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Abstract

Fractional calculus and fuzzy calculus theory, mutually, are highly applicable for
showing different aspects of dynamics appearing in science. This chapter provides
comprehensive discussion of system of fractional differential models in imprecise
environment. In addition, presenting a new vast area to investigate numerical
solutions of fuzzy fractional differential equations, numerical results of proposed
system are carried out by the Griinwald-Letnikov's fractional derivative. The stability
along with truncation error of the Griinwald-Letnikov’s fractional approach is also
proved. Moreover, some numerical experiments are performed and effective remarks
are concluded on the basis of efficient convergence of the approximated results
towards the exact solutions and on the depictions of error bar plots.

Keywords: fuzzy-valued functions, fuzzy differential equations, fractional differential
equations, Griinwald-Letnikov’s derivative

1. Introduction

It is worthwhile mentioning, since last few decades, the theory of fractional calculus has gained
significant importance in almost every branch of science, for having the capability to consider
integrals and derivatives of any arbitrary order. The characteristic feature of generalizing the
classic integer-order differentiation and n-fold integration to arbitrary fractional order have
broadened its application in modeling several phenomena of physics, mathematics, and
engineering. The differential models of fractional order, due to the nonlocal properties of
fractional operator, are excellent instruments for providing information about the current as
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well as the historical state of the system. For these reasons, it is intensively developed and
advanced, and existence of its solution is studied by well-known authors, Euler, Laplace,
Liouville, Riemann, Fourier, Abel, Caputo, etc., to further widen its scope in describing various
real-world problems of science, for instance see [1-6]. Another wide-spreading exploration of
mathematics is theory of fuzzy calculus, which has a lot of interesting applications in physics,
engineering, mechanics, and many others. It is the theory of a particular type of interval-
valued functions, in which mapping is made in such a way that it takes all the possible values
in [0, 1] and not only the crisp values as found in usual interval-valued functions. After the
inception of fuzzy set theory by Zadeh [7], its attributes have been extended and established to
overcome impreciseness of parameters and structures in mathematical modeling, reasoning,
and computing [8-12].

Advanced development of mathematical theories and techniques has gained very high
standard. On the basis of classical theories, new theories are pioneered by undergoing its
inadequacies and widening its scope in many disciplines. In a similar manner, the aforemen-
tioned theories have been brought together in modeling different aspects of applied sciences,
to analyze the change in the respective system at each fractional step with the uncertain
parameters. Agarwal et al. [13] initiatively incorporated uncertainty into dynamical system,
modeled fractional differential equations with uncertainty, and studied its possible solutions.
Ahmad et al. [14] described the situation of impreciseness of initial values of fractional
differential equations and discussed its solutions by utilizing Zadeh’s extension principle. In
[15, 16], authors considered the concept of Caputo and Riemann fractional derivative, respec-
tively, together with the Hukuhara differentiability and demonstrated the fuzzy fractional
differential equations and a lot of others [17-23].

In light of noteworthy applications of above-mentioned theories, in this chapter, we demon-
strate fractional order dynamical models in fuzzy environment to depict unequivocal frac-
tional differential equations of dynamical system. Moreover, we investigate its numerical
solutions using the well-known Griinwald-Letnikov's fractional definition. This definition is
widely applicable as a numerical scheme to solve linear and nonlinear differential equations
of fractional order [24-26]. It is considered as an extended form of the classical Euler method.
Here it will be utilized, for the first time, to solve fractional differential equations of imprecise
functions. Sequentially, this chapter features description of fuzzy theory and fuzzy-valued
functions for the explanation of impreciseness, modeling of system of nonlinear fractional
order differential equations with imprecise functions, deliberation of Griinwald-Letnikov’s
fractional approach in conjunction with its truncation error for the proposed system, tabulated
and pictorial investigations of some examples, and conclusive remarks of the undergone
experiments and findings of the whole manuscript.

2. Basic descriptions

Fuzzy calculus theory is the branch of mathematical analysis that deals with the interval
analysis of imprecise functions. This section comprises some rudiments of fuzzy calculus
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theory and acquaints the necessary notations that are prerequisite for the whole paper. All the
below-mentioned descriptions are widely elaborated and used in literature, for instance [13-
23].

2.1. Fuzzy numbers

Let & be the set of subsets of the real axis & . If TEX and 7:[0, 11— X such that, 7 is
normal, fuzzy convex, upper semi-continuous membership function and compactly supported

(C3 Te&

, then & is said to be the space of fuzzy numbers 7. Any can be

X - _
=|z(R),7(K

represented in level sets explicitly, i.e. 7] [Z( )= )] for relo]] , where z(*) and ()

signify as the lower and upper branches of 7, respectively, that satisfy the following conditions:

continuous at A=0
b. I (7&)

continuous at A=0

on the real axis

is bounded non-decreasing lower function, left continuous on (0, 1] and right

is bounded non-increasing upper function, left continuous on (0, 17 and right

¢ (k) <r(n)

The sum and scalar product of any fuzzy number is the consequence of Zadeh’s extension
principal. Let ® , ¢ and ® be the symbols of addition, multiplication and subtraction,
accordingly, for fuzzy numbers, which will be greatly used throughout the paper, then, for

Ae [0,1]

L [roo] =[] ®[o] =[c(X)+v(k)r(k)+0(x)] rovea
ii. [az(?&),a;(i)} ifa>0
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The distance between any two fuzzy numbers t and v is given by the Hausdorff metric D as:
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T(K)—U(K)H )

b

% x
(e.0)= sup (LT )= s

ma {[£(7) - (1)

Thus, (&, D) defines a complete metric space with the properties of Hausdorff metric for fuzzy

numbers.

2.2. Fuzzy-valued Function and its fractional derivative

Any interval-valued function 07; is said to be a fuzzy-valued function if @sc is defined as

F { R > & s r-level set can be represented by real-valued functions j(t;x ) and & (1)

as its lower and upper branches, accordingly, i.e. @C(t)z[gf(tﬁl),@f(t;x)l
im@f(t;X)andlim@f(t;K)

1
VieXRand i e [0> 1]. Moreover, if -4 ~— -1 exist as finite fuzzy numbers, then

lim (¢
11 @c( ) exists. Consequently, let ‘C be the space of continuous fuzzy-valued functions, then

F(1)eT i (1 ) and & (41) are continuous. The arithmetic for any two fuzzy-valued
functions & and &9 can be defined as previously mentioned in Section 2.1 for fuzzy numbers.
Subsequent to existence of limit and continuity of o4 , the fuzzy-valued function <4 (t) is said

to be differentiable at each t,€[a, b], if U;C '(tO) €& exists, such that

()= Lim & (t0+ 1) O (1)

h—0 h

)

where /i is taken in a way that (t,+% )€ (a, b). For (1)= [Q‘(t;K),@f(t;K)l o (1) is said to

51) o (%)

be differentiable at t €[a, b] if its lower function  (57) and upper function are
differentiable at t €[a, b], i.e. for all * [0, 1],
()= min{i@f(t;K),ig(t;K)},max{i@f(t;x),ig(tm)} 3)
dt— dt dt— dt

In a similar manner, fractional order differential of ~ (1) can be defined as, for all A [0, 1], if

G’_C(t; %) and & (:2) are differentiable of order w>0, then (1) is differentiable of order w >0,

i.e.
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D~ (t)= [min{Df’@(I;?&),D;"g(tﬁi)} ,max {D,‘”@(t;?&),Df’g(t;K)}} 4)

where D" can be either fuzzy Riemann-Liouville fractional differential operator or fuzzy
Caputo-type fractional differential operator [15, 16, 19, 22, 23]. Here it is considered as fuzzy
Caputo-type fractional derivative that is approximated by Griinwald-Letnikov's approach,
illustrated in the next sequel.

2.3. System of fractional order fuzzy differential equations

In particular, modeling of differential equations of fractional order in imprecise characteristics

is obtained by encompassing fuzzy-valued functions. Let (1): R~ &, then fuzzy differ-
ential equation of fractional order w € 0, 17, subjected to initial conditions, is structured as:

D (1) =P (1,09(1)) ()

(1) =1 6)

where the unknown fuzzy-valued function S(r) can be written in form of z-levels as, for all

ero, 13, =¥ )= e (i) 00 ()]

! ,@6’(1 )) can be linear or nonlinear term in the

, where as lP(

form of fuzzy-valued function and U, is the fuzzy number, which can also be expressed as

= [%(X),% (7&)], forall% € [0’1]. Concisely, Eq. (5) is considered to have a unique and stable

solution, for the reason that \P(t ’W(I)) is continuous and satisfies the Lipschitz condition, i.e.
there exists L >0 such that for¥:(R—> &

D(‘P(t,d?’),‘l’(t,@é’)) < L.D(@?,@?) v(t,cﬁ?),(t,@é’) ER, XWe& @)
Many papers [14, 15, 22] comprise the theorems of stability and uniqueness of the solution of

Eq. (5).

Here, we consider the system of fractional order fuzzy differential equations of the following
form:

(8)
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with the initial conditions,

5 (1)) =V,,%, (1)) = Vs, 5 (1,) =V 9)

where v, v, ...,7, are the fuzzy numbers that can be written as, for all

= [0’1] Y (7”) = [Kn (7&), Vin (K)], n>1, w,, w,, ..., w, are the fractional orders such that w, € (0, 1]and
the right hand side of Eq. (8) represent a system of fuzzy nonlinear equations with crisp
coefficients kij, i21, j<n,ie.

W (6 (£),09, (1), . 0% (1)) = Zk < (1 m>1 (10)

Therefore, Eq. (8) can be remodeled as:

D% (1) = Zkl,df’ ()= k5" (1)@ kp P ()@ - @ £, (1),

s (11)

And as mentioned earlier, &, 7 21, are taken as the fuzzy Caputo-type fractional differential

operators and are numerically interpreted using Griinwald-Letnikov’s fractional derivative
definition.

3. Gritnwald-Letnikov’s fractional derivative

This section comprises the description of Griinwald-Letnikov’s fractional derivative in
conjunction with the algorithm to solve the system of Eq. (11) and undergoes some requisite
theorem and lemma of the governing approach.
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Consider a function Q’a(t ) in finite interval [0, T], let the interval be divided into equidistant
grids of step size h as:

O=n,<n,<--<n, =t=ch withn, -n,_,=h (12)

® .1 i| @ .
Dy QO(t)zlhg%h—w;(—l) [ ‘]Qg(l‘—lh) (13)
where (Cj) are the binomial coefficients that are obtained by the formula:

{wj . T(w+1) 1

i) i0(w—i+1)

and [H represents the integral part.
3.1. Lemma

Let ) be a smooth function in [0, T], such that it can be expressed as a power series for
[t]<T, where[t]is the integral part of t, then the Griinwald-Letnikov’s approximation for each
0<t<T, a series of step size h and t=ch can be stated as:

D= 20T om0 5)

This definition is considered to be equivalent to the definition of Riemann-Liouville fractional
derivative and for equivalence to Caputo’s fractional definition the following term of initial
value is added to the right hand side of Eq. (15), i.e.

000 3 e ) PO )

That becomes zero if initial values of Caputo-type differential equations are homogeneous and
again reduces to that of Riemann-Liouville definition. Since here the fuzzy Caputo-type
fractional differential equations are considered with inhomogeneous initial values, the
definition in Eq. (16) will be used for the approximation of Eq. (11).
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Now let @2 be a fuzzy-valued function such that R & then Griinwald-Letnikov’s

fractional derivative of ¥ (¢) is expressed as:

g (1) L (- 1)"[“’]@? ()0 —= () a7)

1
h i

and in #-level sets it is sorted out as, for all . €[0, 1],

S Ok r(;w)_ (18)
G SRR

Next consider the fractional system in Eq. (11), for the cases of inhomogeneous initial values.
Assume the uniform grids t,=ch, where 0=1, ..., M, such that Mh =T, M €. Applying

Griinwald-Letnikov’s fractional derivative on left hand sides of Eq. (11) we get,

S| Bl e 2 0)- S, ),

= ' (19)

LS Pl e ) 0)- 3ok, o)

hen

Solving above system fuzzy-valued functions of respective fuzzy functions are generated at
different grid points.

3.2. Theorem: truncation error

Let fuzzy-valued functions 6 (1, ), (1, )., (1,) e the approximations to the true
solutions X ,(t,), X,(t,), =+, X ,(t,), respectively and consider W satisfies Lipchitz condition,

then the local truncation error of the proposed numerical approach is O(h Hw”), forn=>1, i.e.
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6 (1,)0X,(1,) = 0(h™),

> (1,)0X,(t,) = o(h“”z )
: (20)

Proof:

Assume the nth equation of the system (19) and on applying Griinwald-Letnikov’s fractional
derivative we have,

SR [ R o SR O () )R () @

h%i(—l)"[c‘?"j&(%_g@ ek, (0)+0(h) =¥ (X, (1,). K, (1) K, (1) @)

ri-a)

Subtracting Eq. (22) from Eq. (21),

t - Vi % ce Y (23)

~

Let, fori=0, 1, ...o-1, %, (f o ) =X, (f o ), then on further manipulation we get,

1 -~ - - N -
S0 1)+ 0(h) = ¥(X, (1) Ty (1) 2, () o

O (8 (1,). % (1, ).+, (1,))

or it can be rearranged as:
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Lo(n) =)

where D defines Hausdroff distance. On using Lipschitz condition, i.e. Eq. (7), proof is
completed by obtaining the following equation:

(1-Lh")[%.(1,)0X,(1,) | <O(h*) ¥n=1 (26)

”

4. Numerical illustrations

Subsequent to the algorithm demonstrated in Section 3, here numerical experiments of some
system of fuzzy fractional differential equations are presented. Results for fuzzy-valued
functions are depicted in tabular form in the finite interval [0, 1] at different values of
w € (0, 11. In addition, error bar pictorials are given for each respective example. All the exact
values and calculations are carried out through Mathematica 10.

4.1. Example 1

Following nonlinear fractional system is solved in [27] using homotopy analysis method, here

the system is restructured with imprecise functions (1) and (1) as:
B (1) = 0.5%)(1)
B (1) =%, (1)@ X7 (1) 27)
with w;, w, € (0, 1] and subjected to initial conditions
o (0)=[0.75+0.25%,1.125 - 0.125%], <%, (0)=[x-1,1-%] (28)

On applying Griinwald-Letnikov’s fractional definition on left hand side of Eq. (27) and
following the algorithm, the differential equations are reduced to nonlinear algebraic equa-

tions as:
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L 00 (_1)’(0;2}@%((0-_1')}1)®M@€(0) — @%(Gk)@@éz (O‘h) 29)

B 4 Ir(l-w,)

which on expanding to #-levels of (1) and <% (1) convert into system of four nonlinear

equations, i.e. for all A €[0, 1],

hl ,: (- 1)"(0;1 jﬁ (0 —iymn)- F(Glh)_wl 6(0:)= 0.596 (0 /),

Li(_l)f(“l_’lJ@—e((a i) - S0 = 0558 (0 ),

r(-w)

LS 0% o - 2 00) - e k) o),

Ry o)
13 l)i(a)sz_é?((a—i)h'?L)— )" 35 (0:5) = 3 (ks )+ 7 (oHs1) 50
W 5 i) ) 2\ A (30)

' F(0)=loe62) ()
Exact solutions Approx. solutions Absolute error

0 [0.7881, 1.1821] [0.7881, 1.1821] [9.7543x10, 1.4632x107]
0.2 [0.8406, 1.1558] [0.8406, 1.1558] [1.0404x10%, 1.4307x107]
0.4 [0.8931, 1.1296] [0.8931, 1.1296] [1.1055x10%%, 1.3982x107]
0.6 [0.9457,1.1033] [0.9457, 1.1033] [1.1705x10%, 1.3656x107]
0.8 [0.9982,1.0770] [0.9982, 1.0770] [1.2355x10%%, 1.3331x107]
1 [1.0508, 1.0508] [1.0508, 1.0508] [1.3006x10%, 1.3006x107]

Table 1. Numerical results and absolute errors of X (t) for Example 1 at w; =1, w,=1, h =0.001 and £ =1.

Solving this system, numerical approximations of Eq. (27) are obtained. Tables 1 and 2 rep-

resent absolute error of éa(t ) and %(f ), respectively, for w,=w,=1, h =0.001, t=1 and at dif-
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ferent values of 7, whereas Table 3 shows the approximations of @6(’) and @@(t) for
w,=0.95, w,=0.87, h =0.1 and t=1, at different values of X In Figures 1 and 2, the pointwise

error variations of @?/(t ) and X ,(t), accordingly, at each time within the given interval for
w;=w,=1, h=0.1 and 7 = 0.6, are plotted. In these graphs, each approximated point is plotted
against the value of ¢ in a discrete manner and each bar line on respective approximated
point illustrates the measure of the absolute error at that point. Absolute error is obtained by
taking the point-to-point difference between exact and the solutions calculated by Griin-
wald-Letnikov’s fractional approach. Since these variations show small differences, this im-
plies our results are in good agreement with the exact solutions.

' F0) =)
Exact solutions Approx. solutions Absolute error

0 [-1.0426, 1.2424] [-1.0426, 1.2426] [9.1289x10, 1.9828x10]
0.2 [-0.8133,1.0155] [-0.8133, 1.0157] [2.8859x10, 1.8104x10]
0.4 [-0.5835, 0.7888] [-0.5834, 0.7889] [4.9162x10%5, 1.6393x10]
0.6 [-0.3531, 0.5621] [-0.3530, 0.5623] [7.0025%10%%, 1.4696x10]
0.8 [-0.1222, 0.3356] [-0.1221, 0.3358] [9.1457x10%%, 1.3014x10]
1 [0.1093, 0.1093] [0.1094, 0.1094] [1.1346x10*, 1.1346x10]

Table 2. Numerical results and absolute errors of X, (t) for Example 1 at w;=1, w,=1,h =0.001 and t =1.

o R0)=eslr)r e ) <2, 0)=[a 60 2 (60)]
0 [1.2745,1.9117] [-1.0584, 8.2274]
0.2 [1.3594, 1.8692] [-0.1017, 7.3564]
0.4 [1.4444, 1.8267] [0.8747, 6.4903]
0.6 [1.5294, 1.7842] [1.8707, 5.6291]
0.8 [1.6143, 1.7418] [2.8863, 4.7728]
1 [1.6993, 1.6993] [3.9215, 3.9215]

Table 3. Approximations of X (t) and SX (t) of Example 1 for w;=0.95, w,=0.87,h =0.1 and t =1.
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Figure 2. Bar plot of approximate solutions and absolute error versus O of @Q(I ) of Example 1 for

h=0.1, w;=w,=1andx=0.6.

4.2. Example 2

X,

Consider the following nonlinear fractional system [27] with imprecise functions oY) (t ), 2 (f )

and @% (’ ) as:
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B, (1) = 30K (1) 0 X (1) (31)
with 0, w,, w3 € (0, 1] and subjected to initial conditions

5 (0)=%,(0)=[0.75+0.25%,1.125 - 0.125%], %, (0)=[A-1,1-1] (32)

On employing Griinwald-Letnikov’s approach, the differential equations are converted into
nonlinear algebraic equations as:

h%i(—l){@]&((a—i)hm (oh) ™ K (0) =K (oh),

par i rl-w)

B0 2R (e me ok o) <208 on

r(l-w,)

hi,s :0(—1)"((‘;3}@%((0—1')/1)(9%@@(o):3@?,(0/1).@@(0/1) (33)

and in-levels of % (v ),@@ (’ ), and X ,(t) the system above converts into six nonlinear equations,

ie. forallke [0,1]’

12 i(—1)"[(0_2}%((0—1')}1;7&)—%dﬁ(o;%)zZdﬁ(ohﬁ&),

L0 o) S )< 25 o),

LS - ) e o) s oo o)
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h%i(‘ l)i[a? ]@((C"")h;x)—r(?hi@(@ 1)=35% (o h 1), (o 1) (34)

i=0 1_0)3)

Thus, numerical results of Eq. (31) are obtained from the above system. Tables 4-6 present

absolute error of < ()%,(1) and X 5(t), respectively, for w,=w,=w,;=1, h =0.001, t=1 and at

different values of *. In Table 7, the approximations of o6 (1) (1 ), and X ,(t) are rendered
for h=0.1, w;=0.95 @,=0.87, w;=0.79 and t=1, at different values of x. Additionally, the

pointwise error variations between approximated and exact solutions of 6 (1) (1 ), and X 4(t)
at each time within the given interval for w,=w,=w;=1 and x = 0.6 are plotted in Figures 3-5,

respectively. It is to be noted that the small length of bar lines on each point is illustrating small
differences between the exact and the result obtained by the proposed approach that shows
the acceptable convergence of the solution towards the exact values.

" SHOS SIS )
Exact solutions Approx. solutions Absolute errors

0  [0.8281, 1.2421] [0.8281, 1.2421] [4.1012x10%, 6.1521x107]
0.2 [0.8832,1.2145] [0.8833, 1.2145] [4.3747x10%, 6.0154x107]
0.4 [0.9384, 1.1869] [0.9385, 1.1869] [4.6482x107, 5.8788x107]
0.6 [0.9937,1.1593] [0.9937, 1.1593] [4.9217x10%, 5.7421x107]
0.8 [1.0489, 1.1317] [1.0489, 1.1317] [5.1952x10%%, 5.6054x107]
1 [1.1041, 1.1041] [1.1041, 1.1041] [5.4688x10, 5.4688x107]

Table 4. Numerical results and absolute errors of o (t) for Example 2 at w; =w,=w;=1, h =0.001 and t=1.

, &)= (1) 58 (:0)

Exact solutions Approx. solutions Absolute errors

0  [0.8732,1.4021] [0.8733, 1.4024] [1.2956x10, 2.9153x10"]
02 [0.9401, 1.3649] [0.9403, 1.3652] [1.4742x10%, 2.7872x10"]
0.4 [1.0082, 1.3280] [1.0084, 1.3283] [1.6644x10, 2.6619x10]
0.6 [1.0774,1.2914] [1.0776, 1.2917] [1.8658x10, 2.5397x10"]
08 [1.1476,1.2551] [1.1478, 1.2553] [2.0789x10, 2.4202x10"]
1 [1.2189, 1.2189] [1.2192,1.2192] [2.3036x10, 2.3036x10"]

Table 5. Numerical results and absolute errors of oY, (t ) for Example 2 at w; =w,=w;=1,h =0.001 and t =1.
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B (0)=[e (1) G ()

Exact solutions

Approx. solutions

Absolute errors

0.2
0.4
0.6
0.8

[-0.8102, 1.4429]
[-0.5829, 1.2225]
[-0.3538, 1.0026]
[-0.1226, 0.7831]
[0.1106, 0.5642]

[0.3458, 0.3458]

[-0.8099, 1.4438]
[-0.5827, 1.2232]
[-0.3534, 1.0032]
[-0.1222, 0.7838]
[0.1111, 0.5648]

[0.3464, 0.3464]

[2.6067x10%, 7.7596x10]
[3.0938x10+, 7.2979x10]
[3.6373x10*, 6.8548x10]
[4.2389x10+, 6.4299x10]
[4.9030x10*, 6.0228x10]

[5.6330x10*, 5.6330x10*]

Table 6. Numerical results and absolute errors of

for Example 2 at w; =w,=w;=1, h =0.001 and £=1.

P R0=[eenFen)]  RO=eeneer)]  ®0=lebnsE )
0 [2.2517, 3.3776] [5.9374, 12.7914] [16.8425, 57.0920]
0.2 [2.4018, 3.3025] [6.7016, 12.2538] [20.5781, 53.4113]
0.4 [2.5519, 3.2274] [7.5119, 11.7278] [24.7487, 49.8770]
0.6 [2.7020, 3.1524] [8.3682, 11.2134] [29.3793, 46.4859]
0.8 [2.8522,3.0773] [9.2705, 10.7104] [34.4950, 43.2349]
1 [3.0023, 3.0023] [10.2189, 10.2189] [40.1209, 40.1209]

= % o (¢t
Table 7. Approximations of ) (t )@@ (t), and g ( ) of Example 2 for w;=0.95, w,=0.87 w3=0.79, h =0.1 and

t=1.

Figure 3. Bar plot of approximate
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Figure 4. Bar plot of approximate solutions and absolute error versus O of @@(t ) of Example 2 for
h=0.1, w;=w,=w;=1andi=0.6.
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Figure 5. Bar plot of approximate solutions and absolute error versus 0 of X3(t) of Example 2 for

h=0.1, w;=w,=w;=1and A=0.6.

5. Conclusion

In this chapter, system of fractional differential equations with fuzzy-valued functions was
constructed to study the system in imprecise environment. We assessed numerical interpre-
tations of the system using Griinwald-Letnikov’s fractional derivative scheme, which has not
been considered for fuzzy differential equations in literature hitherto. In addition, we illus-
trated the stability of the scheme for the system of fuzzy fractional differential equations.
Furthermore, we conducted experiment on some nonlinear fuzzy fractional systems and
successfully attained the approximated solutions. From the entire discussion and analysis,

collectively, we come up with the following remarks:
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* Scrutinizing differential models with arbitrary fractional order in combination with fuzzy
theory is effectively advantageous to analyze the change in the system at each fractional
step with imprecise parameters rather than crisp values.

* Griinwald-Letnikov’s fractional definition is equivalent to either Riemann-Liouville
fractional definition or Caputo-type fractional definition in case of homogeneous and
inhomogeneous initial values, respectively. Since Riemann-Liouville fractional definition
and Caputo-type fractional definition are greatly applicable for defining fractional deriva-
tive of fuzzy-valued functions, so is Griinwald-Letnikov’s fractional definition found to be.

* Approximations of examples attained by undertaking Griinwald-Letnikov’s fractional
derivative approach are efficaciously convergent towards the exact solutions that prove the
method to be appropriate for the solutions of fuzzy differential equations of fractional order
to a great extent.

* Pointwise explanation of errors through bar graph is conspicuously helpful in locating the
error between exact and calculated solutions at each time by simply measuring the length
of the bar at the respective point.
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