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Abstract
Objectives: To report clinical results of early experience of manually controlled targeted
biopsy with real-time multiparametric magnetic resonance image (mpMRI)-transrec‐
tal ultrasound (TRUS) fusion images for the diagnosis of prostate cancer.

Methods: One hundred sixty-eight patients who were suspected of prostate cancer from
mpMRI scans were recruited prospectively. We performed targeted biopsies for each
cancer-suspicious lesion and 12 systematic biopsies using the BioJet® system. Patho‐
logical findings of targeted and systematic biopsies were analyzed.

Results: Median age of the 168 patients was 67 years (range: 52–89). Median preopera‐
tive prostate specific antigen (PSA) value was 6.9 ng/ml (range: 3.54–20). Median
preoperative prostate volume was 37 ml (range: 22–68). The number of the cancer-
detected cases was 99 (59%). The median biopsy time, included the MRI-TRUS fusion
time and needle-punctured time without the anesthesia, was 8 minutes (range: 5–65).
Cancer-detected rates of the systematic and targeted biopsy cores were 5.9 and 38%,
respectively (p < 0.0001). In 25 patients who underwent radical prostatectomy, the
geographic locations and pathological grades of clinically significant cancers and index
lesions corresponded to the pathological results of the targeted biopsies.

Conclusion: The cancer cores detected by targeted biopsies with manually controlled
targeted biopsy with real-time mpMRI-TRUS fusion image had significantly higher
grades and larger length compared with those detected by the systematic biopsies. The
further study of the comparisons with pathological findings of whole-gland speci‐
mens will give a larger role to the present biopsy method.

Keywords: prostate cancer, targeted biopsy, magnetic resonance image, transrectal ul‐
trasound, fusion image
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1. Introduction

Multiparametric magnetic resonance imaging (mpMRI) improves the imaging of prostate
cancer lesion [1, 2], and several methods use MRI to guide the biopsy needle to target the cancer
lesion. MRI-TRUS fusion image-guided biopsy achieved accurate prostate biopsy based on
MRI, combining the superior sensitivity of MRI for targeting suspicious lesions with the
practicality and familiarity of TRUS. MRI-TRUS fusion methods are used as visual registration
[1, 3, 4] and fusion biopsy devices [5–9]. In visual registration, the TRUS operator identified
the geographic location of the lesions in the prostate on the MRI, and then identify and biopsy
viewing real-time TRUS [10]. In previous reports, the visual registration biopsy method
improved accuracy over systematic biopsy [11–14]. However, the disadvantages of visual
registration lie in human error when the targeted lesion was less than 10 mm in diameter [15].
Therefore, the visual registration is regarded as the prostate biopsy method for experts [10–
14]. With the MRI-TRUS fusion devices, the stored MRI and real-time TRUS are superimposed
using computer software to enable targeted biopsy of cancer-suspicious lesions [16]. MRI-
TRUS fusion biopsy device “BioJet®” was approved by FDA after the evaluation of the
accuracy with phantoms. We report the BioJet® experience of the manually controlled targeted
biopsy using real-time fusion image from mpMRI and TRUS.

2. Methods

2.1. Population

From November 2013 to October 2015, after receiving the approval of institutional review
board, the patients with PSA level greater than 4.0 ng/ml and less than 20 ng/ml were per‐
formed mpMRI prospectively. No patients had any previous history of prostate biopsy.

2.2. Multiparametric MRI

The MRI examination was carried out using a 1.5-Tesla magnet (Signa HDx®; GE Healthcare,
Amersham Place, UK) with an 8-channel cardiac coil. T1-weighted fat-saturated axial fast spin-
echo images (TR, 450 ms; TE, 8.8 ms; slice thickness, 3 mm; resolution, 0.9 × 1.3 mm) were
obtained before injection. An intravenous bolus of 0.2 ml/kg of meglumine gadopentetate
(Magnevist Syringe®; Bayer HealthCare Pharmaceuticals, Berlin, Germany) was then injected.
All MRI examinations were performed using the same protocol, and included non-enhanced
T2-weighted images (T2WI) (TR, 5000 ms; TE, 125 ms; slice thickness, 3 mm; resolution,
0.6 × 0.9 mm) acquired in the axial and sagittal planes, diffusion weighted image (DWI) and
apparent diffusion coefficient (ADC) maps (b-value = 1500 s/mm2), and dynamic-contrast-
enhanced (DCE) MRI (resolution, 0.9 × 1.3 mm) using a fat-saturated T1-weighted fast-field
echo sequence in the axial plane.
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2.3. Image analysis

All mpMRI images, including T2WI, dynamic, DWI, and ADC map, were reviewed by two
experienced radiologists with no prior clinical information. Suspicious areas, the so-called
“regions of interest (ROI)”, were provided a likelihood score that clinically significant cancer
would be present for each ROI from 2 to 5 on the prostate imaging reporting and data system
(PI-RAS) classification [17] based on Likert scale according to the European Society of Uro‐
genital Radiology Prostate MR Guidelines 2012 [18]: 1, most probably benign; 2, probably
benign; 3, intermediate; 4, probably malignant; and 5, highly suspicious of malignancy [17]
The location of each area was determined based on dividing the prostate into 27 regions, as
described by Dickson et al. [16]. MRIs were imported into the biopsy fusion system. Segmen‐
tation into a two-dimensional (2D) mpMRI was performed on the workstation to create a 3D
model of the MRI, and then fused to the real-time TRUS.

2.4. Biopsy protocol

A cleaning enema and antibiotics were given before the biopsy. TRUS with power Doppler
was performed using a Prosound α7 (Hitachi Aloka Medical, Tokyo, Japan) equipped with a
UST-678 transrectum composite probe, in the lithotomy position under spinal anesthesia. On
the workstation, the operator fused the real-time TRUS image and 3D MRI model that included
the prostate contour and ROI. After the elastic image fusion, an ultrasound probe was fixed to
the arm that senses the 3D movement of the probe and exports the information to the work‐
station (Figure 1a). Using this device, the 2D image created from the 3D MRI model moves
together with the real-time TRUS image on the workstation. The operator performed the
biopsy using MRI-TRUS fusion image navigation (Figure 1b). During the procedure, the real-
time ultrasound image is continuously available. The biopsy started with targeted biopsies to
the center of cancer-suspicious lesions, and then 12 systematic biopsies were performed with
transperineal technique in all patients. The biopsy used a standard brachytherapy grid with
5-mm spacing, with x-axis coordinates A through G and y-axis coordinates from 1 through 7,
using D as the middle line urethral plane. An 18-gauge automatic biopsy gun with a specimen
size of 22 mm (BARD® MAGNUM®, BARD MEDICAL, Covington, USA) was used to take
biopsy cores. Using the interactive needle guide system, the biopsy template coordinates were
shown on the monitor when the operator marked the target point of the ROI on the workstation
(Figure 2a, b). The operator inserted the needle at the template coordinates and could get the
prostate specimens by viewing the sagittal image of the prostate (Figure 2c). Immediately after
each biopsy, the spatial punctured needle orbits were recorded in 2D TRUS image of axial and
sagittal plane, and in the 3D model of MRI.

2.5. Pathological analysis

All biopsies were examined by expert pathologists. A significant cancer was defined as follows:
at least one core with a Gleason score of 3 + 4 or 6 with a maximum cancer core length larger
than 4 mm [19]. The pathological biopsy results were compared between systematic and
targeted biopsies. The biopsy-proven index lesion of each patient was defined primarily as the
lesion with the highest Gleason score, and secondarily as the lesion with the greatest cancer-

Transperineal Targeted Biopsy with Real-Time Fusion Image of Multiparametric Magnetic Resonance Image and
Transrectal Ultrasound Image for the Diagnosis of Prostate Cancer

http://dx.doi.org/10.5772/64603

37



involved core in terms of length or percentage. Geographic location of prostate cancer in the
prostate [16] was compared with pathologic step-sectioned prostatectomy specimens in the
patients who were performed with radical prostatectomy.

Figure 1. (a) BioJet system (D&K Technologies GmbH, Barum, Germany); (b) the set-up of prostate biopsy with BioJet
system.

Figure 2. Process of prostate biopsy with BioJet system. (a) Fusion image from MRI and TRUS image. (b) Interactive
needle guide system. (c) Real-time fusion images of axial and sagittal image.
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2.6. Statistical analysis

All statistical analyses were performed using IBM SPSS® Statistics version 19 (IBM, Ar‐
monk, NY, USA). Among systematic and targeted biopsies, cancer-detected rate of biopsy,
positive core length, positive core percentage, primary and secondary Gleason grade, and
Gleason score were analyzed using the Mann-Whitney U-test. Changes in patient functional
data were analyzed using paired t-tests. P-values of <0.05 were considered to indicate statis‐
tically significant differences.

3. Results

One-hundred sixty eight patients were suspected of prostate cancer with 2 to 5 of PI-RAD
classification. The median age of the 168 patients was 67 years (range: 52–89). The median
preoperative PSA value was 6.9 ng/ml (range: 3.54–20). The median preoperative prostate
volume was 37 ml (range: 22–68). In the resected prostate specimen of 25 patients, the geo‐
graphic locations and pathological grades of clinically significant cancers and index lesions
corresponded to the results of the targeted biopsies.

The results of the prostate biopsies are shown in Table 1. The number of the cancer-detected
cases was 99 (59%). The median biopsy time included the MRI-TRUS fusion time and needle-
punctured time without the anesthesia, which was 8 minutes (range: 5–65). For the systematic
and targeted biopsy cores, the total number of cores were 2016 and 372, respectively; the cancer-
detected rates, the median positive core lengths, the median positive core percents, the median
primary Gleason grades, the median secondary Gleason grades, and the median Gleason
scores in systematic and targeted biopsy cores were significantly different.

Target biopsy Systematic biopsy P-value

No. of biopsy cores 372 2016 n.d.

Rates of cancer detection 38% 5.9% p < 0.0001

Rates of significant cancer detection 35% 1.4% p < 0.0001

Median positive core lengths 8 mm (range: 1–22) 2 mm (range: 1–8) p < 0.0001

Median positive core percents 60% (range: 5–100) 12% (range: 5–40) p < 0.0001

Median primary Gleason grades 3 (3–5) 3 (3–4) p < 0.0001

Median secondary Gleason grades 3 (3–5) 3 (3–4) p = 0.0020

Median Gleason scores 6.5 (6–9) 6 (6–7) p = 0.0012

Table 1. Biopsy results.

In targeted lesions of transition zone (TZ) (n = 146) and peripheral zone (PZ) (n = 226), the rate
of cancer detection was 28% (n = 40) and 45% (n = 101), respectively. The rates of cancer
detection and the corresponding scores on the PI-RAD in TZ and PZ are shown in Table 2.
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No. of
target

PI-RADS
classification

Rates of cancer
detection

Rates of significant
cancer detection

TZ + PZ 372 2 (n = 70) 38% (n = 141) 4.3% (n = 3) 0% (n = 0)

3 (n = 126) 13% (n = 16) 10% (n = 13)

4 (n = 110) 61% (n = 67) 58% (n = 64)

5 (n = 71) 77% (n = 55) 77% (n = 55)

TZ 146 2 (n = 28) 28% (n = 40) 7.1% (n = 2) 0% (n = 0)

3 (n = 40) 15% (n = 6) 10% (n = 4)

4 (n = 48) 24% (n = 12) 21% (n = 10)

5 (n = 35) 56% (n = 20) 56% (n = 20)

PZ 226 2 (n = 42) 45% (n = 101) 2.4% (n = 1) 0% (n = 0)

3 (n = 86) 12% (n = 10) 11% (n = 9)

4 (n = 62) 88% (n = 55) 87% (n = 54)

5 (n = 36) 97% (n = 35) 97% (n = 35)

TZ, transition zone; PZ, peripheral zone; PI-RADS, prostate imaging and reporting data system.

Table 2. The rates of cancer detection and the corresponding scores on the PI-RAD in transition zone and peripheral
zone.

4. Discussion

Our results showed that cancer detection rates using targeted biopsies were significantly better
than using systematic biopsies (p < 0.0001). Positive core length (p < 0.0001), positive core
percent (p < 0.0001), primary (p < 0.0001) and secondary (p = 0.0020) Gleason grade, and Gleason
score (p = 0.0012) were also significantly different between targeted and systematic biopsies.
In addition, all biopsy-proven significant cancers were detected in ROIs, and the index lesions
corresponded to the largest-sized ROIs. Based on these results, the targeted biopsy method
was superior to systematic biopsy, and clinically significant cancers with a spatial relationship
were detected accurately in the present study. Although the resected prostate specimens only
comprised 25 cases, accuracy of the locations and pathological grades was reliable in our study.

In the present study, we used the T2WI for segmentation of the ROI, but the decision con‐
cerning the selection of ROI was made using multiparametric MRI factors, such as T2WI, DCE,
DWI, and ADC maps because T2WI is sensitive but not specific for prostate cancer detection
[1]. In mpMRI, the image values of its component techniques are different. T2WI provides the
best depiction of the prostate’s zonal anatomy and capsule in mpMRI and thus is used for
prostate cancer detection and localization [18]. DCE is the most common imaging method for
evaluating vascularity in the tumor [20]. DWI involves the quantification of free water motion
[21] and allows ADC maps to be calculated, enabling qualitative and quantitative assessment
of prostate cancer aggressiveness. Lower ADC corresponds to greater restriction in free water
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motion, likely on the basis of increased cellularity compared with normal prostate tissue, and
cancer shows a lower ADC value than normal prostate tissue [21]. Furthermore, ADC values
correlate with Gleason scores [22–24]. However, some normal prostatic tissues, especially in
the TZ, such as benign prostatic hyperplasia, chronic inflammation, and atrophic tissue, have
similar findings of prostate cancer [16]. Indeed, the detection of prostate cancer in TZ was
found difficulty in a previous study [23]. In our results, the cancer detection rate of the patients
with a PI-RAD classification of 4 or 5 in TZ (39%) was inferior to that in PZ (92%).

The present device allows manually controlled targeted biopsy using real-time MRI-TRUS
fusion images by the sensor arm of 3D movement. In addition, the fusion function has elastic
fusion functions. The axial and sagittal view of US and MRI was useful to fuse the images of
MRI and TRUS easily during the procedure. In addition, the present biopsy was performed
with transperineal technique. Using the transperineal technique with the device, the biopsies
were performed accurately to the ROIs. However, our study has limitations. First, our study
did not compare biopsy results with pathological findings from whole-gland specimens.
Therefore, although locations and pathological grades of clinically significant cancers and
index lesions corresponded to the targeted biopsy results, it is difficult to exclude the possi‐
bility that a clinically important cancer has been missed without pathological analysis of
whole-gland specimens.

In conclusion, cancers detected by targeted biopsies using manual controlled targeted biopsy
with real-time fusion image of mpMRI and TRUS had a significantly higher grade and larger
length compared with systematic biopsies. In present study, the cancer detection rate in TZ
was significantly lower than in PZ. However, further study would contribute to set the cutoff
point of PI-RADS scores in TZ and PZ to detect the prostate cancer at high frequency. The
further study of the comparisons with pathological findings of whole-gland specimens will
give a larger role to the present biopsy method.
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