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Abstract

With the proliferation of renewable energy sources (RES) and the growing consumer
demand for plug-in hybrid (PHEV) and total electric vehicles (EV), the limitations of
the aging electrical grid distribution infrastructure is becoming more and more
apparent. The development of better infrastructure, therefore, is at the forefront of
research. The development of a smart grid, a bidirectional distribution infrastructure,
will allow for two-way “communication” of power distributors and aggregators with
multiple smart platforms, such as smart buildings, homes, and vehicles. The focus of
this chapter is to outline the means of (electrical) vehicle to (smart) grid (V2G)
interactions and how attaining a synergistic relationship is vital to improving the way
power is distributed. The ability of fleets of EVs to act as a unit for excess power storage
allows for the increased integration of RES into existing grid infrastructure and smart
grids in the future through the bidirectional communication; providing support, giving
back stored power into the grid to lessen the load felt by generation utilities, augment
stochastic RES when generation is not meeting demands, lowering costs for both sellers
and buyers, and above all, working toward the betterment of Earth.

Keywords: electric vehicles, renewable energy, vehicle-to-grid, optimization, smart
grid

1. Introduction

The world is presently facing many energy problems. Fossil fuels have been the main domi-
nant energy source for both the transportation sector and power generation industry even if
this energy source produces greenhouse gases (GHGs) which have anegative impact on climate
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change [1]. With fossil fuel prices increasing and its negative environmental impact, oil is
becoming less of a long-term energy solution, and more renewable sources of energy are being
sought. Wind and photovoltaicsolararerenewableenergy (RE)sourcesthatarerapidly replacing
conventional power sources. On the other hand, electric vehicles (EVs) are becoming more and
more popular due to the fewer emission and low oil dependency.

The electrical vehicle is a zero emission vehicle because it does not produce the pollution
associated with internal combustion engines (ICEs). However, the charging through fossil-
fuelled electrical generation still makes an environment impact since most electricity is
generated by burning fossil fuels. But comparing with cars operated by gas power, cars
operated by batteries are cleaner because they produce less carbon emissions. Moreover,
battery-powered motors cost less to operate. The other advantage of EVs is safety and
efficiency. EVs use the advance technology to maintain the vehicle adequately and to keep the
right supplies on hand in case of emergencies. EVs offer benefits to the transportation sector
and the electric power system. They help strengthen the economy, are more environmentally
friendly, and can reduce strain on the petroleum industry by using renewable generation,
especially photovoltaic solar and wind, which is an important part of the transition to cleaner
sources of power. EVs are the best option for greener and economic driving [2].

An electric vehicle (EV) is considered an electrical drive vehicle which uses one or more
electrical motors or traction motor for propulsion. An EV is powered through a collector system
by electricity from a self-contained battery or generator to convert fuel to electricity. These are
termed battery electric vehicles (BEVs), or if powered with an off vehicle source, termed plug-
in hybrid electric vehicles (PHEVs) [3].

The battery electric vehicle is one type of electrical vehicle that uses chemical energy stored in
rechargeable battery packs. There are three major parts in the typical architecture of BEVS:
electric motor, rechargeable battery, and controller. The electric motor uses a rechargeable
battery as an energy source to generate propulsion. The controller manages the power supplied
to the electric motor. Another important part of a BEV is the inverter, which is for converting
the electricity stored in the battery (DC) power to alternating current (AC) power [3]. The
Nissan Leaf is a battery electric vehicle which relies on the grid to recharge its battery. Its
battery packs can be charged from fully discharged to 80% capacity in about 30 minutes using
DC fast charging. It does not produce pollution or GHGs, and also helps to reduce dependence
on petroleum [4].

The plug-in hybrid electric vehicle is a hybrid electrical vehicle that can use rechargeable
batteries or another energy storage device. They are usually equipped with both an electric
motor and an additional internal combustion engine for propulsion. PHEVs can be driven in
two modes: charge depleting (CD) and charge sustaining (CS). PHEVs produce energy from
on-board battery packs when they operate in CD mode, and they switch to CS mode and utilize
the ICE system for further propulsion if the charge of the battery has been depleted to a
predetermined level. There are three categories of plug-in hybrid vehicle: parallel hybrid,
series hybrid, and power-split hybrid. The parallel hybrid is the most commonly adopted.
They use both electric motor and an engine to power the driven wheels in a car [3]. The Toyota
Prius is a hybrid car with an internal combustion engine. Its large on-board battery recharges
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while the gasoline-fuelled ICE is running. It is fully self-sufficient and does not rely on the
grid. It can use its large on-board battery for 34—40 miles before the on-board gasoline generator
kicks in. Itis fully capable of making long trips, but can also go short distance powered entirely
by the battery without any gasoline [5].

2. Vehicle to grid (V2G)

2.1. Concept

The advancement of EV technology has brought on additional attention into the integration
of the transportation sector into the power grid. The control and management of EV loads by
the power utility using the communication between vehicles and the power grid is referred to
as vehicle to grid. Some other similar concepts are vehicle to home (V2H) and vehicle to vehicle
(V2V). These involve exchanging power between an individual’s home power network and
their vehicle, or exchanging power within a community of electric vehicles [6].

Currently, the transportation sector is primarily using gasoline or petrol for propulsion, and
does not have any interconnection capabilities with the power grid. However, with the
advancing adoption of EV into the transportation market, the idea of allowing EVs to plug into
the power grid, to not only charge their vehicles, but also discharge energy back into the grid,
becomes more practical [2].

The V2G concept could provide many services to power grid but presents some challenges as
well. The benefits of such a system include peak load shaving, load leveling, and voltage
regulation, which will ultimately result in maximizing profits. The challenges include the
logistics of retrofitting the current infrastructures and gaining the support of the public and
policy makers.

One issue includes the accelerated battery degradation due to increasing the charging cycles
of each vehicle’s battery. Studies are being conducted to collect more accurate data on battery
lifecycles. These studies will provide more information so that policy makers can either prevent
consumers’ battery degradation, or more accurately consider the cost of that wear and
implement that into the pricing scheme. The battery degradation scenario is part of the social
barrier that V2G may present. Skeptical EV owners may wonder how they can be assured they
will have enough energy stored in their vehicle to accommodate their transportation needs.
There are also concerns of how the consumers will be fairly compensated for discharging their
energy back into the grid.

The challenge of retrofitting the power grid infrastructure could be the biggest hurdle.
Implementing V2G would be a large investment. Improving hardware and software in the
grid system would be one major cost. Another would be adding a bidirectional battery charger
toeach EV. Bidirectional chargers consist of a complex controller and high tension cabling with
stringent safety requirements. V2G implementation would mean frequent charge and dis-
charge cycles resulting in more losses from energy conversions. A large fleet of EV’s charging
and discharging would add up to large energy losses for the power system [6].
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The overall concept of V2G began with the idea of tapping into the underutilized power
capacity of the passenger vehicle fleet. Whether it is internal combustion or all electric, the
vehicle fleet in the United States has much more energy capacity than all the U.S. electrical
generating plants combined and they sit idle nearly 95% of the day. As the automobile industry
begins to shift more toward electric and hybrid vehicle production, the utilities have begun to
consider using these vehicle batteries as a storage cell. Studies have shown that even with
unfavorable assumptions about cost and lifecycles of batteries, over a wide range of conditions,
the value to the utility of tapping vehicle electrical storage exceeds the cost of a two-way hook-
up and reduced battery life. It has been considered to offer incentives to the vehicle owner as
a purchase subsidy, lower electric rates, or purchase and maintenance of successive vehicle
batteries [7].

A possible configuration for an EV participating in V2G technologies would have a user
interface with the vehicle allowing the owner to disable or limit the discharge to the grid. An
intelligent charge controller could have several options for the owner to charge and discharge
the vehicle. Some options could be to charge now or charge when cheap, or to set a minimum
threshold to maintain enough charge for the owner to be able to cover a particular driving
distance. This would allow for more flexibility for owners to participate as much as their
lifestyle allows. An incentive-based program would hopefully garner more favor from
consumers [7].

2.2. Smart grid

A smart grid is a modernized electrical power grid that involves communication technology
between the utility and the consumers using computer-based remote control and automation
to improve reliability, efficiency, and sustainability of the power supply. Two-way commu-
nication between the utility and its customers by way of sensors and smart meters throughout
the smart grid are used for real-time data acquisition. The data collected from these sensors
and smart meters are then used by intelligent and autonomous monitoring control to supervise
and optimize the overall operations of the interconnected components [2].

An additional characteristic that separates the smart grid from the conventional grid is that
consumers can actively participate in the grid operation. The smart grid would contain
advanced metering infrastructure that would allow for consumers to access the real-time
information about electricity usage, tariff, and incentive information. They can use this
information for their own gain by adjusting electricity usage patterns and preferences. These
adjustments would likely help to balance out the overall energy supply and demand. The smart
grid concept also incorporates a widely dispersed distribution of generation units from various
forms of renewable generation and conventional power sources. This variety of generation
sources will provide better overall reliability and reduce risks from attacks and natural
disasters [2].

The ability to accommodate renewable energy sources more efficiently is another attractive
characteristic of the smart grid. Wind and PV solar energy has unpredictable and intermittent
supply of power to the grid. Due to varying weather conditions, the power produced from
these sources can be much higher than the power demand in some cases and much lower in
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other cases. They are variable with time and unable to dispatch on command. However, these
sources are practically viable if able to store and later discharge excess energy. The promise of
balancing the electricity generation from renewable sources with consumer load is realistic
with energy storage systems and controllable dispatch loads. A smart grid that communicates
supply and demand data will make renewable sources with energy storage systems a practical
solution [1].

The smart grid can improve grid reliability and power quality butimplementing it into existing
infrastructure will be a challenge. In the meantime, there are several smart grid projects
underway all over the world. According to the Global Smart Grid Federation Report, the
leading projects are taking place in Australia; Ontario, Canada; London, Great Britain; Ireland;
South Korea; and Houston, TX, in the United States [8].

2.2.1. Smart charging/discharging

As EVs become more prevalent, a high concentration of vehicles charging over a small period
of time will inevitably lead to overload conditions in local nodes of the grid. This could lead
to interruptions and/or imbalances that would degrade the service quality, increase line losses,
or damage equipment. Smart grids are fundamental in smart charging management strategies
that can reduce peak load on the grid. This will also allow for the advantage of coordinating
vehicle charging in order to store surplus grid energy at a given instant and inject it into the
grid when needed [9].

The potentially undesirable effects of uncontrolled EV charging such as overloading the power
system facility would lead to an unregulated, less efficient electrical supply. To alleviate this
condition, some smart charging schemes have been developed to minimize charging costs.
Some optimization algorithms have been developed to create a better solution for EV’s
charging and discharging into the grid. Some smart charging concepts include using day-
ahead energy resource scheduling for smart grid by considering all the dispersed energy
resources (i.e., wind, solar, conventional, etc.) and the V2G participants. An optimization
approach could be used for intelligent optimal scheduling. To facilitate this intelligent charging
concept, a radio frequency identification (RFID) tag technology would be used to ID those
plugging into the grid. Some options could be considered where EV owners could control and
monitor their charging through a mobile web application. Parameters could be adjusted such
as the desired state of charge, arrival and departure times, or options for the V2G services to
maximize profit. Other intelligent charging models use consumption historical statistics with
data mining approaches. This method could include using the GPS function on an EV owners’
mobile device to help determine driving characteristics [1].

Efforts have been made in developing smart charging strategies to account for the efficiency
of the charging process. An effective dispatching strategy needs to account for the losses in the
charging process to accurately estimate the amount of energy fed to the battery from the grid.
Accounting for these nonideal conditions will allow for better overall system performance.
Currently, the charging efficiency of batteries for electric transportation still is largely de-
pendent on the charging rate due to the internal battery resistance. On a typical lithium-ion
cell, the charging rate is normalized with respect to the battery capacity. The efficiency will

153



154  Modeling and Simulation for Electric Vehicle Applications

decrease significantly with the charging rate due to the internal battery resistance power
dissipation with the charging current. These charging characteristics need to be taken into
account to develop smart charging strategies [9].

2.2.2. Advanced communication and control

The critical portion of the smart grid is the communication and control aspect. A two-way
communication network enables demand response technologies which can control distributed
energy resources over dispersed geographical areas [1]. As smart grid capabilities increase
with newer automation and communication networks, power utilities and aggregators are able
to see real-time distribution and load demands on the network and, via the bidirectional
communication, control and optimize the supply of power. A key benefit with EV is that they
can act as energy storage units that interact with the smart grid, through “smart” charging
stations. This dual-channel communication is only available through the use of bidirectional
communication, not unilateral, which among other reasons makes the switch from non-EV to
EV even more practical. These interactions can help optimize power distribution, decreasing
degradation and increasing quality of deliverable power through active power support and
reactive power compensation [2]. With an infrastructure of smart meters, the power system
can obtain the information of power demand and consumption in the system to better schedule
generation and distribution for locational pricing. With a large number of smart meters, fiber
optics as a medium would not be feasible due to cost, and wireless communication would be
the preferred method between smart meters and control centers [8]. The benefits of wireless
include low cost infrastructure and wide area coverage [1]. Perhaps a hybrid wired/wireless
system can be used in the future for security concerned consumers [10].

In comparison with traditional data networks, the smart meter network of a smart grid would
have some unique challenges. One challenge would be the volume of traffic and limited
bandwidth due to the large number of smart meters. Another would be the requirement for
real-time data transmission. The power grid is a very dynamic system and it is critical to have
current data. Delays in data transmission could result in instability to the power market.
Another challenge would be taking the characteristics of the power systems into account for
charge scheduling. Traditional scheduling algorithms that maximize the throughput or
minimize the average delay may not be valid in a smart grid. Addressing these challenges
could include introducing locational marginal pricing and a model of power load variation
into a scheduling algorithm [10].

On the consumer side, there are several ideas on how EV owners can exercise control of their
vehicle’s charging schedule while still allowing the power grid to benefit from the EV battery
source. One idea would consider equipping each V2G compatible EV with a user interface
device to allow the driver to receive instructions or seek advice for charging/discharging
processes. An alert would be issued in the event when the EV’s battery capacity is below a
predetermined threshold level. This alert can include near-by charging stations, distance, their
energy price, etc. The alert can also provide the driver with instructions to bringing the vehicle
to appropriate charging stations to serve as a backfill battery. All of this information exchange
would be accomplished through wireless communication and hall-effect current sensors.
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System architecture of a vehicle to grid communication system would possibly include several
road side units that would communicate between passing vehicles, nearby charging sta-
tions, and the smart grid. The road side units would allow communication between vehicles
and charging stations when the transmission ranges would not be sufficient. The data transfer
would be triggered by the driver or arecommendation system. With a driver-triggered scenario,
the driver checks the state of charge and seeks advice on charging through the user interface
on board the EV. The communication module will send a message to the nearest road side
unit to request information of near-by charging stations. The inquiry would generate a reply
back to the vehicle with its geographical location and/or current energy price. The on-board
controller would collect data through the message exchanges and start the recommendation
system. This recommendation system would decide whether it is the right time to charge or
not based on the vehicle’s state of charge, energy prices, and grid status. It would either
recommend to charge or defer to off-peak hours when energy rates would likely be lower.

With a system-triggered scenario, the recommendation of energy charging depends on factors
such as the grid load, the state of charge of the vehicle, and real-time energy prices. The system
would receive alarms from sensors on the vehicle (for battery capacity), and then send
messages to the road side units to start a recommendation process [11].

3. V2G services for renewable energy (RE) integration

V2G systems can provide a variety of services to power utilities, grid operators and aggrega-
tors, as well as the EV owner and even the environment. These services include ancillary
services, time shifting, active power support, and reactive power compensation through voltage
regulation. These services will become invaluable due to their mitigation of the increasing
uncertainties and intermittencies of the grid due to the renewable energy integration [12, 13].

3.1. Ancillary services: spinning reserve

Ancillary service refers to the supporting service supplied to the power grid in order to
improve upon and maintain the reliability and efficiency of the power grid, this also increases
sustainability. There are several ancillary services that are required for the security, reliability,
and stability of the grid. These services make up reactive supply, voltage control, regulation,
operating spinning reserve, operating supplemental reserve, and restoring energy imbalance
[14]. V2G technology inputs ancillary services to the power grid through a spinning reserve
service, where the energy stored in the grid-connected EVs is utilized as an additional
generation capacity to make up for the generation deficiencies due to generation outages [15].
The spinning reserve service provided by V2G technology provides a platform to initiate
failure recovery, as well as reduce the backup generation capacity [16, 17].

3.2. Time shifting

In time shifting services, storage capabilities and technologies are required to necessitate and
provide energy within a timeframe of 5-12 hours. In this particular case, energy storage
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systems are required to absorb and assimilate all of the energy from RESs during off-peak
demand periods. This absorbed energy may be supplemented with cheaper alternative power
sources brought from the network if necessary, and then selling it during peak power demand
periods; mitigating the activation or update of other conventional and more mainstream peak
power generation plants [18].

3.3. Active power support

EV can provide numerous methods of active power support. Through bidirectional commu-
nication, the excessive EVs energy that would otherwise be wasted can be sent back to the
utilities and aggregators via the smart grid through specialized charging stations, parking lots,
etc. The goal of active power support is to ease the demand on the power utilities. The demand
for power is not constant, in that demand ebbs and flows, with a decrease in the late nights
and sizable demands during the mid-day and early mornings. This fluctuation degrades the
generative power of utilities. In addition, utility customers see the prices of electricity change
in accordance to the demands; having to pay a premium price for electricity usage during peak
hours. Power systems are designed for worst-case conditions, that is, assuming maximum load
and demand. It follows that whenever the demand is less than maximum, the systems are
being underutilized. Operating at maximum capacity also wears out the system over its life
time. EVs are able to provide two kinds of active power support, load leveling and peak
shaving, to prolong power system longevity and lower the economic strain on consumers and
EV owners [2].

3.3.1. Load leveling

Load leveling is the goal to “spread out” the high demand curve during peak hours, thus
decreasing the operational strain on the systems. EVs act, when on the V2G scale, as a collective
distribution network to supply excess power back through the smart grid to level out the load
peak. By using smarter distribution networks, the demand for sole generation and distribution
felt by power utilities and aggregators is lessened, prolonging system life and mitigating
unnecessary costs of repairs or upgrades. Utilizing the power systems at a level less than peak
for a longer period of time will lead to less loses overall, prolonging usability and lowering
overloading chances. Due to the stochastic nature of weather-dependent renewable resources,
the output power is unreliable to constantly meet the load. Using distribution networks to
store excess energy, like EVs, to act as a buffer to provide power whenever levels of renewable
generation is not at demand will allow year-round operation of renewables through lowered
reliance on perfect weather conditions [19].

3.3.2. Peak shaving

By allowing the power systems to not operate at worst-case peak levels, the degradation of the
systems is lessened and the overall life of the system and its generative abilities are increased.
This allows for longer and higher quality power distribution. EV connected to the grid during
peak hours increases the load at the low-voltage network. This increases the demand for
current and consequently the need for power from the medium and high-voltage networks.
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The increased load will force more current through transmission cables and transformers from
high- and medium-voltage networks down to low-voltage networks, which in turn increases
transmission losses and thermal wear on components, decreasing usability. By peak shaving,
this load is lessened through coordinated EV charging and EV-based distribution networks
through bidirectional infrastructure. The power delivered back to the utilities and aggregators
through V2G will decrease the peak demand, the degradation of generation resources,
distribution resources, and, by allowing the system to operate at a lower level, the premium
price of electricity faced by EV owners during peak demand hours [19].

3.4. Reactive power compensation: voltage regulation

A constant problem facing power utilities and aggregators is ensuring that the voltage and
current distributed through the network are in phase. However, with each load attached, a
disparity between the two can occur, resulting in a decrease in the deliverable power factor
which requires corrective measures. Reactive power support is able to supply voltage and
current to meet reactive load at the distribution level that would otherwise has to be supplied
by generators. Without reactive power support, supply voltages would fall below minimum
levels and more current would be needed to push through transmission lines, resulting in
thermal wear and potential blackouts [20].

Specialized capacitor banks are used by utilities to locally supply reactive power at the load
bus to lessen the load felt at the utility level. This specialized volt-ampere reactive (VAC)
compensator banks are costly and difficult to upgrade. By using the DC-link capacitors present
in EV chargers, utilities through the smart grid would be able to use the V2G distribution
network as a reactive power support system in addition to active power support network via
the bidirectional communication infrastructure. Since the DC-link capacitors supply the
reactive power, no strain is placed on the EV battery [21].

4. Optimization of V2G services for RE integration

4.1. Optimization techniques for V2G services

Mathematical modeling of systems allows for variable change while trying to maintain a
maximization or minimization of a criterion or many criteria. This modeling allows for
experimental change without potential risks to the actual system. Finding an optimal middle
ground between maximized efficiency and minimized cost is achievable through mathemat-
ical modeling using various optimization techniques and functions. The different techniques
are summarized in the following sections.

4.1.1. Classical optimization techniques

Classical techniques are utilized when the optimization function is a continuous and/or
differentiable function. The solutions of optimization are found using differential calculus. The
most utilized types of classical models are: linear programming (LP), nonlinear programming
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(NLP), dynamic programming (DP), mixed-integer programming (MIP), stochastic program-
ming (SP), convex programming (CP), and analytical modeling (AM).

4.1.2. Metaheuristic optimization techniques

Metaheuristic optimization techniques find, generate, or select a heuristic in this case a method
of searching for an optimization strategy that may provide the best solution to the optimization
problem with nonderivative, noncontinuous objective functions These metaheuristic methods
sample from a much larger sample set to find a solution that best fits the entire set. It is based
off of random operators to find the best solution to the set of variables faster than iterative or
simple heuristics. The common types of metaheuristic techniques are: genetic algorithms (GA),
particle-swarm optimization (PSO), ant colony optimization (ACO), simulated annealing (SA),
and Tabu search [3].

4.1.3. Hybrid optimization techniques

Hybrid optimization techniques are techniques that combine two or more of the previously
described methods, either classical or metaheuristic. Typically, they combine iterative ap-
proaches to heuristic solutions.

4.2. Optimization objectives

The focus on optimization for V2G services are cost, efficiency, and emission optimization.
Through the use of the optimization techniques listed above, significant gains can be made
toward producing the most efficient and cost-effective EVs, maximizing V2G interactions, and
improving smart grid technologies and power generation and distribution.

4.2.1. Cost optimization

Cost optimization is focused on minimizing the costs of interaction between EVs and RES
providers through the smart grid. Providers wish to reduce costs and maximize profit while
EV owners wish to minimize the cost of charging and vehicle maintenance [3].

4.2.1.1. Operational cost minimization

Operational costs and their minimization are crucial for all market participants including
the generation, transmission, and distribution providers and users [3]. Table 1 summarizes
the related research works, their objective functions, techniques in use for optimization, and

their main findings.
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Reference Objective function(s) Optimi- Findings
zation
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load and GVsin a
smart grid. Valid
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Reference Objective function(s) Optimi- Findings
zation
technique
I,(t), Ny,q() are the decision variables for the on/off scenarios are derived

state of units and number of GVs connected to the grid at from prior statistics,

time t; F C,(P;(t)) is the fuel cost of a thermal unit i with heuristics, and

anecdotal experiences
Pi(i') being the output power of unit i at time t; S Ci(t) is of the authors.
the start-up cost for restarting the de-committed thermal

unit i; Y; is the emission penalty factor of unit i; E C;() is
the emission cost function for unit 7; weight factors 4% c

and W, are used to increase the flexibility

of the system; N is the number of units; H is the

scheduling hours; S is the set of scenarios; E (.) is the

expectation.
29 Classical (MIP Numerical tests
- min{ZZ(pb'Fci(Pit)+Suit+SDit) M
— = ¢ ¢ ¢ ¢ demonstrate the
) ) effectiveness of the
+Z Zk: p (S uk,t +5 Dk,t) + Z Z p- Cv,t} proposed approach
t v

for analyzing the
Z Z (Fcr,i(AithlaX x))} impact of PEVs on the
b

grid operation cost

+Z p° [Z Z Fc,i(Pift) and hourly wind
] t energy dispatch.
) (SUS+SDEY ) ). C|
t k t v

p b, p S are the probabilities of the base case solution, and

+

the probability of a scenarios; F . (), F Cr,(‘) are the
production/availability cost function of a thermal unit;

max x

C(S) is the operation cost of PEV fleet; A 0 is the
maximum permissible power adjustment of a unit; P(g) is
the generation of a unit; s denotes a scenario; S D(S) is the

shutdown cost a unit; S U(S) is the startup cost of a
unit; b, ()is the slope of segment 1 in a linearized

charge/discharge curve; i denotes a thermal unit;
tis the

hour index; v denotes a

PEV fleet.

Table 1. Optimization of V2G services for minimizing operational cost.
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Reference Objective function Optimi- Findings
zation
technique
[30] min ff { Cenergy (1/11) N Creserve/s ( Rs) Classical (DP) Demonstrated the
uytly T value of fully
+Creserve, J(R d)} exploring the synergy
u, is the electricity generation; u, is the scheduling of wind between PEV and
power; Cepner,y is the cost of electricity generation; C,eges iS wind power using a
the reserve scheduling; C,c.vcq is the expected reserve three-level controller;
dispatch; R, with the top-level
is the scheduling of conventional reserve (MW); R, is the minimizing
expected dispatch of conventional reserve (MW). generation costs, mid-
level allotting
charging time and
power based on
battery SOC, and
bottom-level using
real-time feedback to
attempt grid
frequency
synchronization.
[31] T Hybrid (Classical and Compared to a pure
P(t{;l(?)i;}tn AEZZ”Q_ - P G(f) scenario method) cost-optimizing
GUEy VS strategy, part of the
PGl_ is the power produced by generator G; nGi is the charging has to be
marginal cost of generator G; P; is the power consumed moved from the night
! to more expensive
by load L; E VB is the energy content of the virtual hours to reduce the
battery; AE is the shift in the energy content of the SOC swing. This
aggregation of virtual batteries. leaves enough
flexibility to
compensate the
forecast error.
[32] minE [ C,,,, | Hybrid (Interior point By studying the
N, N, based PSO) statistical properties
Crotar =2 Gi(P ) + 2, € (W) of charging and
= = discharging EVs along

N, N

+1§i Cw,u,i(w

w

W)+ C

i=

s,/ w,o,i(ws,i/ Wi)

N, N

+i; Ce,i(Pe,s,i) + ; Ce,u,i(Pe,i’ Pe,s,i)

N€
+i§1 Ce,o,i (P

e,i’ Pe,s,i)

with formulating a
power system
economic dispatch
model, which takes
into account impacts

of EVs and wind
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Reference Objective function Optimi- Findings
zation
technique
N, is the number of conventional generators; N,, is the generators, a novel
number algorithm is proposed
of wind generators; N, is the number of buses with V2G to solve nonlinear and
facilities installed; C; is the conventional generator cost; nonconvex
P, is the scheduled output of the conventional generator optimization
i; C,;is problems.
the wind generator cost; W; is the available wind power;
W, is the scheduled output of the wind generator i;
C,,.,i is the underestimating penalty cost coefficient;
C,,.; is the overestimating penalty cost coefficient;
P,iis the available V2G power at bus i; P, is the
scheduled V2G power at bus i.
. lassical (DP The pr d
= min ul,uzZ {Cconv-(”l tr ) +CAS (7’)} S en int:giaji)(:fs an
Cconw is the cost of conventional generators; C, ¢ is the implementable
cost of ancillary services; u,, u, are the control variables algorithm to realize
representing the scheduling of conventional generators the synergy of PEV
and ancillary services; r is the scheduling of ancillary charging and wind
services; 7’ is the expected dispatch of ancillary services. energy. It can also be
made to reflect other
inherently stochastic
RESs.
[34] min ( Z a A Pgi + Z ﬁi A sz') It is found that active
iENG ieEND

i is the index bus bar; ¢, is the coefficient of generation
curtailment; §; is the coefficient of load shedding; AP, is
the load shedding; AP,; is generation curtailment; NG, ND

are the sets of generation and load demand.

network management
(ANM) strategies
achieved through
intelligent EV
charging can further
reduce generation
curtailment; allowing
for more absorption of

renewable energy.

Table 2. Optimization of V2G services for minimizing generation cost.

4.2.1.2. Generation cost optimization

Generation cost optimization is crucial to both power distributors, charging station operators,
and the EV owners. Interactions between EVs and RESs through the smart grid are at the center
of intensive research. Maximizing the profit for distributors, minimizing cost of operation/

generation, and the cost of ownership and charging of EV is crucial with the proliferation of

163
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green energy [3]. Table 2 summarizes the related research works, their objective functions,
techniques in use for optimization, and their main findings.

4.2.1.3. Profit/benefit optimization

By maximizing the profit for generators/providers, or the benefits for providing energy, the
effects are felt by the supply chain through aggregators, charging stations, etc. down to the EV
owners. Optimization is referenced from the viewpoint of increasing investments in RESs or
electricity delivery management. Table 3 summarizes the related research works, their
objective functions, techniques in use for optimization, and their main findings.

4.2.1.4. Charging cost optimization

Minimizing costs is crucial to both distributors and EV owners. Ensuring that the costs stay
low on the distribution side ensures that costs stay low on the consumer side. Maximizing the
synergy between stochastic RES generation and EV charging loads is the key to minimizing
the costs surrounding EVs [3]. Table 4 summarizes the related research works, their objective

functions, techniques in use for optimization, and their main findings.

Reference Objective function Optimi- Findings
zation
technique
[35] N-L Classical (Iterative LP) VPP formed with EVs
max P(x, d)=)_ p°(n) x(n)+d(n)] . .
xbd, .8 = can maximize profits
x is the energy supplied directly to the grid; b is the by optimizing the
energy transferred to the batteries; d is the energy schedule of supply to
transferred from the grid based on the
the batteries; y is the needed storage capacity; g is the wind energy
energy transferred to the batteries as payment; P() is the production and the
revenues available storage.
raised by the virtual power plant (VPP) from the
electricity
sold at market; p‘(n) is the wholesale price of electricity.
[36] Classical (SP) A stochastic-based

min —{Z phyxl -yt -y"
u h i h
“EZlr )2 ()" 0" )]

xih is the allocation of energy to EV i for hour I; i is the
amount of purchased bulk energy for hour I; p" is the
price

per energy unit at which energy is charged to the EVs

during hour & by the aggregator; ¢ h is the price of bulk

framework is
proposed for smart
grid operators to
determine optimal
charging control of
EVs and energy

purchasing to
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Reference Objective function Optimi- Findings
zation
technique
energy for hour h; () is the price of energy in the real- maximize
time market; ¢ is the price at which excess energy is performance.

purchased back; z" is the real-time energy
purchased back
by the aggregator; v" is the excess energy sold back.

[37] . Sontine(T) Classical (Threshold
min ————-2
ter Softtine(!) admission and
| is the input set fixed for all input instances I with finite greedy scheduling
sizes; S,nine(l) is the total profit obtained by the online (TAGS))
scheduler; S (:fflirle(l ) is the optimal offline scheduler.
[38] max In-C Classical (CP)

POP,(t),MxAP (1), MnAP,(t)

In =OtZ (PregUp(t)RUp(t) + pregDown(t)RDown(t))
+MkY. 3 (E(PD/(t)))

In — C is the aggregator income minus costs; Mk is the
aggregator markup over wholesale energy price; a is the
percentage of regulation revenue taken by the aggregator;
Ry, is the bid regulation up capacity of the aggregator;
Rpoyn is the bid regulation down capacity of the
aggregator;

PD; is the power draw of the battery of the ith EV.

Metaheur-istic (paral-
lel PSO)

[17] T Ny
max V2G Income= ;1 { V; (PDischarge(V,t)

x CDischarge(V,t) N PCharge(V,t) x CCharge(V,t))) xA t]
Ny is the total number of vehicles V; Py qargeqvr) i the
power discharge of vehicle V in period #; cpischarge(v,r) 15 the
discharge

price of vehicle V in period t; Ppiargev i the power
charge of vehicle V'in period t; cpischarge(v,s 18 the charge
price of

vehicle Vin

period t.

It is shown that, when
the price offered to
the EV customers is
higher than the
purchasing price of
electricity from the
grid, TAGS achieves
the competitive ratio
of 1.

Simulations of hourly,
daily, and yearly
show that the optimal
algorithms increase
aggregator profits,
lower load demand,
and reduce costs to

customers.

The parallelization
approach presented
provides promising
results to model EV
loads on distribution
networks for future
incorporation of smart

grid technologies

Table 3. Optimization of V2G services for maximizing profits/benefits.
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Reference Objective function Optimi- Findings
zation
technique
39 N, Classical (Rollin, An analysis of EV-
N ’ 8 Y
H}{ln Zl:(ct + at)QEV,t +p QEV,t horizon optimization caused distribution
i t=
,t o . . scheme) network congestion
u;, is the optimization variable representing the
) . ti
charging rate of vehicle i out of a total number of vehicles fnanagement 1s
N presented and a
at time ¢; Ct is the time-dependent network tariff; «, is mathematical model
the of optimization is
baseline electricity price at time t; Qyy, is the extra proposed.
demand
of the EVs; ﬁQEZV s is the
EV-dependent part.
[40] . G n ) Classical (Lyapunov A stochastic
qu(gl vy (t)y(t) B gz_;{ Qg(t) 1=+ R_g - Zg (t)}xg () optimization) optimization problem
: -
x,(t) is the control variable; V is a parameter that is used is formulated to
to tune the tradeoff between cost and queue backlog describe the queuing
growth; problem for EV
() is the electricity price at time ¢, y(t) is an auxiliary charging requests and
variable; Q,(t) the total charging tasks in timeslot ¢ of g minimize the time
queues; Z,(f) average cost of using
7 Ly
is the virtual queue; R, is the max charging time; other energy sources
7 is a constant to adjust the growth rate of the virtual when renewable
queue. sources are unable to
meet demand.
[41] i) Classical (Sequential =~ The optimization
min (EC)=min (Z P,xSP)) quadratic method presented has
t=t
! programming) shown that PEV
EC is the energy costs of the PEV; P, is the charge/ charging/dischargin
discharge power at hour t; SP, is the spot hour price at .g 5 . &8
hour £ £ during optimal spot
our t t, .
market times
is the starting hour of charge/discharge for the PEV; ¢, is Himize ene costs
minimize ener:
the ending hour of charge/discharge for the PEV. . &
on low wind-
generated power
days.
[42] Classical (Quadratic ~ This paper offers to
pap

T
min lea‘h + ‘3%2
t=

q, are the total purchases and sales of the aggregator;

a, B are variables linearly relating price to load.

progra

mming)

aggregators a
framework of
optimizing charging
and discharging of EV
fleets given driving
patterns and spot

market prices.

Table 4. Optimization of V2G services for minimizing EVs’ charging cost.
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4.2.1.5. Other cost-related optimization

Other cost-related optimizations include minimizing overall costs related to system lifetime,
transmission, materials and resources, upgrades, losses, and renewable imbalances [3]. Table
5 summarizes the related research works, their objective functions, techniques in use for
optimization, and their main findings.

4.2.2. Efficiency optimization

The efficient utilization of renewables can reduce the use of fossil energy quite substantially.
This can elicit several benefits including air pollution reduction and cost savings for consum-
ers. The efficiency-related optimization objectives in regards to EVs interactions with RESs are
maximizing RES utilization, optimizing energy dispatch, optimizing energy management,
minimizing power loss, and minimizing energy loss. Sections 4.2.2.1 and 4.2.2.2 provide details
regarding the efficiency-related optimization works for EVs interacting with RESs.

Reference Objective function Optimi- Findings
zation
technique
[43] m(i)n ([ f1(Q) f,(D))) Metah-euristic A planning method is
(Nondo-minated presented that can
f 1(Q) =NP Vuprgrades NP Viosses sorting genetic accommodate a high
f 2(Q) =E grid + Epg—Epgy algorithm penetration of PEV
NPVuprgrades is the net present value (NPV) of the (NDSGA)) and renewable DG
costs of upgrades; NPVlossses is the NPV into preexisting
of the costs of losses; E,;q are the emissions due to distribution networks.

energy purchased from the grid; E are the
emissions of
distributed generation (DG) units;

Epgy are the emission reductions of the PEV.

[44] min C=Cp;+Cg+C+ Cy Classical (MILP) A methodology is
presented to design
grid-interfaced PEV

C is the lifecycle cost of the system; Cpg and Cs are

the initial capital costs for the renewable DG and

the storage unit; Cg is the cost associate with charging stations that

getting energy from the grid; Cy; is the integrate RE

maintenance cost of the system. generation and

distribution networks
[45] 2, Metahe-uristic This paper generates a
min ) aP5._ (t)+bP~_ (t)+c¢
; Conv Conv (GA) smart energy

management system
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Reference Objective function Optimi- Findings
zation
technique
a, b, c are cost coefficients; PConv(t) is the (EMS) that allows

generation of the conventional generator at time ¢.

[46] min {Cpe, + Cyog—Ryac) Hybrid (GA-

Cpen. is the penalty cost for wind power based Monte Carlo
simulation (MCS))

imbalances;
Cypc is the cost for V2G services; Ryjp
is the revenue
for V2G services.

[47] Hybrid (PSO-

K
min ) Cp., (t)
k=1

Chpen is the penalty cost for PV power imbalances; simulation (MCS))

based Monte Carlo

Kis the number of time steps.

distributors a more
economical means of
incorporating wind
resources and EV
storage solutions into
existing generation

resources.

The proposed
optimization provides
collaboration between
wind participants and
EV aggregators to
minimize the sum of
the penalty cost
associated with wind
power imbalances
and V2G expenses
associated with
purchased energy,
battery degradation
and capital costs as
well as increasing the
EVs’ revenues and
incentives.

This paper proposes a
coordinated charging/
discharging scheme to
optimally utilize V2G
capacities of EVs to
minimize the penalty
cost for PV power
under-/

overproduction.

Table 5. Optimization of V2G services for minimizing costs.
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4.2.2.1. RES utilization maximization

The excessive power generated by RESs can be stored in batteries of the EV fleets and DC-link
capacitors in specialized charging stations to supply the necessary power through V2G
infrastructure when the renewable energy generation is insufficient to meet load demands. An
optimization strategy is required to coordinate the EVs’ charging/discharging with RESs
uncertainties to maximize the use of renewable generation. Table 6 summarizes the related
research works, their objective functions, techniques in use for optimization, and their main
findings.

Reference Objective function Optimi- Findings
zation

technique

[48] max Classical (LP) Through the

R T
—RES=) res, - ¢
t=1

t optimization objective

res, is the share of RES of total load in time of maximizing

step t (%); ¢, is the charge parameter for time step . amount of charging

power coming from
RES through the
smart grid during
optimal times, the
authors were able to
see that RES made up
83% of the EVs’

charging demand.

[49] min Classical The findings
; f= Z CG,
©, ramp,ramp, [ZSOn Ll (MIP) presented suggest that
e 1.

! . N through an optimal
CG, is the conventional generation in & p

time slot [t - 1, t]; charging algorithm

. . . controlling the
ramp, is the occurrence of ramping for time slot &

[t -1, t]; @ is the maximum charge amount in one time scheduling of EV fleet

slot; charging, the usage of

. . . . . renewables can
isOn, is the binary state variable for conventional

. double; with wind
generation.

alone supplying
67.2%.
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Reference Objective function Optimi- Findings
zation
technique
[50] N Classical (MIP) This paper suggests a
Crar(®) =min( nZ=:l <C3tartr” +(PC,(P Tun)NTLI strategy to fully
+Cems,n(P TUn)'tint) supply the EVs’
is the number of thermal units; charging load by RESs
Ci(t) is the total production cost; C,,,, is the startup cost within a microgrid
of unit n; composing of a
PC, is the production cost of unit n; C,, , is the CO, photovoltaic plant, a
emission thermal unit, battery
cost of unit 1; Py, energy storage
is the output power of unit systems, and electric
n; t, is the time period share in an hour. vehicle charging
stations.
[51] . max Classical (LP) The authors
Ju ()= ueld Julxo developed an optimal
Jﬁ<xo>=limM%E[LTr<x<t>, a(t))dt charing poly
strategy to maximize
71" is the optimal charging policy; 7(x(t), a(t)) is the renewable energy
reward for the action a(t) taken in a state x(t). utilization within
preexisting
distribution
infrastructure despite
stochastic generation
potential.
[52] min . X X . Classical (Convex The authors proposed
xtk {Zt=l Ct (Z k=1 xfk) i Zk:l Zt:l Dtk(xtk)} optimi-zation— an optimal distributed
C,(.) is the imbalance cost; Dtk (.) is the disutility of the quadratic) progr- algorithm to balance
amming the synergy of

subscribers that aid in balancing; xtk

is the energy demand of

subscriber k during time slot .

smartgrid interactions
between RES supply
and EV charging

demand.
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Reference Objective function Optimi- Findings
zation
technique
[53] ( H oh-l Classical Higher transportation
Min |] =; - ((xh P bh p) (KppP (LP) costs for EDV users
NG } present a tradeoff for
- K.P r,p)) a cleaner environment

] is the objective function; x,,, is the purchased and
charged energy at hour p; b, is the available energy in the
batteries of EDVs that is used in hour k; H is the number
of hours in the assessed time period;

P,, is the production of RES 7 in hour p among NG

RESs; pp is the purchase energy price in the market in
hour p; K, and K, are the optimization parameters

that regulate the objective function J.

through reduced
emissions as a result
of more intensive RES
exploitation in

transportation.

Table 6. Optimization of V2G services for maximizing RES utilization.

4.2.2.2. Other efficiency-related optimization

Other efficiency-related optimizations include minimizing imported electricity [54], mini-
mizing power loss [55], minimizing loss energy, and optimizing energy management [56],
etc. Table 7 below summarizes the related research works, their objective functions, techni-
ques in use for optimization, and their main findings.

Reference Objective function Optimi- Findings
zation
technique
[54] Classical (MILP) The results of the

min QT—p(h)-iE(h)
P

p(h) is the unit price of the electricity consumption; E(h)

is the electricity in (kwh) generated from renewable
energy

sources in time slot (hour) /; 67 is the total daily electricity

cost.

simulations
conducted

in this paper show
that intelligent,
optimized
scheduling of EV
fleets

drastically increases
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Reference Objective function

Optimi-
zation

technique

Findings

[55] ]
F=min[(f; + f5)+ Z (max(V, -V, 0)
iENpG
+max(Vimin -V, 0)) + Z max
iEN
+(15,1=lsm1, 0]
f11s the power losses of N-bus distribution system; f,
is the error between rated voltage (1 p.u) and
voltage of each bus;
Vis the voltage; N is the total number of system

suppliers.

[56] ul
Min C= Z 70(S Cind)

Sc

wind

N-1 1

Z {Z CDGU”'(PDGU“SC v )
=0 i=1 4 72 Fwind
+Cgrid,t‘(pgrid,t)

J
+Z] Cear j/,-(P GAR ].lf/sfwmd)}

=
7’((5 Cwind) is the probability/weight of wind scenario
Sc Sc

wind’ © Cwing 18 the index of wind power scenarios

running from 1 to H; Cp;  is the price of energy
it

obtained from dispatch-able generating unit i at time #;
PDGUM,SC ~ is the power output from dispatch able

wind

generating unit i at time t and under wind power scenario

Sc

wind’ Cgrid,t is the price of energy obtained from the

main grid at time t; P grid ¢ 18 the power input/output for

the main grid at time ; C; 4 is the price of energy
it

obtained from garage j at time £; P g is the

S Cwind
power input/output for garage j at time t and under wind

power scenario S Cwind

Metahe-uristic
(GA)

Classical (LP)

overall distribution
performance,
reducing

charging times and

related costs.

The focus of this
paper is on improving
the “smart parking
lot,” with a primary
goal of efficiently
reducing power losses
through improving
voltage profiles and
optimized scheduling
of EV fleet charging
during peak and

nonpeak hours.

The practical model
provided in this paper
assesses the ability of
V2G systems to
provide power
support to
conventional grid
operations, including
small electric energy
systems (SEESs).

Table 7. Optimization of V2G services for improving efficiency.
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4.2.3. Emission optimization

Emission reduction is one of the most important objectives of EVs” adoption for transportation.
This objective can be further satisfied through interactions between EVs and RESs. V2G
implementation plays a key role in this scenario to decrease the power utility costs and protect
the environment. Related research works include references [27] and [28] of Table 1, reference
[43] of Table 5, and reference [57] whose objective function, optimization technique, and its
main finding is provided in Table 8.

Reference Objective function Optimi- Findings
zation
technique
[57] " Classical The proposed
e ( CO, o % CO, M ) .
Minimize | = ol m . At i+ TWh Pb A tch (DP) integrated approach
0 shows, through
] is the optimization objective; m;is the gasoline successful
consumption; P, is the battery charging power; simulations,

At is the charging time step that with more wind-

At,, is the driving time step. based
power generation and
integration into
existing distribution
infrastructure comes a
reduction in carbon

dioxide emissions.

Table 8. Optimization of V2G services for reducing emission.
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