) AT, (°C)
MEEP 240 N/A N/A
Li-MEEP 204 N/A N/A
MEEP:Li-hectorite (0.5:1) 205 312 72
MEEP:Li-hectorite (1:1) 178 305 65
MEEP:Li-hectorite (2:1) 176 315 75
MEEP:Li-hectorite (4:1) 170 324 84

T,, onset decomposition temperature of pure MEEP or externally lying MEEP in nanocomposite; T, onset
decomposition temperature of intercalated MEEP in nanocomposite; and AT,, difference in decomposition temperature
of the intercalated MEEP and pristine MEEP.

Table 2. Thermogravimetric data.

As shown in Table 2, the onset decomposition temperatures of the externally lying MEEP (T,)
in the nanocomposites were lower than that of the bulk polymer, which occurs at 240°C.
However, the onset decomposition temperatures of the intercalated MEEP (T) in the nano-
composites are significantly higher than that of the pure polymer, indicating enhancement in
the thermal stability of polymer when sandwiched between the layers of hectorite.

MEEP:Li-hectorite (mol ratio) Stoichiometry

0.5:1 (H,0)061 MEEPy,)017 (MEEPy, ) 025(Li-hectorite)
1:1 (H,0)40 MEEPy,)g.44 (MEEPy,) 075(Li-hectorite)
2:1 (H,0)p.45 (MEEPy,)o71(MEEPy,) 15(Li-hectorite)
4:1 (H,O)p 34 (MEEP¢,,)o 84 (MEEPY,),,4(Li-hectorite)

Table 3. Stoichiometry of MEEP:Li-hectorite nanocomposites.

Since the nanocomposites displayed three decomposition steps, the stoichiometry was
calculated in order to compare the spread between externally lying and intercalated polymer.
It is important to note that the stoichiometry was calculated only for the MEEP:Li-hectorite
nanocomposites, and not for the Li-MEEP:Li-hectorite nanocomposites due to the presence of
lithium salt. The stoichiometry data of the nanocomposites are displayed in Table 3.

As shown in Table 3, when the molar ratio of MEEP is increased with respect to Li-hectorite,
there is an increase in the amount of the externally lying polymer and intercalated polymer.
These observations are in agreement with the XRD data (Table 1), which indicate that the basal
spacing of the intercalated nanocomposite increases when the amount of MEEP is increased.
In fact, MEEP:Li-hectorite (4:1) has almost twice as much of the intercalated polymer compared
to MEEP:Li-hectorite (1:1).
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3.1.3. Differential scanning calorimetry

Differential scanning calorimetry was used to monitor the glass transition temperature (T,) of
pristine MEEP, Li-MEEP, and their corresponding synthesized nanocomposites (Figure 6).

-0.1

Heat Flow (W/g)

-0.6

95 -4‘.5
Temperature (°C)

Figure 6. DSC data for (a) MEEP:Li-hectorite (1:1), (b) Li-MEEP:Li-hectorite (1:1), (c) MEEP, and (d) Li-MEEP.

Material (T, °C)
MEEP =71
Li-MEEP -28

MEEP:Li-hectorite (0.5:1) -
MEEP:Li-hectorite (1:1) -
MEEP:Li-hectorite (2:1) -

MEEP:Li-hectorite (4:1) -

Table 4. Summary of DSC data.

The DSC of pure MEEP indicates a T, of =71°C, which is in fairly good agreement with the
previously reported literature value of —-83°C [30]. Upon complexing MEEP with lithium
triflate (LiCF;SO,), the glass transition temperature (T,) significantly increases to -28°C due to
the crystalline nature of lithium triflate. However, upon intercalation of pristine MEEP or Li-
MEEP into Li-hectorite, a T, is not observed for the ratios used. Due to the lack of glass
transition temperatures in both Li-MEEP:Li-hectorite and MEEP:Li-hectorite nanocomposites,
it is believed that (1) the oxygen atoms of the polymer are potentially interacting with the
tetrahedrally coordinated silicon atoms in the hectorite sheets and restricting chain mobility
or (2) the polymer is no longer flexible when it is intercalated in the layers of hectorite. The
glass transition temperatures are displayed in Table 4.
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3.1.4. Attenuated total reflectance

ATR spectroscopy was used to monitor the bond vibrations in MEEP, MEEP:Li-hectorite, Li-
MEEP, and Li-MEEP:Li-hectorite. More specifically, it was important to determine whether
intercalating MEEP or Li-MEEP into Li-hectorite hinders the flexibility of the polymer, and
ultimately its ionic conductivity (Figure 7).
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Figure 7. ATR results for (a) MEEP, (b) MEEP:Li-hectorite (1:1), (c) Li-MEEP, and (d) Li-MEEP:Li-hectorite(1:1).

Major vibrations (cm™) MEEP MEEP:Li-hectorite(1:1) Li-MEEP  Li-MEEP:Li-hectorite(1:1)
HOH stretch N/A 3686 N/A 3624

Sp? C-H stretch/bend 2877/1457 2883/1457 2896/1457  2887/1457
P=N 1243 1242 1251 1257
P-O-C 959 967 980 972
C-O-C ether 1199-1043 1201 1170-1036 1189

PNP skeletal 849/803/753  848/801/757 855/766 798/768
CF, N/A N/A 1249 1253

C-F deformation N/A N/A 638 638

SO; asymmetric bend N/A N/A 573 573

SO; symmetric bend N/A N/A 518 518

Table 5. Summary of IR data.
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From the IR data, it is observed that the P = N vibration in the pure polymer occurs at 1243
cm™. Upon complexation with lithium triflate, the P =N vibration of the polymer shifts to 1251
cm”, and to 1257 cm™ in the synthesized nanocomposites. This increase in vibrational energy
of the P =N bond is indicative of the increased rigidity of the polymer backbone. The P-O-C
vibration in MEEP shifts from 959 to 967 cm™ upon intercalation into Li-hectorite, indicating
increased rigidity of the polymer side chains. Thus, the IR data support lack of polymer
flexibility upon intercalation, and are in very good agreement with the DSC results. The IR
data are summarized in Table 5 [8].

3.1.5. AC impedance spectroscopy

Impedance measurements were conducted on Li-MEEP and the Li-MEEP:Li-hectorite nano-
composites. Since the DSC and IR data indicated that the polymer-chain flexibility was
restricted in the nanocomposites, it was necessary to investigate the ionic conductivity
properties of Li-MEEP prior to intercalation, and post-intercalation. A complex plane plot of
the impedance of an Li-MEEP sample is given in Figure 8. High-frequency data (10 kHz) is
near the origin, and low-frequency (0.01 Hz) at the upper right.
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Figure 8. Complex-plane plot of Li-MEEP impedance at 300 K.

As shown in Figure 8, Li-MEEP demonstrates a curve typical for an ionic conductor. The value
of Re(Z) at which Im(Z) goes through a minimum (about 7 x 107 Q) in Figure 8) corresponds
approximately to the resistance (R) of the sample. The value of R and the dimensions of the
polymeric film were used to calculate the ionic conductivity of the sample. In order to obtain
more accurate values of R from the impedance data, a complex nonlinear least-squares fit was
done with an equivalent circuit model using the program LEVMW [27]. A three-component
equivalent circuit consisting of a resistor (R), a constant-phase element (CPE) that models the
effects of the blocking electrodes, and a parallel capacitor (C) was used and is shown in the
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inset of Figure 8. Using the resistance value R and the dimensions of the polymeric film, the
ionic conductivity of Li-MEEP was calculated.

Ionic conductivity measurements were performed within the temperature range of 220-310 K,
and the results for a typical Li-MEEP sample are displayed in Figure 9. As is typical for ionically
conducting polymers, the conductivity drops rapidly as the temperature is reduced, and for
this sample it was too small to be measured with our system below 260 K.
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Figure 9. Variable-temperature ionic conductivity of Li-MEEP.

The room temperature ionic conductivity of Li-MEEP samples ranged from about 4 x 10 to
1.3 x 10° S/cm, which is in agreement with the literature [11, 12]. However, upon intercalation
of Li-MEEP into Li-hectorite, the conductivity of the resulting nanocomposite material was
below our detection limit, which in the case of these cast film samples is about 107 S/cm. These
observations further indicate that there is an interaction occurring between the polymer and
the layered structure that is ultimately inhibiting the nanocomposites from conducting lithium
ions.

4. Conclusions

MEEP has been intercalated into Li-hectorite. A series of nanocomposites have been created
by varying the mole ratio of the polymer with respect to the clay. The nanocomposites were
characterized by TGA, DSC, FTIR, XRD, and AC impedance spectroscopy. XRD data confirm
the successful and complete intercalation of MEEP into the layered silicate. TGA data confirm
that increasing the molar ratio of MEEP with respect to the Li-hectorite results in a larger
amount of the polymer within the layers. In fact, MEEP:Li-hectorite (4:1) has approximately
twice the amount of intercalated polymer versus MEEP:Li-hectorite (1:1). TGA also indicates
an enhancement in thermal stability of the intercalated polymer versus the pristine polymer
for all nanocomposites. For instance, the intercalated polymer in MEEP:Li-hectorite (1:1) is
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thermally stable up to 305°C, while the pure polymer decomposes at 240°C. The room
temperature ionic conductivity of Li-MEEP was determined to be about 1 x 10° S/cm; however,
the polymer-salt complex displayed high ionic resistance when intercalated into Li-hectorite,
and hence the ionic conductivity of the nanocomposites was too small to be determined (below
about 107 S/cm). The impedance data are in good agreement with the DSC results, where no
glass transition temperature has been detected for all the synthesized nanocomposites. ATR
spectroscopy also confirms that the rigidity of the polymer backbone increases upon com-
plexation with lithium triflate, and when the lithium complexed MEEP is intercalated into Li-
hectorite.
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