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Abstract

With the proliferation of renewable energy sources (RES) and the growing consumer
demand for plug-in hybrid (PHEV) and total electric vehicles (EV), the limitations of
the  aging  electrical  grid  distribution  infrastructure  is  becoming  more  and  more
apparent. The development of better infrastructure, therefore, is at the forefront of
research. The development of a smart grid, a bidirectional distribution infrastructure,
will allow for two-way “communication” of power distributors and aggregators with
multiple smart platforms, such as smart buildings, homes, and vehicles. The focus of
this  chapter  is  to  outline  the  means  of  (electrical)  vehicle  to  (smart)  grid  (V2G)
interactions and how attaining a synergistic relationship is vital to improving the way
power is distributed. The ability of fleets of EVs to act as a unit for excess power storage
allows for the increased integration of RES into existing grid infrastructure and smart
grids in the future through the bidirectional communication; providing support, giving
back stored power into the grid to lessen the load felt by generation utilities, augment
stochastic RES when generation is not meeting demands, lowering costs for both sellers
and buyers, and above all, working toward the betterment of Earth.

Keywords: electric vehicles, renewable energy, vehicle-to-grid, optimization, smart
grid

1. Introduction

The world is presently facing many energy problems. Fossil fuels have been the main domi‐
nant energy source for both the transportation sector and power generation industry even if
this energy source produces greenhouse gases (GHGs) which have a negative impact on climate
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change [1]. With fossil fuel prices increasing and its negative environmental impact, oil is
becoming less of a long-term energy solution, and more renewable sources of energy are being
sought. Wind and photovoltaic solar are renewable energy (RE) sources that are rapidly replacing
conventional power sources. On the other hand, electric vehicles (EVs) are becoming more and
more popular due to the fewer emission and low oil dependency.

The electrical vehicle is a zero emission vehicle because it does not produce the pollution
associated with internal combustion engines (ICEs). However, the charging through fossil-
fuelled electrical generation still makes an environment impact since most electricity is
generated by burning fossil fuels. But comparing with cars operated by gas power, cars
operated by batteries are cleaner because they produce less carbon emissions. Moreover,
battery-powered motors cost less to operate. The other advantage of EVs is safety and
efficiency. EVs use the advance technology to maintain the vehicle adequately and to keep the
right supplies on hand in case of emergencies. EVs offer benefits to the transportation sector
and the electric power system. They help strengthen the economy, are more environmentally
friendly, and can reduce strain on the petroleum industry by using renewable generation,
especially photovoltaic solar and wind, which is an important part of the transition to cleaner
sources of power. EVs are the best option for greener and economic driving [2].

An electric vehicle (EV) is considered an electrical drive vehicle which uses one or more
electrical motors or traction motor for propulsion. An EV is powered through a collector system
by electricity from a self-contained battery or generator to convert fuel to electricity. These are
termed battery electric vehicles (BEVs), or if powered with an off vehicle source, termed plug-
in hybrid electric vehicles (PHEVs) [3].

The battery electric vehicle is one type of electrical vehicle that uses chemical energy stored in
rechargeable battery packs. There are three major parts in the typical architecture of BEVS:
electric motor, rechargeable battery, and controller. The electric motor uses a rechargeable
battery as an energy source to generate propulsion. The controller manages the power supplied
to the electric motor. Another important part of a BEV is the inverter, which is for converting
the electricity stored in the battery (DC) power to alternating current (AC) power [3]. The
Nissan Leaf is a battery electric vehicle which relies on the grid to recharge its battery. Its
battery packs can be charged from fully discharged to 80% capacity in about 30 minutes using
DC fast charging. It does not produce pollution or GHGs, and also helps to reduce dependence
on petroleum [4].

The plug-in hybrid electric vehicle is a hybrid electrical vehicle that can use rechargeable
batteries or another energy storage device. They are usually equipped with both an electric
motor and an additional internal combustion engine for propulsion. PHEVs can be driven in
two modes: charge depleting (CD) and charge sustaining (CS). PHEVs produce energy from
on-board battery packs when they operate in CD mode, and they switch to CS mode and utilize
the ICE system for further propulsion if the charge of the battery has been depleted to a
predetermined level. There are three categories of plug-in hybrid vehicle: parallel hybrid,
series hybrid, and power-split hybrid. The parallel hybrid is the most commonly adopted.
They use both electric motor and an engine to power the driven wheels in a car [3]. The Toyota
Prius is a hybrid car with an internal combustion engine. Its large on-board battery recharges
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while the gasoline-fuelled ICE is running. It is fully self-sufficient and does not rely on the
grid. It can use its large on-board battery for 34–40 miles before the on-board gasoline generator
kicks in. It is fully capable of making long trips, but can also go short distance powered entirely
by the battery without any gasoline [5].

2. Vehicle to grid (V2G)

2.1. Concept

The advancement of EV technology has brought on additional attention into the integration
of the transportation sector into the power grid. The control and management of EV loads by
the power utility using the communication between vehicles and the power grid is referred to
as vehicle to grid. Some other similar concepts are vehicle to home (V2H) and vehicle to vehicle
(V2V). These involve exchanging power between an individual’s home power network and
their vehicle, or exchanging power within a community of electric vehicles [6].

Currently, the transportation sector is primarily using gasoline or petrol for propulsion, and
does not have any interconnection capabilities with the power grid. However, with the
advancing adoption of EV into the transportation market, the idea of allowing EVs to plug into
the power grid, to not only charge their vehicles, but also discharge energy back into the grid,
becomes more practical [2].

The V2G concept could provide many services to power grid but presents some challenges as
well. The benefits of such a system include peak load shaving, load leveling, and voltage
regulation, which will ultimately result in maximizing profits. The challenges include the
logistics of retrofitting the current infrastructures and gaining the support of the public and
policy makers.

One issue includes the accelerated battery degradation due to increasing the charging cycles
of each vehicle’s battery. Studies are being conducted to collect more accurate data on battery
lifecycles. These studies will provide more information so that policy makers can either prevent
consumers’ battery degradation, or more accurately consider the cost of that wear and
implement that into the pricing scheme. The battery degradation scenario is part of the social
barrier that V2G may present. Skeptical EV owners may wonder how they can be assured they
will have enough energy stored in their vehicle to accommodate their transportation needs.
There are also concerns of how the consumers will be fairly compensated for discharging their
energy back into the grid.

The challenge of retrofitting the power grid infrastructure could be the biggest hurdle.
Implementing V2G would be a large investment. Improving hardware and software in the
grid system would be one major cost. Another would be adding a bidirectional battery charger
to each EV. Bidirectional chargers consist of a complex controller and high tension cabling with
stringent safety requirements. V2G implementation would mean frequent charge and dis‐
charge cycles resulting in more losses from energy conversions. A large fleet of EV’s charging
and discharging would add up to large energy losses for the power system [6].
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The overall concept of V2G began with the idea of tapping into the underutilized power
capacity of the passenger vehicle fleet. Whether it is internal combustion or all electric, the
vehicle fleet in the United States has much more energy capacity than all the U.S. electrical
generating plants combined and they sit idle nearly 95% of the day. As the automobile industry
begins to shift more toward electric and hybrid vehicle production, the utilities have begun to
consider using these vehicle batteries as a storage cell. Studies have shown that even with
unfavorable assumptions about cost and lifecycles of batteries, over a wide range of conditions,
the value to the utility of tapping vehicle electrical storage exceeds the cost of a two-way hook-
up and reduced battery life. It has been considered to offer incentives to the vehicle owner as
a purchase subsidy, lower electric rates, or purchase and maintenance of successive vehicle
batteries [7].

A possible configuration for an EV participating in V2G technologies would have a user
interface with the vehicle allowing the owner to disable or limit the discharge to the grid. An
intelligent charge controller could have several options for the owner to charge and discharge
the vehicle. Some options could be to charge now or charge when cheap, or to set a minimum
threshold to maintain enough charge for the owner to be able to cover a particular driving
distance. This would allow for more flexibility for owners to participate as much as their
lifestyle allows. An incentive-based program would hopefully garner more favor from
consumers [7].

2.2. Smart grid

A smart grid is a modernized electrical power grid that involves communication technology
between the utility and the consumers using computer-based remote control and automation
to improve reliability, efficiency, and sustainability of the power supply. Two-way commu‐
nication between the utility and its customers by way of sensors and smart meters throughout
the smart grid are used for real-time data acquisition. The data collected from these sensors
and smart meters are then used by intelligent and autonomous monitoring control to supervise
and optimize the overall operations of the interconnected components [2].

An additional characteristic that separates the smart grid from the conventional grid is that
consumers can actively participate in the grid operation. The smart grid would contain
advanced metering infrastructure that would allow for consumers to access the real-time
information about electricity usage, tariff, and incentive information. They can use this
information for their own gain by adjusting electricity usage patterns and preferences. These
adjustments would likely help to balance out the overall energy supply and demand. The smart
grid concept also incorporates a widely dispersed distribution of generation units from various
forms of renewable generation and conventional power sources. This variety of generation
sources will provide better overall reliability and reduce risks from attacks and natural
disasters [2].

The ability to accommodate renewable energy sources more efficiently is another attractive
characteristic of the smart grid. Wind and PV solar energy has unpredictable and intermittent
supply of power to the grid. Due to varying weather conditions, the power produced from
these sources can be much higher than the power demand in some cases and much lower in

Modeling and Simulation for Electric Vehicle Applications152



other cases. They are variable with time and unable to dispatch on command. However, these
sources are practically viable if able to store and later discharge excess energy. The promise of
balancing the electricity generation from renewable sources with consumer load is realistic
with energy storage systems and controllable dispatch loads. A smart grid that communicates
supply and demand data will make renewable sources with energy storage systems a practical
solution [1].

The smart grid can improve grid reliability and power quality but implementing it into existing
infrastructure will be a challenge. In the meantime, there are several smart grid projects
underway all over the world. According to the Global Smart Grid Federation Report, the
leading projects are taking place in Australia; Ontario, Canada; London, Great Britain; Ireland;
South Korea; and Houston, TX, in the United States [8].

2.2.1. Smart charging/discharging

As EVs become more prevalent, a high concentration of vehicles charging over a small period
of time will inevitably lead to overload conditions in local nodes of the grid. This could lead
to interruptions and/or imbalances that would degrade the service quality, increase line losses,
or damage equipment. Smart grids are fundamental in smart charging management strategies
that can reduce peak load on the grid. This will also allow for the advantage of coordinating
vehicle charging in order to store surplus grid energy at a given instant and inject it into the
grid when needed [9].

The potentially undesirable effects of uncontrolled EV charging such as overloading the power
system facility would lead to an unregulated, less efficient electrical supply. To alleviate this
condition, some smart charging schemes have been developed to minimize charging costs.
Some optimization algorithms have been developed to create a better solution for EV’s
charging and discharging into the grid. Some smart charging concepts include using day-
ahead energy resource scheduling for smart grid by considering all the dispersed energy
resources (i.e., wind, solar, conventional, etc.) and the V2G participants. An optimization
approach could be used for intelligent optimal scheduling. To facilitate this intelligent charging
concept, a radio frequency identification (RFID) tag technology would be used to ID those
plugging into the grid. Some options could be considered where EV owners could control and
monitor their charging through a mobile web application. Parameters could be adjusted such
as the desired state of charge, arrival and departure times, or options for the V2G services to
maximize profit. Other intelligent charging models use consumption historical statistics with
data mining approaches. This method could include using the GPS function on an EV owners’
mobile device to help determine driving characteristics [1].

Efforts have been made in developing smart charging strategies to account for the efficiency
of the charging process. An effective dispatching strategy needs to account for the losses in the
charging process to accurately estimate the amount of energy fed to the battery from the grid.
Accounting for these nonideal conditions will allow for better overall system performance.
Currently, the charging efficiency of batteries for electric transportation still is largely de‐
pendent on the charging rate due to the internal battery resistance. On a typical lithium-ion
cell, the charging rate is normalized with respect to the battery capacity. The efficiency will
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decrease significantly with the charging rate due to the internal battery resistance power
dissipation with the charging current. These charging characteristics need to be taken into
account to develop smart charging strategies [9].

2.2.2. Advanced communication and control

The critical portion of the smart grid is the communication and control aspect. A two-way
communication network enables demand response technologies which can control distributed
energy resources over dispersed geographical areas [1]. As smart grid capabilities increase
with newer automation and communication networks, power utilities and aggregators are able
to see real-time distribution and load demands on the network and, via the bidirectional
communication, control and optimize the supply of power. A key benefit with EV is that they
can act as energy storage units that interact with the smart grid, through “smart” charging
stations. This dual-channel communication is only available through the use of bidirectional
communication, not unilateral, which among other reasons makes the switch from non-EV to
EV even more practical. These interactions can help optimize power distribution, decreasing
degradation and increasing quality of deliverable power through active power support and
reactive power compensation [2]. With an infrastructure of smart meters, the power system
can obtain the information of power demand and consumption in the system to better schedule
generation and distribution for locational pricing. With a large number of smart meters, fiber
optics as a medium would not be feasible due to cost, and wireless communication would be
the preferred method between smart meters and control centers [8]. The benefits of wireless
include low cost infrastructure and wide area coverage [1]. Perhaps a hybrid wired/wireless
system can be used in the future for security concerned consumers [10].

In comparison with traditional data networks, the smart meter network of a smart grid would
have some unique challenges. One challenge would be the volume of traffic and limited
bandwidth due to the large number of smart meters. Another would be the requirement for
real-time data transmission. The power grid is a very dynamic system and it is critical to have
current data. Delays in data transmission could result in instability to the power market.
Another challenge would be taking the characteristics of the power systems into account for
charge scheduling. Traditional scheduling algorithms that maximize the throughput or
minimize the average delay may not be valid in a smart grid. Addressing these challenges
could include introducing locational marginal pricing and a model of power load variation
into a scheduling algorithm [10].

On the consumer side, there are several ideas on how EV owners can exercise control of their
vehicle’s charging schedule while still allowing the power grid to benefit from the EV battery
source. One idea would consider equipping each V2G compatible EV with a user interface
device to allow the driver to receive instructions or seek advice for charging/discharging
processes. An alert would be issued in the event when the EV’s battery capacity is below a
predetermined threshold level. This alert can include near-by charging stations, distance, their
energy price, etc. The alert can also provide the driver with instructions to bringing the vehicle
to appropriate charging stations to serve as a backfill battery. All of this information exchange
would be accomplished through wireless communication and hall-effect current sensors.
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System architecture of a vehicle to grid communication system would possibly include several
road side units that would communicate between passing vehicles, nearby charging sta‐
tions, and the smart grid. The road side units would allow communication between vehicles
and charging stations when the transmission ranges would not be sufficient. The data transfer
would be triggered by the driver or a recommendation system. With a driver-triggered scenario,
the driver checks the state of charge and seeks advice on charging through the user interface
on board the EV. The communication module will send a message to the nearest road side
unit to request information of near-by charging stations. The inquiry would generate a reply
back to the vehicle with its geographical location and/or current energy price. The on-board
controller would collect data through the message exchanges and start the recommendation
system. This recommendation system would decide whether it is the right time to charge or
not based on the vehicle’s state of charge, energy prices, and grid status. It would either
recommend to charge or defer to off-peak hours when energy rates would likely be lower.

With a system-triggered scenario, the recommendation of energy charging depends on factors
such as the grid load, the state of charge of the vehicle, and real-time energy prices. The system
would receive alarms from sensors on the vehicle (for battery capacity), and then send
messages to the road side units to start a recommendation process [11].

3. V2G services for renewable energy (RE) integration

V2G systems can provide a variety of services to power utilities, grid operators and aggrega‐
tors, as well as the EV owner and even the environment. These services include ancillary
services, time shifting, active power support, and reactive power compensation through voltage
regulation. These services will become invaluable due to their mitigation of the increasing
uncertainties and intermittencies of the grid due to the renewable energy integration [12, 13].

3.1. Ancillary services: spinning reserve

Ancillary service refers to the supporting service supplied to the power grid in order to
improve upon and maintain the reliability and efficiency of the power grid, this also increases
sustainability. There are several ancillary services that are required for the security, reliability,
and stability of the grid. These services make up reactive supply, voltage control, regulation,
operating spinning reserve, operating supplemental reserve, and restoring energy imbalance
[14]. V2G technology inputs ancillary services to the power grid through a spinning reserve
service, where the energy stored in the grid-connected EVs is utilized as an additional
generation capacity to make up for the generation deficiencies due to generation outages [15].
The spinning reserve service provided by V2G technology provides a platform to initiate
failure recovery, as well as reduce the backup generation capacity [16, 17].

3.2. Time shifting

In time shifting services, storage capabilities and technologies are required to necessitate and
provide energy within a timeframe of 5–12 hours. In this particular case, energy storage
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systems are required to absorb and assimilate all of the energy from RESs during off-peak
demand periods. This absorbed energy may be supplemented with cheaper alternative power
sources brought from the network if necessary, and then selling it during peak power demand
periods; mitigating the activation or update of other conventional and more mainstream peak
power generation plants [18].

3.3. Active power support

EV can provide numerous methods of active power support. Through bidirectional commu‐
nication, the excessive EVs energy that would otherwise be wasted can be sent back to the
utilities and aggregators via the smart grid through specialized charging stations, parking lots,
etc. The goal of active power support is to ease the demand on the power utilities. The demand
for power is not constant, in that demand ebbs and flows, with a decrease in the late nights
and sizable demands during the mid-day and early mornings. This fluctuation degrades the
generative power of utilities. In addition, utility customers see the prices of electricity change
in accordance to the demands; having to pay a premium price for electricity usage during peak
hours. Power systems are designed for worst-case conditions, that is, assuming maximum load
and demand. It follows that whenever the demand is less than maximum, the systems are
being underutilized. Operating at maximum capacity also wears out the system over its life
time. EVs are able to provide two kinds of active power support, load leveling and peak
shaving, to prolong power system longevity and lower the economic strain on consumers and
EV owners [2].

3.3.1. Load leveling

Load leveling is the goal to “spread out” the high demand curve during peak hours, thus
decreasing the operational strain on the systems. EVs act, when on the V2G scale, as a collective
distribution network to supply excess power back through the smart grid to level out the load
peak. By using smarter distribution networks, the demand for sole generation and distribution
felt by power utilities and aggregators is lessened, prolonging system life and mitigating
unnecessary costs of repairs or upgrades. Utilizing the power systems at a level less than peak
for a longer period of time will lead to less loses overall, prolonging usability and lowering
overloading chances. Due to the stochastic nature of weather-dependent renewable resources,
the output power is unreliable to constantly meet the load. Using distribution networks to
store excess energy, like EVs, to act as a buffer to provide power whenever levels of renewable
generation is not at demand will allow year-round operation of renewables through lowered
reliance on perfect weather conditions [19].

3.3.2. Peak shaving

By allowing the power systems to not operate at worst-case peak levels, the degradation of the
systems is lessened and the overall life of the system and its generative abilities are increased.
This allows for longer and higher quality power distribution. EV connected to the grid during
peak hours increases the load at the low-voltage network. This increases the demand for
current and consequently the need for power from the medium and high-voltage networks.
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The increased load will force more current through transmission cables and transformers from
high- and medium-voltage networks down to low-voltage networks, which in turn increases
transmission losses and thermal wear on components, decreasing usability. By peak shaving,
this load is lessened through coordinated EV charging and EV-based distribution networks
through bidirectional infrastructure. The power delivered back to the utilities and aggregators
through V2G will decrease the peak demand, the degradation of generation resources,
distribution resources, and, by allowing the system to operate at a lower level, the premium
price of electricity faced by EV owners during peak demand hours [19].

3.4. Reactive power compensation: voltage regulation

A constant problem facing power utilities and aggregators is ensuring that the voltage and
current distributed through the network are in phase. However, with each load attached, a
disparity between the two can occur, resulting in a decrease in the deliverable power factor
which requires corrective measures. Reactive power support is able to supply voltage and
current to meet reactive load at the distribution level that would otherwise has to be supplied
by generators. Without reactive power support, supply voltages would fall below minimum
levels and more current would be needed to push through transmission lines, resulting in
thermal wear and potential blackouts [20].

Specialized capacitor banks are used by utilities to locally supply reactive power at the load
bus to lessen the load felt at the utility level. This specialized volt-ampere reactive (VAC)
compensator banks are costly and difficult to upgrade. By using the DC-link capacitors present
in EV chargers, utilities through the smart grid would be able to use the V2G distribution
network as a reactive power support system in addition to active power support network via
the bidirectional communication infrastructure. Since the DC-link capacitors supply the
reactive power, no strain is placed on the EV battery [21].

4. Optimization of V2G services for RE integration

4.1. Optimization techniques for V2G services

Mathematical modeling of systems allows for variable change while trying to maintain a
maximization or minimization of a criterion or many criteria. This modeling allows for
experimental change without potential risks to the actual system. Finding an optimal middle
ground between maximized efficiency and minimized cost is achievable through mathemat‐
ical modeling using various optimization techniques and functions. The different techniques
are summarized in the following sections.

4.1.1. Classical optimization techniques

Classical techniques are utilized when the optimization function is a continuous and/or
differentiable function. The solutions of optimization are found using differential calculus. The
most utilized types of classical models are: linear programming (LP), nonlinear programming
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(NLP), dynamic programming (DP), mixed-integer programming (MIP), stochastic program‐
ming (SP), convex programming (CP), and analytical modeling (AM).

4.1.2. Metaheuristic optimization techniques

Metaheuristic optimization techniques find, generate, or select a heuristic in this case a method
of searching for an optimization strategy that may provide the best solution to the optimization
problem with nonderivative, noncontinuous objective functions These metaheuristic methods
sample from a much larger sample set to find a solution that best fits the entire set. It is based
off of random operators to find the best solution to the set of variables faster than iterative or
simple heuristics. The common types of metaheuristic techniques are: genetic algorithms (GA),
particle-swarm optimization (PSO), ant colony optimization (ACO), simulated annealing (SA),
and Tabu search [3].

4.1.3. Hybrid optimization techniques

Hybrid optimization techniques are techniques that combine two or more of the previously
described methods, either classical or metaheuristic. Typically, they combine iterative ap‐
proaches to heuristic solutions.

4.2. Optimization objectives

The focus on optimization for V2G services are cost, efficiency, and emission optimization.
Through the use of the optimization techniques listed above, significant gains can be made
toward producing the most efficient and cost-effective EVs, maximizing V2G interactions, and
improving smart grid technologies and power generation and distribution.

4.2.1. Cost optimization

Cost optimization is focused on minimizing the costs of interaction between EVs and RES
providers through the smart grid. Providers wish to reduce costs and maximize profit while
EV owners wish to minimize the cost of charging and vehicle maintenance [3].

4.2.1.1. Operational cost minimization

Operational costs and their minimization are crucial for all market participants including
the generation, transmission, and distribution providers and users [3]. Table 1 summarizes
the related research works, their objective functions, techniques in use for optimization, and
their main findings.
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Reference Objective function(s) Optimi-
zation
technique

Findings

[22]
min CIso,T
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C)viT −CB
C PB

CT

CIso,T
C  is the islanded operating cost over a horizon of

length T; Ci
d , Pi

d  are the discharging price and

power of the ith EV; CB
d , PB

d  are the discharging price

and power of battery swapping stations (BSS); Pk , Ck  are

the amount of load shedding of the kth interruptible load

(IL) user and its service price; vi, zk  are in binary with vi

being a 1 if the ith EV is connected to the microgrid after
islanding while fixed to zero when the ith EV is not

available; zk  is 1 when the interruption time of the kth IL

does not exceed the longest time per interruption while it
is enforced to be zero if the time limit on load shedding is
violated.

Classical
(Mathe-matical
progra-mming)

On a regional level, a
management strategy
is proposed by this
paper for minimizing
costs and maximizing
profits of an islanded
microgrid with
renewable resources.
The strategy is
beneficial for
managing the load of
EV fleets and
optimizing the
operation to mitigate
the load impact by
leveling and peak
shaving. The strategy
uses fuzzy systems to
obtain the charging
price EVs.
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TSC is the total schedule cost; L is the total number of

PHEV; M is the total number of DG units; u j ,t
DG is the

status of the jth DG unit at hour t; P j ,t
DG (kW) is the active

power production of the jth DG unit at hour t; S j ,t
DG ($) is

the start-up or shut-down cost of the jth DG unit; Bi ,t
PHEV

($) is the bid of the jth PHEV at hour

t; B j ,t
DG ($) is the bid of the jth DG unit at hour t; Bt

Grid ($)

is the energy bid of the utility at hour t.

Metaheu-ristic
(GA)

The proposed
planning model
provides the DNO
(distribution network
operator) a set of
optimal solutions over
a range of operating
conditions and
uncertainties.

[24] min
{lk },{zk}

∑
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pB
T lk + ρ

2 | | lk − zk | | 2
2 + C2 f 0(∑

k
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zk  is the auxiliary variable; pB is the base price; lk  is the

kth user load; ρ is the quadratic coefficient for augmented

Classical (NLP) Demand curve can be
flattened after
numerical examples
of optimization
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Reference Objective function(s) Optimi-
zation
technique

Findings

Lagrangian; C2 is the coefficient for fluctuation price; f0 is
the variance of aggregated demand load.

[25]
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pi , j ,t Bi , j)
i is the generator group; t is the time intervals; H i ,t  is the

start-up cost of group i at time t; Ai is the no-load cost of

one unit of group i; Bi , j is the marginal cost of segment j

of the group i’s cost function; ni ,t  is the integer of

commitment decisions; pi , j ,t

is the output for segment j of group i at time t.

Classical (MILP) Controlled charging
can substantially
reduce the cost of
supplying additional
EV demand due to
lowered usage of peak
generators, avoiding
wind/solar
curtailment, reduce
carbon emission and
associated costs, and
reduce thermal
generator start-up
times.
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CHP is the cost of electricity production by CHP

systems; Costi ,h
b  is the cost of heat production by the

boilers; Costi ,h
PV is the total operation cost of PV

generation systems; gridh
buy and gridh

sell are the

purchased and sold electricity from/to the upstream

network; e ph  is the electricity price at hour h in the

upstream network; SC is the sell coefficient; N is the
number of buses; T is the number of intervals (hour).

Classical (NLP) The introduction of
PV (photovoltaic)
generation systems
coupled with PV
storage systems in
IMGs (industrial
microgrid) could have
positive effects on
their scheduling
solution and
minimizing the
overall cost.

[27, 28] min
Ii(t),NV 2G(t )

TC =W c ×(Fuel + Start −Up)

+W e × Emission

= {E (∑
s∈S
∑
i=1

N

∑
t=1

H

W c(F Ci(Pi(t))

+SCi(1− I i(t −1)))

+W e(ψiECi(Pi(t)) I i(t))}

Metaheu-ristic
(PSO)

PSO was utilized to
generate a successful
schedule considering
the stochastic nature
of renewable energies,
load and GVs in a
smart grid. Valid
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Reference Objective function(s) Optimi-
zation
technique

Findings

II (t),  NV2G(t ) are the decision variables for the on/off

state of units and number of GVs connected to the grid at

time t; F Ci(Pi(t)) is the fuel cost of a thermal unit i with

Pi(t) being the output power of unit i at time t; SCi(t) is

the start-up cost for restarting the de-committed thermal

unit i; ψi is the emission penalty factor of unit i; ECi() is

the emission cost function for unit i; weight factors W c

and W e are used to increase the flexibility

of the system; N is the number of units; H is the

scheduling hours; S is the set of scenarios; E (.) is the

expectation.

scenarios are derived
from prior statistics,
heuristics, and
anecdotal experiences
of the authors.

[29]
min∑

t
∑

i

(p b ⋅Fc,i(Pi ,t) + SU i ,t + S Di ,t)

+∑
t
∑

k
p b ⋅ (SUk ,t + S Dk ,t) +∑

t
∑

v
p b ⋅Cv ,t

+ ∑
t
∑

i

(Fc,i
r (Δi ,t

max ×))

+∑
s

p s ⋅ ∑
t
∑

i
Fc,i(Pi ,t

s )

+∑
t
∑

k
(SUk ,t

s + S Dk ,t
s ) +∑

t
∑

v
Cv ,t

s

p b, p s are the probabilities of the base case solution, and

the probability of a scenario s; Fc,(.), Fc,(.)
r  are the

production/availability cost function of a thermal unit;

C(.)
(.) is the operation cost of PEV fleet; Δ(.)

max × is the

maximum permissible power adjustment of a unit; P(.)
(.) is

the generation of a unit; s denotes a scenario; S D(.)
(.) is the

shutdown cost a unit; SU (.)
(.) is the startup cost of a

unit; bm,(.) is the slope of segment m in a linearized

charge/discharge curve; i denotes a thermal unit;
t is the
hour index; v denotes a
PEV fleet.

Classical (MIP) Numerical tests
demonstrate the
effectiveness of the
proposed approach
for analyzing the
impact of PEVs on the
grid operation cost
and hourly wind
energy dispatch.

Table 1. Optimization of V2G services for minimizing operational cost.
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Reference
 

Objective function  Optimi-
zation
technique 

Findings 

[30]  min
u1,u2

∑
T

t=1
{Cenergy(u1) + Creserve,s(Rs)

+Creserve,d (Rd )}
u1 is the electricity generation; u2 is the scheduling of wind
power; Cenergy is the cost of electricity generation; Creserve,s is
the reserve scheduling; Creserve,d is the expected reserve
dispatch; Rs

is the scheduling of conventional reserve (MW); Rd is the
expected dispatch of conventional reserve (MW). 

Classical (DP)  Demonstrated the
value of fully
exploring the synergy
between PEV and
wind power using a
three-level controller;
with the top-level
minimizing
generation costs, mid-
level allotting
charging time and
power based on
battery SOC, and
bottom-level using
real-time feedback to
attempt grid
frequency
synchronization. 

[31] 
min

PGi
(t ).PL j

(t ),EV Bj
(0) ,ΔE
∑
t=i

T

∑
i

nGi
⋅PGi

(t )

PGi
 is the power produced by generator Gi; nGi

 is the

marginal cost of generator Gi; PL j
 is the power consumed

by load Lj; EV Bj
 is the energy content of the virtual

battery; ΔE is the shift in the energy content of the
aggregation of virtual batteries. 

Hybrid (Classical and
scenario method) 

Compared to a pure
cost-optimizing
strategy, part of the
charging has to be
moved from the night
to more expensive
hours to reduce the
SOC swing. This
leaves enough
flexibility to
compensate the
forecast error. 

[32]  min E |Ctotal |

Ctotal =∑
i=1

Nc

Ci(Ps ,i) + ∑
i=1

Nw

Cw ,i(W s ,i)

+∑
i=1

Nw

Cw ,u,i(W s ,i, W i) + ∑
i=1

Nw

Cw ,o,i(W s ,i, W i)

+∑
i=1

Ne

Ce,i(Pe,s ,i) + ∑
i=1

Ne

Ce,u,i(Pe,i, Pe,s ,i)

+∑
i=1

Ne

Ce,o,i(Pe,i, Pe,s ,i)

Hybrid (Interior point
based PSO) 

By studying the
statistical properties
of charging and
discharging EVs along
with formulating a
power system
economic dispatch
model, which takes
into account impacts
of EVs and wind
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Reference
 

Objective function  Optimi-
zation
technique 

Findings 

Nc is the number of conventional generators; Nw is the
number
of wind generators; Ne is the number of buses with V2G
facilities installed; Ci is the conventional generator cost;
Ps,i is the scheduled output of the conventional generator
i; Cw,i is
the wind generator cost; Wi is the available wind power;
Ws,i is the scheduled output of the wind generator i;
Cw,u,i is the underestimating penalty cost coefficient;
Cw,o,i is the overestimating penalty cost coefficient;
Pe,i is the available V2G power at bus i; Pe,s,iis the
scheduled V2G power at bus i. 

generators, a novel
algorithm is proposed
to solve nonlinear and
nonconvex
optimization
problems. 

[33] 
min u1,u2

∑
t

{Cconv⋅(u1 + r ′) + CA.S .(r)}
Cconv is the cost of conventional generators; CA.S. is the
cost of ancillary services; u1, u2 are the control variables
representing the scheduling of conventional generators
and ancillary services; r is the scheduling of ancillary
services; r′ is the expected dispatch of ancillary services. 

Classical (DP)  The proposed
integration is an
implementable
algorithm to realize
the synergy of PEV
charging and wind
energy. It can also be
made to reflect other
inherently stochastic
RESs. 

[34]  min ( ∑
i∈NG

αiΔPgi + ∑
i∈ND

βiΔPdi)
ith is the index bus bar; αi is the coefficient of generation
curtailment; βi is the coefficient of load shedding; ΔPdi is
the load shedding; ΔPgi is generation curtailment; NG, ND
are the sets of generation and load demand.  

  It is found that active
network management
(ANM) strategies
achieved through
intelligent EV
charging can further
reduce generation
curtailment; allowing
for more absorption of
renewable energy. 

Table 2. Optimization of V2G services for minimizing generation cost.

4.2.1.2. Generation cost optimization

Generation cost optimization is crucial to both power distributors, charging station operators,
and the EV owners. Interactions between EVs and RESs through the smart grid are at the center
of intensive research. Maximizing the profit for distributors, minimizing cost of operation/
generation, and the cost of ownership and charging of EV is crucial with the proliferation of
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green energy [3]. Table 2 summarizes the related research works, their objective functions,
techniques in use for optimization, and their main findings.

4.2.1.3. Profit/benefit optimization

By maximizing the profit for generators/providers, or the benefits for providing energy, the
effects are felt by the supply chain through aggregators, charging stations, etc. down to the EV
owners. Optimization is referenced from the viewpoint of increasing investments in RESs or
electricity delivery management. Table 3 summarizes the related research works, their
objective functions, techniques in use for optimization, and their main findings.

4.2.1.4. Charging cost optimization

Minimizing costs is crucial to both distributors and EV owners. Ensuring that the costs stay
low on the distribution side ensures that costs stay low on the consumer side. Maximizing the
synergy between stochastic RES generation and EV charging loads is the key to minimizing
the costs surrounding EVs [3]. Table 4 summarizes the related research works, their objective
functions, techniques in use for optimization, and their main findings.

Reference Objective function Optimi-
zation
technique

Findings

[35]
max
x,b,d ,y,g

P(x, d )=∑
n=0

N −1
p e(n) x(n) + d (n)

x is the energy supplied directly to the grid; b is the
energy transferred to the batteries; d is the energy
transferred from
the batteries; y is the needed storage capacity; g is the
energy transferred to the batteries as payment; P() is the
revenues
raised by the virtual power plant (VPP) from the
electricity
sold at market; pe(n) is the wholesale price of electricity.

Classical (Iterative LP) VPP formed with EVs
can maximize profits
by optimizing the
schedule of supply to
the grid based on the
wind energy
production and the
available storage.

[36] min
u
− {∑

h
p h∑

i
xi

h −∑
h

c h ⋅ y h

−Eξ∑
h

{r h (ξ)⋅ z h *(ξ)−q h ⋅v h *(ξ)}}
xi

h  is the allocation of energy to EV i for hour h; yh is the

amount of purchased bulk energy for hour h; ph is the
price
per energy unit at which energy is charged to the EVs

during hour h by the aggregator; c h  is the price of bulk

Classical (SP) A stochastic-based
framework is
proposed for smart
grid operators to
determine optimal
charging control of
EVs and energy
purchasing to
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Reference Objective function Optimi-
zation
technique

Findings

energy for hour h; rh(ξ) is the price of energy in the real-
time market; qh is the price at which excess energy is
purchased back; zh is the real-time energy
purchased back
by the aggregator; vh is the excess energy sold back.

maximize
performance.

[37]
min

I∈I

Sonline(I )

Soffline
* (I ) ≥α

I is the input set fixed for all input instances I with finite
sizes; Sonline(I) is the total profit obtained by the online

scheduler; Soffline
* (I ) is the optimal offline scheduler.

Classical (Threshold
admission and
greedy scheduling
(TAGS))

It is shown that, when
the price offered to
the EV customers is
higher than the
purchasing price of
electricity from the
grid, TAGS achieves
the competitive ratio
of 1.

[38] max
POPi(t),MxAPi(t),MnAPi(t)

In −C

In =α∑
t

(PregUp(t)RUp(t) + PregDown(t)RDown(t))

+Mk∑
i
∑
t

(E (PDi(t)))

In – C is the aggregator income minus costs; Mk is the
aggregator markup over wholesale energy price; α is the
percentage of regulation revenue taken by the aggregator;
RUp is the bid regulation up capacity of the aggregator;
RDown is the bid regulation down capacity of the
aggregator;
PDi is the power draw of the battery of the ith EV.

Classical (CP) Simulations of hourly,
daily, and yearly
show that the optimal
algorithms increase
aggregator profits,
lower load demand,
and reduce costs to
customers.

[17]
max V2G Income=∑

t=1

T (∑
V =1

NV

(PDischarge(V ,t ))
×CDischarge(V ,t )−PCharge(V ,t ) ×CCharge(V ,t )))×Δt
NV is the total number of vehicles V; PDischarge(V,t) is the
power discharge of vehicle V in period t; cDischarge(V,t) is the
discharge
price of vehicle V in period t; PDischarge(V,t) is the power
charge of vehicle V in period t; cDischarge(V,t) is the charge
price of
vehicle V in
period t.

Metaheur-istic (paral-
lel PSO)

The parallelization
approach presented
provides promising
results to model EV
loads on distribution
networks for future
incorporation of smart
grid technologies

Table 3. Optimization of V2G services for maximizing profits/benefits.
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Reference Objective function Optimi-
zation
technique

Findings

[39]
min

ui ,t

∑
t=1

N t (Ct
N + αt)QEV ,t + βQEV ,t

2

ui,t is the optimization variable representing the
charging rate of vehicle i out of a total number of vehicles

at time t; Ct
N  is the time-dependent network tariff; αt is

the
baseline electricity price at time t; QEV,t is the extra
demand

of the EVs; βQEV ,t
2  is the

EV-dependent part.

Classical (Rolling
horizon optimization
scheme)

An analysis of EV-
caused distribution
network congestion
management is
presented and a
mathematical model
of optimization is
proposed.

[40]
min

xg(t)
Vγ(t)y(t)−∑

g=1

G
Qg(t)(1 +

η
Rg

) + Zg(t) xg(t)

xg(t) is the control variable; V is a parameter that is used
to tune the tradeoff between cost and queue backlog
growth;
γ(t) is the electricity price at time t; y(t) is an auxiliary
variable; Qg(t) the total charging tasks in timeslot t of g
queues; Zg(t)
is the virtual queue; Rg is the max charging time;
η is a constant to adjust the growth rate of the virtual
queue.

Classical (Lyapunov
optimization)

A stochastic
optimization problem
is formulated to
describe the queuing
problem for EV
charging requests and
minimize the time
average cost of using
other energy sources
when renewable
sources are unable to
meet demand.

[41]
min (EC)=min (∑

t=ta

tb

Pt ×S Pt)

EC is the energy costs of the PEV; Pt is the charge/
discharge power at hour t; SPt is the spot hour price at
hour t; ta

is the starting hour of charge/discharge for the PEV; tb is
the ending hour of charge/discharge for the PEV.

Classical (Sequential
quadratic
programming)

The optimization
method presented has
shown that PEV
charging/discharging
during optimal spot
market times
minimize energy costs
on low wind-
generated power
days.

[42]
min∑

t=1

T
αqt + βqt

2

qt are the total purchases and sales of the aggregator;
α, β are variables linearly relating price to load.

Classical (Quadratic
progra
mming)

This paper offers to
aggregators a
framework of
optimizing charging
and discharging of EV
fleets given driving
patterns and spot
market prices.

Table 4. Optimization of V2G services for minimizing EVs’ charging cost.
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4.2.1.5. Other cost-related optimization

Other cost-related optimizations include minimizing overall costs related to system lifetime,
transmission, materials and resources, upgrades, losses, and renewable imbalances [3]. Table
5 summarizes the related research works, their objective functions, techniques in use for
optimization, and their main findings.

4.2.2. Efficiency optimization

The efficient utilization of renewables can reduce the use of fossil energy quite substantially.
This can elicit several benefits including air pollution reduction and cost savings for consum‐
ers. The efficiency-related optimization objectives in regards to EVs interactions with RESs are
maximizing RES utilization, optimizing energy dispatch, optimizing energy management,
minimizing power loss, and minimizing energy loss. Sections 4.2.2.1 and 4.2.2.2 provide details
regarding the efficiency-related optimization works for EVs interacting with RESs.

Reference Objective function Optimi-

zation

technique

Findings

[43] min
Ω

( f 1(Ω) f 2(Ω) )

f 1(Ω)= NPVuprgrades + NPV losses

f 2(Ω)= Egrid + EDG−EPEV

NPVuprgrades is the net present value (NPV) of the

costs of upgrades; NPVlossses is the NPV

of the costs of losses; Egrid are the emissions due to

energy purchased from the grid; EDG are the

emissions of

distributed generation (DG) units;

EPEV are the emission reductions of the PEV.

Metah-euristic

(Nondo-minated

sorting genetic

algorithm

(NDSGA))

A planning method is

presented that can

accommodate a high

penetration of PEV

and renewable DG

into preexisting

distribution networks.

[44] min C =CDG + CS + CG + CM

C is the lifecycle cost of the system; CDG and CS are

the initial capital costs for the renewable DG and

the storage unit; CG is the cost associate with

getting energy from the grid; CM is the

maintenance cost of the system.

Classical (MILP) A methodology is

presented to design

grid-interfaced PEV

charging stations that

integrate RE

generation and

distribution networks

[45]
min∑

t=1

24
aPConv

2 (t) + bPConv(t) + c
Metahe-uristic

(GA)

This paper generates a

smart energy

management system

V2G Services for Renewable Integration
http://dx.doi.org/10.5772/64433

167



Reference Objective function Optimi-

zation

technique

Findings

a, b, c are cost coefficients; PConv(t) is the

generation of the conventional generator at time t.

(EMS) that allows

distributors a more

economical means of

incorporating wind

resources and EV

storage solutions into

existing generation

resources.

[46] min {CPen. + CV2G−RV2G}
CPen. is the penalty cost for wind power

imbalances;

CV2G is the cost for V2G services; RV2G

is the revenue

for V2G services.

Hybrid (GA-

based Monte Carlo

simulation (MCS))

The proposed

optimization provides

collaboration between

wind participants and

EV aggregators to

minimize the sum of

the penalty cost

associated with wind

power imbalances

and V2G expenses

associated with

purchased energy,

battery degradation

and capital costs as

well as increasing the

EVs’ revenues and

incentives.

[47]
min∑

k=1

K
CPen .(tk )

Cpen is the penalty cost for PV power imbalances;

K is the number of time steps.

Hybrid (PSO-

based Monte Carlo

simulation (MCS))

This paper proposes a

coordinated charging/

discharging scheme to

optimally utilize V2G

capacities of EVs to

minimize the penalty

cost for PV power

under-/

overproduction.

Table 5. Optimization of V2G services for minimizing costs.
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4.2.2.1. RES utilization maximization

The excessive power generated by RESs can be stored in batteries of the EV fleets and DC-link
capacitors in specialized charging stations to supply the necessary power through V2G
infrastructure when the renewable energy generation is insufficient to meet load demands. An
optimization strategy is required to coordinate the EVs’ charging/discharging with RESs
uncertainties to maximize the use of renewable generation. Table 6 summarizes the related
research works, their objective functions, techniques in use for optimization, and their main
findings.

Reference Objective function Optimi-

zation

technique

Findings

[48] max
φt

→RES̄=∑
t=1

T
rest ⋅φ

rest is the share of RES of total load in time

step t (%); φt is the charge parameter for time step t.

Classical (LP) Through the

optimization objective

of maximizing

amount of charging

power coming from

RES through the

smart grid during

optimal times, the

authors were able to

see that RES made up

83% of the EVs’

charging demand.

[49] min
φ, ramptramp, isOn f = ∑

t∈ 1..T

CGt

CGt is the conventional generation in

time slot [t − 1, t];

rampt is the occurrence of ramping for time slot

[t − 1, t]; φ is the maximum charge amount in one time

slot;

isOnt is the binary state variable for conventional

generation.

Classical

(MIP)

The findings

presented suggest that

through an optimal

charging algorithm

controlling the

scheduling of EV fleet

charging, the usage of

renewables can

double; with wind

alone supplying

67.2%.
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Reference Objective function Optimi-

zation

technique

Findings

[50]
Ctot(t)=min( ∑

n=1

NTU

(Cstart,n + (PCn(PTUn)

+Cems ,n(PTUn).tint)
NTU

is the number of thermal units;

Ctot(t) is the total production cost; Cstart,n is the startup cost

of unit n;

PCn is the production cost of unit n; Cems,n is the CO2

emission

cost of unit n; PTUn

is the output power of unit

n; tint is the time period share in an hour.

Classical (MIP) This paper suggests a

strategy to fully

supply the EVs’

charging load by RESs

within a microgrid

composing of a

photovoltaic plant, a

thermal unit, battery

energy storage

systems, and electric

vehicle charging

stations.

[51]
J ũ*(x0)=

max
ũ∈U J ũ(x0)

J ũ(x0)= limT →∞
1
T E {∫0T r(x(t), a(t))dt}

ũ* is the optimal charging policy; r(x(t), a(t)) is the

reward for the action a(t) taken in a state x(t).

Classical (LP) The authors

developed an optimal

charging policy

strategy to maximize

renewable energy

utilization within

preexisting

distribution

infrastructure despite

stochastic generation

potential.

[52] min
xt

k {∑t=1
T Ct(∑k =1

K xt
k ) +∑k =1

K ∑t=1
T Dt

k (xt
k )}

Ct(.) is the imbalance cost; Dt
k (.) is the disutility of the

subscribers that aid in balancing; xt
k

is the energy demand of

subscriber k during time slot t.

Classical (Convex

optimi-zation–

quadratic) progr-

amming

The authors proposed

an optimal distributed

algorithm to balance

the synergy of

smartgrid interactions

between RES supply

and EV charging

demand.
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Reference Objective function Optimi-

zation

technique

Findings

[53]
Min {J =∑

h =1

H

∑
p=1

h −1

((xh , p −bh , p)⋅ (KρρP

−∑
r=1

NG

Kr Pr , p))}
J is the objective function; xh,p is the purchased and

charged energy at hour p; bh,p is the available energy in the

batteries of EDVs that is used in hour h; H is the number

of hours in the assessed time period;

Pr,p is the production of RES r in hour p among NG

RESs; ρP is the purchase energy price in the market in

hour p; Kρ and Kr are the optimization parameters

that regulate the objective function J.

Classical

(LP)

Higher transportation

costs for EDV users

present a tradeoff for

a cleaner environment

through reduced

emissions as a result

of more intensive RES

exploitation in

transportation.

Table 6. Optimization of V2G services for maximizing RES utilization.

4.2.2.2. Other efficiency-related optimization

Other efficiency-related optimizations include minimizing imported electricity [54], mini‐
mizing power loss [55], minimizing loss energy, and optimizing energy management [56],
etc. Table 7 below summarizes the related research works, their objective functions, techni‐
ques in use for optimization, and their main findings.

Reference Objective function Optimi-
zation
technique

Findings

[54]
min (θ T −ρ(h )⋅∑

h =1

H
E (h ))

ρ(h) is the unit price of the electricity consumption; E(h)
is the electricity in (kwh) generated from renewable
energy
sources in time slot (hour) h; θT is the total daily electricity
cost.

Classical (MILP) The results of the
simulations
conducted
in this paper show
that intelligent,
optimized
scheduling of EV
fleets
drastically increases
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Reference Objective function Optimi-
zation
technique

Findings

overall distribution
performance,
reducing
charging times and
related costs.

[55]
F =min ( f 1 + f 2) + ∑

i∈NDG

(max(V i −V i
max , 0)

+max(V i
min −V i, 0)) +∑

i∈N
max

+(|Si | − |Si
max | , 0)

f1 is the power losses of N-bus distribution system; f2

is the error between rated voltage (1 p.u) and
voltage of each bus;
V is the voltage; NDG is the total number of system
suppliers.

Metahe-uristic
(GA)

The focus of this
paper is on improving
the “smart parking
lot,” with a primary
goal of efficiently
reducing power losses
through improving
voltage profiles and
optimized scheduling
of EV fleet charging
during peak and
nonpeak hours.

[56]
Min C =∑

Scwind

H

π(Scwind)

∑
t=0

N −1

∑
i=1

I

CDGU i ,t
.(PDGU i ,t ,S cwind

)
+Cgrid,t .(Pgrid,t)

+∑
j=1

J

CGAR j ,t
.(PGAR j ,t ,S cwind

)
π(Scwind) is the probability/weight of wind scenario

Scwind; Scwind is the index of wind power scenarios

running from 1 to H; CDGU i ,t
 is the price of energy

obtained from dispatch-able generating unit i at time t;

PDGU i ,t ,S cwind
 is the power output from dispatch able

generating unit i at time t and under wind power scenario

Scwind; Cgrid,t  is the price of energy obtained from the

main grid at time t; Pgrid,t  is the power input/output for

the main grid at time t; CGAR j , t
 is the price of energy

obtained from garage j at time t; PGAR j ,t ,S cwind
 is the

power input/output for garage j at time t and under wind

power scenario Scwind

Classical (LP) The practical model
provided in this paper
assesses the ability of
V2G systems to
provide power
support to
conventional grid
operations, including
small electric energy
systems (SEESs).

Table 7. Optimization of V2G services for improving efficiency.
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4.2.3. Emission optimization

Emission reduction is one of the most important objectives of EVs’ adoption for transportation.
This objective can be further satisfied through interactions between EVs and RESs. V2G
implementation plays a key role in this scenario to decrease the power utility costs and protect
the environment. Related research works include references [27] and [28] of Table 1, reference
[43] of Table 5, and reference [57] whose objective function, optimization technique, and its
main finding is provided in Table 8.

Reference Objective function Optimi-

zation

technique

Findings

[57]

Minimize J =∑
0

24 ( CO2

gal *mf *Δtdr +
CO2

kWh *Pb*Δtch )
J is the optimization objective; mf is the gasoline

consumption; Pb is the battery charging power;

Δtch  is the charging time step

Δtdr  is the driving time step.

Classical

(DP)

The proposed

integrated approach

shows, through

successful

simulations,

that with more wind-

based

power generation and

integration into

existing distribution

infrastructure comes a

reduction in carbon

dioxide emissions.

Table 8. Optimization of V2G services for reducing emission.
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