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Abstract

The current description of the function of the human androgen receptor (AR), as a
transcription factor directing androgen responsive gene expression, is limited in scope
and thus is unable to account for the varied cellular and physiological transformation
observed in the development and progression of prostate cancer (CaP). The chapter will
focus on four important aspects of AR and CaP investigations: (1) a description of AR
somatic mutations and the perils of AR-directed therapeutics; (2) our characterization of
AR protein interactors that have imbued new functional properties for AR linked to
prostatic disease; (3) review of the advances made and shortcomings of AR mouse models
in describing CaP onset and progression; and (4) speculate as to the mechanisms by which
new mutations can originate and initiate disease onset.

Keywords: androgen receptor, prostate cancer, somatic mutations, interactome,
mouse models, gain-of-function properties, therapeutic resistance, mutational land‐
scape

1. Introduction

Advanced DNA sequencing technology and the information garnered from it has ushered a
new era especially poignant to the genetics of cancer. In present and next-generation sequenc‐
ing methodologies in conjunction with the establishment of consortiums (COSMIC: and TCGA:
http://cancer.sanger.ac.uk/cosmic and TCGA: tcga-data.nci.nih.gov/tcga), whose major efforts
are to characterize the cancer genome of a large number of cancers in a systematic fashion,
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modern cancer genetics has come to the forefront. These “mutational landscapes” have redefined
cancer genetics and will dramatically direct cancer research for decades to come [1–10].

Modern cancer genetics has now unequivocally demonstrated extensive somatic DNA
alterations many times more than previously envisioned [11–14]. Although dependent on
specific tumor types, somatic mutations are in the order of tens of thousands; the present-day
technology most likely underestimates the true number of mutations as mutations occurring
in less than 10–15% of cells cannot be detected. Advances in single-cell DNA analysis now
suggest that indeed many more mutations do exist at in smaller number of cells [15, 16]. More
importantly, there is an advanced degree of intertumoral heterogeneity where the same tumor
types in different patients share only a few DNA alterations [17, 18]. As well intratumoral
heterogeneity is extensive, where in the same individual’s tumor, there are many different
DNA alterations in specific subpopulation of cells. Also, the DNA sequence defined for a
specific tumor is a composite sequence, where an amalgamation of small “bits” of DNA
sequence, whose origins are from many different cells, is aligned to generate the “tumor” DNA
genome; where in reality, no individual tumor cell most likely has that defined sequence.

Cataloging sequence alterations are the mainstay on present-day consortiums, important in
defining tumor heterogeneity and also to help understand what potential effects these
alterations may have on neoplastic initiation and evolution. Many mutations evoke specific
gain of function properties implying driver capabilities [19]. The true understanding of these
mutations is an extremely daunting task; defining these new gain-of-function properties is
presently done in the context of the somatically mutated protein in question without any of
the mutations of other proteins present; to truly account for real gain of function properties
would require the presence of all mutations. The possible permutations and combinations of
tens-of-thousands mutations on many proteins and the outcome on cellular physiology are
incomprehensible even more so when cell-to-cell functionality is implied.

Nonetheless, the establishment of mutational landscape databases with defining characteris‐
tics, in conjunction with the required systems biology and network analysis, has led to many
insights in tumor dynamics. What has been lacking in cancer fundamentals are investigations
addressing the origins of these vastly accrued DNA alterations.

Cancer hallmarks defined by Hanahan and Weinberg have more or less been universally
agreed upon and now include “enabling hallmarks,” those hallmarks that are not descriptive
in nature but imply distinct contributions to neoplastic development [20]. One of these
enabling hallmarks is referred to as genomic instability. A more apt description would be the
connotation of mutator phenotype, originally described by Lawrence Loeb [21–23]. Briefly, the
mutator phenotype is a trait shared by all cancer cells that endow cancer cells with the ability
to create or enhance new and constant DNA alterations. This hallmark gives neoplastic cells,
a constant source of new mutations allowing the genetic background to become widely
disparate. Such cellular genetic diversity in turn allows for extreme selection processes to
dictate tumoral evolution; selection processes are multiple: microenvironment on tumor cells,
tumor cells on the microenvironment, and tumor cells on other tumor cells.
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The origins of tumor DNA alterations are indeed critical. Therefore, it is hard to imagine that
a tumor and tumor evolution can exist without any DNA alterations. Mutational load directly
impacts tumor aggressiveness and metastatic potential. Understanding the origins of somatic
DNA alterations is now fundamental to the understanding of tumor initiation and evolution,
and the extent of DNA alterations is most likely more critical than the actual single definition
and characterization of specific DNA alterations given the tremendous heterogeneity that
exists.

2. Somatic mutations and prostate cancer

Prostate cancer (CaP) in many ways is unique. It is extremely common; as much as 50% of men
will have CaP above the age of 55 and increases in incidence afterwards [24]. It is for the most
part slow growing and only in a small percentage can develop advanced and life-threatening
disease but still represents a significant number of individuals. However, due to the high
incidence rates for CaP and the highly variable and unpredictable effects on morbidity and
mortality, CaP is extremely vulnerable to over diagnosis (as aided by screening advocates) and
thus overtreatment [25, 26]. Treatment regimens have been extremely controversial with the
no clear benefits of endocrine manipulation in early disease; most likely, the era of anti-
androgens or androgen deprivation therapy (ADT) in early disease will not be adhered to, the
treatment of which may have provoked more aggressive disease and linked to selecting out
very worrisome gain-of-function androgen receptor (AR) mutations [27–29]. Surgical prosta‐
tectomy remains the only curative procedure if the disease was localized to the prostate at the
time of surgery.

CaP is universally multifocal and is uniformly associated with hypertrophy or hyperplasia. Its
pathological scoring (Gleason) is based on the fact that multiple lesions coexist and, by itself,
is solely used to assess overall staging [30]. Multifocal cancers are typically genetic in nature,
associated with DNA repair deficiencies and somatic loss of heterozygosity. The best example
of endocrine genetic cancers is MEN2 syndrome that has been now well studied in all age
groups and dramatically displays the hypertrophy to hyperplasia to frank carcinoma evolution
[31]. There is no obvious related gene candidate in multifocal CaP.

2.1. Androgen receptor

The X-linked AR protein is a member of the nuclear receptor superfamily [32, 33]. It is a ligand-
inducible protein containing a polymorphic N-terminal region, a central DNA-binding domain
(DBD), and a C-terminal ligand-binding domain (LBD) [34–36]. Although the AR gene is
classically not associated with direct DNA maintenance, it is a single allele (loss of hetero‐
zygosity is not a prerequisite) and remains the most prominent candidate directing CaP
initiation and evolutions. Hypogonadal individuals with low levels of 17C steroids or with
elements of androgen receptor (AR) deficiency, CaP, are extremely rare. Most if not all
molecular endocrinological studies of CaP implement the AR g as being a pivotal player in
CaP. In all CaP, AR is highly mutated (androgendb.mcgill.ca) [37–42]. The most recent CaP
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mutational landscape is very comprehensive and is the new reference for mutational analysis
of genes in both initial disease and more advanced disease [39]. In this study, AR remains the
most consistent altered gene and is the earliest gene to be altered in localized diseases: AR gene
amplifications is then followed by AR splice variants and AR missense mutations, but these
alterations are hard pressed to explain multifocality. Other somatic mutations found include
AR-associated proteins (ETS fusions, FOXA1, ZBTB16, NCOR1, NCOR2); PIK3 pathway
PIK3CA, (PIK3CB, PIK3R1, AKT1); DNA repair (APC, BRCA2); and WNT signaling (RNF43);
Cell cycle (RB1) [39].

2.2. AR and the CAG polymorphic tract

The AR gene has an extremely rare attribute. A polymorphic pure uninterrupted CAG tract in
exon 1 is present coding for a polyglutamine tract in the N-terminus of the AR. This tract varies
in length in individuals (n = 12–31), and tract length also varies racially [43–49]. This tract also
has small but very important effect on AR functionality: smaller length polyglutamine tract
ARs have more transcriptionally prowess [50]. The fundamental explanation for the presence
of the AR polyglutamine tract within the AR protein itself is not known.

AR CAG tracts are unique to primates and are uninterrupted in almost all species (the
exception being mice). It is interesting that humans vs. other primates have the longest tract
and thus are the most unstable.

AR CAG tracts are unique to mammals and are uninterrupted in almost all species (the
exception being mice) [34, 51]. Another trait related to all trinucleotide repeats is their inherent
inability to remain stable; thus, AR CAG tract lengths are known to change in length somati‐
cally in various tissues including primary gonadal tissue [52, 53]. It is interesting that humans
vs. other primates have the longest tract and thus are the most unstable. The instability exists
at two levels: at cell division with DNA replication and more importantly with AR transcrip‐
tion by the transcription excision repair machinery. Instability is usually biased toward
expansion rather than contraction (2:1).

In a study of CaP and AR CAG tract instability, AR CAG tract instability existed in normal
tissue to a certain degree but was very much enhanced in adjacent CaP tissue [52, 54]. The CAG
tract lengths varied from one foci of CaP to another foci of CaP in the same patient. The
instability of the AR CAG tract is many orders of magnitude more than stable random DNA
sequence and approaches error rates seen in DNA repair deficiency states. It thus remains a
solid candidate for the gene that accounts for the multifocality of CaP. In brief, those cells that
undergo the largest AR CAG tract contraction are the most active AR. These cells in turn
through overactive AR pathways will provoke new DNA alterations and thus are ordained as
a mutator phenotype.

2.3. AR somatic mutations

It has clear involvement in distinct diseases due to due well-characterized inherited loss-
of-function or somatic acquired gain-of-function mutations. The one same protein with
diverse-heterogeneous mutations, each with clear phenotypes, offers unique complementary
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structure-functional studies. Exploiting the AR mutational properties found in individuals
with androgen resistance syndromes (loss-of-function AR) or CaP (gain-of-function AR), in
conjunction with receptor kinetic studies, molecular biology, advanced dynamic structural
modeling, and proteomic-coupled network analyses studies, has described many
fundamental and new processes to account for disease processes [55–59].

Given the central role that AR has in prostate biology, it is not unexpected that somatic AR
mutations may be selected for, adding to the CaP repertoire powerful new functions provoking
neoplastic advancement [52, 54, 60, 61] (Figure 1). Recent studies in support of initial studies
have again demonstrated that although most advanced prostatic cancers are uniformly
androgen independent, the AR is still a very important contributor to the more progressive
fatal disorder [62, 63]. Nearly, all “androgen-independent” or “castrate-resistant” prostatic
tumors express high levels of AR, and levels are predictive of progressive disease [64, 65].
Indeed, as many as one-third of tumors exhibit AR gene amplification [66] and AR somatic
prostate missense mutations and splice variants are well documented [38, 67, 68]. A number
of somatic CaP AR (e.g., T877A) mutants have unique gain-of-function properties; they can
bind several classes of steroids promiscuously with subsequent transactivation, be hyperacti‐
vated by normal ligands [69, 70] or be constitutively active without ligand [71]. Even more
surprising is that anti-androgen treatments [e.g., flutamide, cyproterone acetate (CPA) or
bicalutamide, and even the latest generation of anti-androgens (enzalutamide)] have selected
out specific somatic AR gene (AR) mutations [72–75]. Missense mutations also have other
related gain of functions beyond their relaxed ligand-binding parameters; normally ligand-
binding promotes a dramatic conformation change inducing helix 12 movement creating a
new co-activator interacting site. In T877A, helix 12 is slightly misplaced and alters the co-
activator binding where co-activator binding motifs preferences are changed. As well another
gain of function property is manipulated that is AR N-C-terminal interactions are favored.

Figure 1. Schematic illustration of cataloged AR Somatic Mutations from the androgen receptor database. Mutations
illustrated with the same color were present in the same cancer specimen. Mutations in red were found in the germline
(image is courtesy of http://www.androgenbd.mcgill.ca">www.androgenbd.mcgill.ca, with permission from Dr. Mark
Trifiro) [37].
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Thus, any somatic mutated AR most likely will inherit multiple new functions, which can affect
the whole AR complex itself.

In advanced CaP, new AR variants have been found (Figure 2). AR-V7 and ARv567es splice
variants have an intact NTD and DBD. The AR-V7 splice variant excludes exon 4 through 8,
resulting in a deletion of the LBD and the hinge regions, whereas ARv567es excludes exons 5
through 7 creating a LBD deletion; thus, these variants display “constitutive” ligand-inde‐
pendent transcriptional activity. It has been observed for many years that steroid receptor C-
terminal truncated variants have constitutive activity; thus, in full-length steroid receptors, the
presence of the C-terminal domains acts as a functional repressor whereupon ligand binding
alleviates C-terminal repression.

Figure 2. Schematic illustration of AR truncated and splice variants.

The repressive AR splice variants differ significantly from full-length AR in their transcrip‐
tional programs and subcellular localization [76, 77], implying different potential functions
from wild-type AR (AR-WT). In an analysis of 46 castration-resistant prostate cancers (CRPCs),
80% expressed full-length AR, 73% expressed ARv567es and AR-V7; furthermore, 20% of
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metastatic cases expressed ARv567es solely [78]. Western blot analysis appears to reveal that
AR splice variants are also expressed in a number of different prostatic cancer cell lines [79];
however, it is not quite clear whether these variants are actually active or possess any of the
attributed “constitutive” activity. Attention has also been given to the molecular mechanism
by which these splice variants may arise. One hypothesis asserts that genomic rearrangements
is one mechanism [80, 81], which maybe a valid means for established and immortalized cells
lines, but more difficult to account for in a progressive disorder. Such a precise process for
DNA deletion/rearrangement to independently and exactly occur so many times to result in
the expression of these variants is very unlikely. Most recently, a more valid mechanism has
been put forward that involved the overexpression of specific RNA splicing factors, U2AF65
and ASF/SF2, influenced the expression of AR-V7 splice variant in CaP cell lines [82]. Alter‐
native RNA splicing has been shown to change during disease progression, and thus, the
expression of specific RNA splicing factors during different stages of disease could more
adequately account for the both frequency and temporal incidences of these AR variants.
Alternative RNA splicing can also be considered another degree of added genetic heteroge‐
neity to evolving neoplasias [83–86].

These gain of functions can extend to other facets of AR activity, namely the ability to attract
different interactors or interplay with other pathways and possibly target different genes; these
diverse gain-of-function attributes are likely to be manifested by a changed constitution of
mutant AR complexes, which may well be cell and ligand specific and lend to the molecular
pathological processes. Thus, cumulative analysis still supports the AR as a pivotal role player
in prostate cell tumor biology, as it plays a fundamental and decisive role in prostate cell
biology including very important prostate cell metabolism; what is left to be assessed is what
aspect of wt or mutant AR functionality promotes directly or indirectly the mutator phenotype.

3. AR protein complexes: contributors to CaP progression

Somatic gain-of-function mutations allow neoplastic cells to acquire new properties that can
aid the cancerous cells in finding new avenues for progression to more advanced disease. A
multitude of AR gain-of-function attributes are likely to exist and most probably reflected in
the composition of the AR interactome. As such, many proteins have been identified that
interact with the AR and collaborate with it to execute its transcriptional program [87–89].
These observations suggest that the interplay between the AR, its associated interactors, and
specific transcription factors can be selective and very dynamic [37, 58, 59, 87, 89]. All together,
these findings also point to the complexity of the AR-interacting protein unit, suggesting that
many functions of the AR are beyond our current understanding. Furthermore, the great
functional diversity of the components of AR complexes exemplifies the intricate nature of
protein–protein interactions associated with generating the appropriate AR biological output,
and that mutant CaP ARs may have a their own unique ability to define new interactions.
Therefore, the functional effect of AR needs to be investigated and show that certain AR
properties, through protein–protein interactions can confer a growth advantage to cells. To do
so, one would need to take into consideration a number of factors: (1) mutational status of the
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protein; (2) ligand status; (3) an amendable technology to assess protein–protein interactions;
and (4) an encompassing process by which to analyze the data that would provide information
on ontological function and most importantly clinical relevancy.

3.1. AR protein isolation methodology

To date, several techniques have been employed to isolate AR protein complexes including
two-hybrid screens and GST pull-downs; however, several limitations have been an obstacle
to isolating complexes in their natural cellular environment. First, previous approaches have
either used yeast or bacterial systems [90–92]. One shortcoming of these systems is that full-
length AR cannot be expressed; therefore, only N- or C-terminal portions or specific AR
domains have only been used. Second, within these systems, the use of a truncated AR, folding,
and post-translationally modifications issues arise. Finally, the single most critical aspect of
charactering any protein complex, for AR maintaining ligand binding, to the receptor during
the isolation process, ensures an “active” complex is isolated. Therefore, our laboratory has
developed a mammalian tissue cell culture expression and purification system that retains the
ability of AR to maintain its ligand-binding activity [93, 94]. The purification method employed
by the following methodology ensures up to 90% of labeled-androgen ligand is still bound to
the AR following fractionation. We therefore have the ability to capture both cytoplasmic and
nuclear ARs under physiological conditions, with excellent recovery, that demonstrate
measurable hormone binding even in in vitro conditions. We then have undertaken the process
of purifying a number of AR complexes: (1) 0CAG-AR, T877A-AR, WT-AR, in the presence or
absence of the synthetic androgen mibolerone (MB) [59]; (2) T877A-AR, in the presence of a
panel of hormone ligands (DHT, MB, testosterone, R1881, estradiol, dexamethasone, proges‐
terone, and cyproterone acetate) [58]; (3) AR-V7 and ARv567es (Paliouras and Trifiro, unpub‐
lished data). We have been able to confirm the purification of our complexes by assessing
known AR interactors [59]. However, to truly define the spectrum of proteins in the AR
complexes, a more robust methodology and platform was needed, and as such, mass spec‐
trometry approach was employed. Data generated by mass spectrometry were then analyzed
using a sophisticated network analysis methodology.

3.2. Proteomic-coupled network analysis

Our ability to capture both liganded and unliganded AR complexes by affinity chromatogra‐
phy under physiological conditions allowed us to pursue a proteomics approach to charac‐
terize the components of AR complexes. This can be done by subjecting such complexes to
tryptic digestion followed by MS to assign protein identification [95–97]. To our MS data, a
label-free quantitative method was also applied for the comparison of peptide abundance
across the different experimental paradigms [98, 99].

Therefore, to highlight potentially novel gain-of-function properties associated with mutant
CaP ARs, comparative proteomic characterization studies of AR complexes were done in
different experimental backgrounds. To do so, we performed network analysis on individual
AR-interacting protein lists derived from our proteomic studies and pursued comparative
studies to analyze changes in protein composition based on stimulation condition. We have
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compiled a human protein interaction data from diverse data resources and annotation
databases, such as Biomolecular Interaction Network Database (BIND) [100], the Database of
Interacting Proteins (DIP) [101], Human Protein Reference Database (HPRD) [102], IntAct
[103], and Molecular INTeraction database (MINT) [104], most of which contain curated
interaction data and high-throughput data, consisting of 4000 proteins and 22,000 signaling
relations/protein interactions.

Quantitative MS data, between stimulation conditions, were used to discern protein abun‐
dances. These values were then incorporated into the protein interaction network mapping,
to represent a “strength of interaction” coefficient. Between the different experimental
conditions, a comparative network analysis was applied [105–108], which was different
between our stimulation-specific networks, that is, hierarchical clustering. Immediately what
was clear that specific AR protein complexes can be distinguished by the presence or absence
of androgen [59]. Analysis of the T877A-AR promiscuous mutant, under different hormone
stimulations, showed that although each hormone is able to induce androgen-dependent gene
activation [e.g., prostate-specific antigen (PSA)], the proteome profile of each hormone is
different. Moreover, although four different androgens were used (DHT, testosterone, MB,
and R1881), the proteomic profiles of these androgen ligands do not segregate together. In our
hierarchical clustering, we observed that progesterone and dexamethasone AR complexes
have proteomic profiles that look like R1881 and MB, respectively [58]. Most recently, analysis
of ARv567es protein interactome is very different from androgen stimulated full-length AR
(unpublished data), even though ARv567es variant has been characterized as a “constitutive‐
ly” active receptor [76, 77].

From the each AR variant protein interaction network, specific network modules (a set of
interacting proteins constituting a subnetwork) are delineated by number of linked interacting
proteins interactions and ontological function. The association of subnetwork modules based
on biological processes may suggest pathways involved in either tumorigenesis or tumor
metastasis. Therefore, to establish statistically significant biological functions, we also imple‐
mented the incorporation of Gene Ontological (GO) terms onto each protein the network. We
extracted subnetworks in which GO-term-mapped-nodes were directly linked and highlighted
subnetworks and pathways to identify gene enrichment of the proteins/genes from a set of
clinical prostatic microarray datasets (http://www.ncbi.nlm.nih.gov/geo/) [109, 110] and RNA
sequencing (https://tcga-data.nci.nih.gov/tcga/) [8, 111]. Results show that expression levels of
the interacting partners/GO-terms were able to discern normal vs. cancer and correlated with
patient survival. More intriguing, different AR protein interaction clusters could differentiate
prostatic disease between White (non-Hispanic) vs. African-American males [58]. Nor could
we find a gene set that was shared between the two diverse and genetically distinct groups of
men. This would suggest that there are AR functional classes that can be used to predict
prostatic disease between genetically diverse groups and presumably determine therapeutic
modalities. However, the underlining mechanism for these results is not known at this time,
although differential population-specific AR activity and disease susceptibility have been very
well described clinically [112–115]. Although there have been numerous studies employing
microarrays, and recent proteomic screens [116, 117], simple single gene or protein analysis is
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inadequate to the study of complexity of disease processes, if conclusions toward clinical
outcomes wish to be made. Although several “single” genes and proteins have been identified
in these studies that are involved with distinct tumor progression and survival profiles and
are proposed as prognostic markers; however, once these genes begin to be analyzed as a
combined “cluster” model, they do not to translate into statistically significant results related
to clinical specimens. The lack of understanding how these genes and proteins act within their
functional context and how these components are integrated into signaling pathways and exist
as dynamic complexes to execute distinct programs may be responsible for their failure to
predict disease progression.

3.3. AR: More than a transcription factor

The above-mentioned work now strongly suggests that the AR functionality extends beyond
its classical role as a transcription factor and includes the novel properties of alternative RNA
splicing, DNA methylation, proteasomal interaction, and RNA translation at polyribosomes
[58, 59], with evidence now suggesting that the ARv567es variant may also participate in
glucose metabolism (Paliouras and Trifiro, unpublished data). A number of novel AR-
interacting partners have been characterized, with the majority having been identified in the
proteomic screen. These proteins include, heat-shock protein 27 (HSP27) [118], DDX5 [119],
SAM68 [120], deleted in breast cancer 1 (DBC1) [121], minichromosome maintenance 7
(MCM7) [122], α-actinin 4 (ACTN4) [116], peroxiredin 1 (PRDX1) [123], DEAD-box polypep‐
tide 17 (DDX17) [124], nucleophosim (NPM1) [125], and Ying Yang 1 (YY1) [126]. Furthermore,
these findings point to the complexity of the AR-interacting protein unit and suggest it is
involved in a number of different pathways that could function as part of a group of inter‐
connected pathways, whose individual compositions alter depending on AR mutational and
stimulation status, to generate the appropriate AR biological output.

4. Animal models for CaP

The impact of animal models, especially mouse models, has contributed tremendously to our
understanding of tumorigenesis, disease etiology, and drug development. However, one of
the difficulties with animals is recapitulating the heterogeneousness of the human cancer.
Although mice and other animals do share a high degree of genetic similarity and protein
homology, there are still some stark differences in trying to mimic human disease. For use of
genetically engineered mouse models (GEMMs), several outstanding issues have arisen for
the study of CaP and include the following: animal life span and correlating disease onset and
stages of disease progression to human counterparts; the dissimilarities in prostate organs;
diet and nutrition; and assessing clinical relevancy to disease pathology, etiology, and
outcomes. For CaP researchers, along with GEMMs, a number of other animal model ap‐
proaches can also be utilized, including a number of spontaneous non-murine CaP models,
will also be discussed. Moreover, throughout the discussion of assessing CaP animal models,
attempts will be made discuss the role AR continues to make.
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4.1. Spontaneous non-murine models

One of the first animal models to study CaP was in rats. Rats are one of the few animals that
develop spontaneous CaP disease [127, 128]. The best studied rat model is the Dunning rat
model, which develops slow-growing, well-differentiated, and non-metastatic tumors. Some
of the outstanding issues that arise are the rarity of tumors and the variability in the pheno‐
types. There is also a long latency period in tumor development and a lack of metastasis.
However, tumors from Dunning rats are initially androgen dependent and eventually
becoming androgen independent. Further refinement of Dunning rats has produced animals
that are able to develop highly metastatic tumors that spread to lymph nodes and the lungs
[129].

CaP also spontaneously occurs in dogs and most closely resembles humans in terms of disease
characteristics [130]. CaP in dogs is age dependent, which ideally allows for the study of disease
progression, and, in 24% of cases, is able to metastasize to bone. DPC-1, CaP cells derived from
dogs, have also been observed to potentially display a number of molecular characteristics
including androgen-dependent gene profiling with positive prostate-specific antigen (PSA)
and prostate-specific membrane antigen (PMSA) expression [131, 132]. The expression of the
progressive disease PMSA marker in DPC-1 cells have allowed for the development of directed
radiolabeled-PMSA monoclonal antibodies for SPECT/CT imaging [133]. Another dog model,
using cells derived from bone metastasis and injected into dogs, could similarly be used for
PET imaging [134]. However, tumors do not regress in castrated dogs and thus are androgen
independent. As with rats, there is also a relatively long period for tumor development in dogs.
However, the high costs, the gestation period, and the difficulty to genetic manipulate the
animals make dogs a very difficult model to use experimentally.

4.2. Genetically engineered mouse models (GEMM) for prostate cancer

Murine models are also not without their limitations, especially as there has not been a single
reported case of mice spontaneously developing CaP [135]. Mice have the similar limitations
as all other animal models that they are significantly thousands of time smaller and live 30–50
times shorter than humans [136]. As such, a great deal of time and effort has been put into
genetically manipulating mice so that they do develop CaP and accurately represent the
human disease. However, the human prostate is anatomical different from its mouse coun‐
terpart, as the mouse prostate has a lobular structure consisting of four lobes (anterior/
coagulating, ventral, dorsal, and lateral) [137], the human prostate organ is a single lobe
divided into three zones (central, transitional, and peripheral), and whether the stroma cells
surrounding the mouse lobes is similar in comparison with the human stroma cells. The
majority of human CaP is also found in the peripheral zone. In mice, the dorsal/lateral lobes
have been best described as most similar to the human peripheral zone [135, 138]. On closer
assessment, human and mouse prostates become more similar, with stroma cells surrounding
epithelial cells. The epithelial cell compartment is also comprised by two cell layers (basal and
terminally differentiated luminal cells); also, there are populations of epithelial cell precursors
and neuroendocrine cells. In mice, basal cells differentiate into luminal and neuroendocrine
cells during prostate development [135, 139].
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From the first GEMM for prostate cancer (CaP) developed by Greenberg et al., 1994 [140], to
the most recent AR splice variant model by Liu et al. [141], no single model accurately
encompasses the entire spectrum of human CaP progression. As CaP is late onset and slowly
developing disease, it would be counterintuitive to experimental design. Thus, criteria need
to be considered when using mouse models: (1) should reproducibly recapitulate one or more
stages of disease progression; (2) should originate within epithelial cells of the prostate; (3)
although ideally progression to invasive adenocarcinoma would be desired, but prostatic
intraepithelial neoplasia (PIN) should be observed and display associated pathological criteria
such as increased inflammation; (4) should display the molecular pathology observed in
human CaP tumors, this would include gene and protein expression profile changes that are
indicative of an androgen responsive tumor; (5) tumor should respond to ADT or castration.
Often times in humans, failure to respond to ADT is linked with the emergence of CRPC and
is usually associated with increased expression and nuclear localization of AR since CRPC
remains dependent on AR signaling [142]; (6) tumors should achieve bone metastasis (common
sites of metastasis observed in human patients). Although rare bone metastasis has been
observed in some GEMM, visceral (lung and liver) metastasis appears to be most common.

4.2.1. AR targeted models

Several attempts have been undertaken to produce a GEMM that targets AR signaling and
function. The mouse AR (mAR) shares over 90% homology with its human ortholog; however,
mAR interestingly lacks an expanded CAG-polyglutamine tract, instead mice possess a mixed
CAG/CAC-glutamine/histidine tract. One of the first AR-targeted mouse models was to target
the overexpression of mAR to the prostate secretory epithelium, using the prostate-specific
and androgen-responsive mouse probasin (Pb) promoter [143]. By 52 weeks, mice developed
high-grade prostatic intraepithelial neoplasia (HGPIN) by 52 weeks. Mice also showed
increased proliferation in dorsal/lateral and ventral lobes as marked by increased expression
of Ki67 proliferation marker. Even with the increased expression/activity of the mAR, it was
insufficient to progress prostatic pathology to CaP.

Another group of investigators opted to take into consideration the differences in the genetic
polymorphism of the polyglutamine tract between mice and humans and replace exon 1 of the
mAR with exon 1 of the human AR [144]. Three transgenic whole knock-in “humanized” AR
mice expressing three different polyglutamine tract lengths (12Q, 21Q, and 48Q) were created.
As the length of the polyglutamine tract is linked to AR activity and risk for CaP [34, 51], the
reasoning behind the three mice was to differentiated disease progression with AR activity.
All mice appear to maintain androgen-dependent gene expression, however, do not develop
any prostatic pathology, even with the short 12Q tract mouse. However, when these mice were
crossed to TRAMP mice (see below), the length of the polyglutamine tract was linked to the
initiation of prostatic tumors, with shorter having higher incidence of tumors vs. longer tracts,
which appear to offer a degree of protection in tumor initiation. Of note, researchers also
assessed AR mutations of tumors from their 21Q humanized AR crossed to TRAMP mice under
a number of different conditions (intact, intact/bicalutamide, intact/flutamide, and castrated).
Along with assessing specific somatic mutations (missense, non-sense, small indolent inser‐

Prostate Cancer - Leading-edge Diagnostic Procedures and Treatments104



tion/deletions), they also assessed changes in the length of polyglutamine tract. They found
an average mutation rate of 4.0/10,000 bp of AR coding sequence, with missense mutations
accounting for 54.1% of putative mutations, with a majority of mutations identified in one or
two clones per tumor [145]. Half of the mutations identified also were found in the LBD region,
as has often been shown to be responsible for promiscuous ligand-binding gain-of-function
properties of the receptor [68, 146]. Contraction of the polyglutamine tract was also assessed,
as it is also commonly observed in disease initiation; however, it was not observed. Although
this AR mutation rate is higher than reported in clinical samples [39], it does highlight the
mutational sensitivity of AR correlated to disease progression.

Recently, a GEMM was created to study the role of the AR splice variant, ARv567es, in CaP
development [141]. ARv567es clone was cloned downstream of androgen responsive Pb
promoter, where endogenous mAR would initially drive expression of the ARv567es, then
upon castration of the animals, an adequate expression of ARv567es would then continue to
expand its own expression. Thus, the investigators would be able to study the influence of
ARv567es on the progression of CaP in castrate-resistant state. The coordinate expression of
full-length AR and ARv567es variants were able to illicit epithelial hyperplasia by 16 weeks
and invasive adenocarcinoma by 52 weeks. Upon castration at 16 weeks, mice were able to
maintain nuclear localization of ARv567es and able to develop more aggressive neoplasias
than sham controls. Gene expression profiling of tumors from ARv567es castrated mice also
suggested that there is an enrichment of oncogenic pathways, including Wnt/β-catenin, NFkB,
and K-Ras signaling, that have been linked to aggressive CaP.

4.2.2. TRAMP and LADY

The first murine prostate cancer models took advantage of some recent advances in the areas
of oncogenetics and steroid hormone receptor functionality. As such, the viral SV40 early
region, comprised of the large T antigen (Tag) and small t antigen, was cloned downstream of
the androgen hormone responsive rat Pb promoter. After selection of lines of animals with
higher expression of SV40 early region in the ventral and dorsal lobes, it yielded the transgenic
adenocarcinoma mouse prostate (TRAMP) model [140, 147]. TRAMP mice develop progres‐
sive forms of CaP, even distant site metastasis. They are characterized with rapid development
of PIN by 12 weeks with adenocarcinoma, predominantly in the dorsal/lateral lobes, arising
by 24 weeks of age. The mice can also display castrate-resistant disease, where mice castrated
at 12 weeks did not affect primary tumor development or metastasis in the majority of mice
with 100% in the lymph and 67% lung metastasis [148].

The LADY CaP model is similar to the TRAMP model, in that it utilizes, rather than the entire
SV40 early region, only the large T antigen under the control of the long 12-kb Pb promoter
[149]. These mice also lead to the development of hyperplasia and PIN by 10 weeks, followed
by high-grade epithelial dysplasia and adenocarcinoma by 20 weeks. By 33 weeks of age, the
mice display metastatic disease to the liver, lung, and bone with a 90% penetrance [150]. The
metastatic tumors are all neuroendocrine type cancers, similar to TRAMP metastatic tumors
[151].
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TRAMP and LADY models also have been used for a number of preclinical drug studies [152–
161]; however, questions arise Whether a model that develops localized primary prostatic
disease between 20 and 24 weeks is a proper representation of human disease evolution?
Furthermore, these models can be referred to as “brutish” with the utilization of the SV40 T
antigen region; as such a genetic element has never been implicated in human CaP. However,
the T antigen has been identified to bind and inhibit TP53 and RB tumor suppressors, the
molecular chaperone DNAJ, and complement p300/CBP, while small t antigen has been shown
to bind to the phosphatase PP2A and a number of proteins known to contribute to CaP and
other neoplasias [162]. Loss-of-function/deletion mutations TP53 [163–166] and RB [167–172]
have been linked to CaP progression, and together, DNAJ [173–175] and p300/CBP [87, 176]
have also been describe as AR protein complex proteins and shown to be involved in mediating
AR signaling [37, 59, 87]. However, even if the TRAMP/LADY models can be considered feed-
forward models, because of their dependency on AR signaling, to both drive expression of
SV40 through the Pb promoter and simultaneously potentially contribute to a favorable
cellular environment for AR function; the other questions to arise are Whether the molecular
pathology of TRAMP/LADY mice share concordance with expression profiles (genes/proteins)
found in clinical CaP specimens from representative disease stages? Currently, the analysis
has not been performed.

4.2.3. PTEN deficiency

Phosphatase and tensin homolog (PTEN) is an important regulator of the PI3K/AKT signaling
pathway and is frequently deleted/mutated in a number of human cancers [177–182]. In CaP,
PTEN deletions occur in approximately 23% of HGPIN, 68% of localized primary tumors [183],
and 86% of CRPC [184] and thus has become a candidate for developing into a mouse model.
Although homozygous knock-out (KO) Pten mice are embryonic lethal, heterozygous Pten+/−

mice develop a number of neoplasias, including lymphomas, dysplastic intestinal polyps,
endometrial complex atypical hyperplasia, and thyroid neoplasia [185]. However, common
human tumors, such as brain, breast, and skin, associated with PTEN deletion are absent from
mice. Pten+/− mice also have a spectrum of prostatic phenotypes, with 70% of mice displaying
hyperplasia and dysplasia between 6 and 30 weeks [186]. Using a reduced activity of hypo‐
morphic Pten allele, it has been shown that Pten+/hyp mice can promote progression from
hyperplasia to PIN between 6 and 22 weeks of age between 25 and 37.5% of the time, however,
with only a single case of adenocarcinoma observed [185, 187, 188].

Due to the latency of prostatic disease development in Pten+/− mice, researchers have under‐
taken to cross these mice with other genes associated with CaP with the objective to accelerate
disease progression. This has included crosses to p27Kip1 and Nkx3.1 loss-of-function allele
mouse strains. In 13–22 weeks, Pten+/−, p27Kip1-/- mice develop PIN with 100% penetrance and
about 25% of mice develop invasive CaP [189]. Alone, Nkx3.1 loss-of-function mice do not
develop PIN or CaP in mice; however, in combination with Pten+/− mice, they show an
accelerated incidence and progression to HGPIN/early carcinoma at 26 weeks, with 100%
penetrance of HGPIN at 52 weeks [190]. By allowing the Pten+/−; Nkx3.1+/− mice to age more
than 52 weeks, allows HGPIN lesions to progress to invasive adenocarcinoma. Furthermore,
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surgical castration at 24 weeks, of these animals, resulted in partial regression of the prostatic
lesions and decreased expression of AR [191].

In 2003, Wang et al., generated a mouse model that specifically deleted exon 5 of Pten in the
prostate [192]. These mice developed hyperplasia in 4 weeks, PIN at 6 weeks, and frank
adenocarcinoma with 100% penetrance between 9 and 24 weeks. The mice also respond to
surgical castration with an observed increase in apoptosis and extended survival time vs. non-
castrated animals. However, castrated animals still maintained prostates 5- to 10-fold larger
than WT counterparts and reduced AR expression. Although reduced AR expression is
consistent with other Pten deficiency mice, this is not what is observable in human CaP [193].
Additionally, metastasis to the lymph nodes and lungs at 12–29 weeks was observed in 45%
of animals.

Currently, there are a number of prostate-specific conditional Pten KO mice that have been
developed that employ alternative promoters. A PSA-promoter-driven Pten KO resulted in
100% penetrance of adenocarcinoma and carcinoma by 56 weeks [194]. However, by simulta‐
neously knocking out, Pten and Nkx3.1, coupled with tamoxifen inductions, slowly developed
HGPIN with microinvasion [195]. Tumors regress in castrated mice, but then continue to
progress to microinvasive adenocarcinoma while maintaining nuclear AR expression,
suggesting that AR signaling remains active in the mice following castration. Combinatorial
ADT and inhibition of AKT (MK2206) and mTOR (MK8669) function significantly reduced
tumor burden [196].

5. Cell metabolism, ROS, DNA damage, and the AR

The AR has long been known to have dramatic effects on the prostate gland. The acute
withdrawal of androgens lead to severe atrophy of the prostate gland in short time frames
originally referred to as involution, which in currently acknowledged as a programmed cell
death event [197]. The AR also has significant effects on the overall anabolic and intermediary
metabolism, promoting glucose uptake, and pursuing through both the glycolytic, TCA cycle
and fatty acid metabolism.

A number of non-genomic influences have been associated with specific risks to the develop‐
ment of CaP, one of these risk factors has been nutrition and diet, especially Western (high-
fat/low-carbohydrate) vs. non-Western (low fat/high carbohydrate) has been extensively
reviewed [198–200]. Likewise, GEMM also have been shown to be influenced by high-fat diets.
TRAMP mice given a Western-type diet containing 21.2% fat and 0.2% cholesterol vs. regular
chow diet (4.5% fat and 0.002% cholesterol), with 33% of mice showing large and very
pronounced tumors at 28 weeks, with increased tumor size and weight and hyperplasia [201].
Western-type fed TRAMP mice also showed increased expression of cell cycle-related (cyclin
D1) and proliferation (proliferating cell nuclear antigen—PCNA) markers. There was also an
increase in lung metastasis with an average of 3 ± 1.04 foci vs. 0.43 ± 0.2 foci, in Western-type
vs. regular chow-fed mice. Another group also observed similar results with a high-fat diet
fed TRAMP mouse [202]. Along with seeing an increase in tumor size and increase prostatic
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hyperplasia, they also observed a decrease in the expression of glutathione peroxidase 3
(GPx3). GPx3 is an important antioxidant enzyme responsible for detoxifying cells of reactive
oxygen species (ROS). Increased ROS levels in one of the consequences on high-fat diets and
has been shown to interfere with a number of cellular processes, including damaging DNA
[203]. GPx3 levels have been shown to be downregulated in CaP [204, 205]. The combinatorial
observation that high-fat fed TRAMP mice have larger tumors with cellular changes (increased
ROS levels, reduced GPx3 expression) suggests a potential mechanism for a role of cellular
metabolism in CaP progression. Increased cellular metabolism and downstream effects of
increased ROS levels and DNA damage create the scenario for tumor cells to incur more
mutations that may lead to more aggressive tumor growth and drug resistance.

The AR thus has an intrinsic ingrained property of promoting prostatic cellular metabolism.
It is not unreasonable that in CaP initiation and evolution, alterations in AR allowing further
enhanced metabolism may be the fundamental mechanisms allowing for new mutations to be
created. Heightened metabolism has a direct effect on reactive oxygen species generation
(ROS) as hypermetabolism can result in exaggerated mitochondria fluxes [206–211]. It is now
well appreciated that cancer metabolism is unique many times demonstrating heightened
glucose uptake and abnormal mitochondrial pathways including glutamine lysis and reverse
carboxylation. These metabolic properties are not reflective of energy needs and can be
considered in conjunction with fatty acid oxidations as a metabolic phenotype-supporting ROS
leading to DNA alterations, in essence a powerful mutator phenotype.
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