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Abstract

S-layers are crystalline arrays formed by proteinaceous subunits that cover the outer
surface  of  many different  kinds  of  microorganisms.  This  “proteinaceous  cover”  is
particularly important in the case of ionizing-radiation-resistant bacteria (IRRB) that
might be used in bioremediating hazardous and radioactive wastes (HRW). Despite the
exponential growth in the number of comparative studies and solved proteic crystal
structures,  the  proteic  networks,  diversity,  and  bioremediation-useful  structural
properties of IRRB S-layers remain unknown. Here, aided by literature, a tentative
model of Deinococcus radiodurans R1 S-layer proteins (SLPs) and the network of its main
constituents  were proposed.  The domain analysis  of  this  network was performed.
Moreover, to show the diversity of IRRB S-layers, comparative genomics and comput‐
er modeling experiments were carried out. In addition, using in silico modeling, assisted
by previously published data, the outermost exposed segments of D. radiodurans SlpA
(surface layer protein A) that were predicted to interact with uranium were mapped.
The combination of data and results pointed to various prospective applications of IRRB
S-layers in nanobiotechnology for bioremediation of radioactive waste.
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1. Introduction

Hazardous and radioactive wastes (HRW)—containing organic contaminants, toxic metals,
and/or actinides as well as other radionuclides—released, for example, from nuclear weapons
production, mining, and nuclear accidents can be legitimately considered as pools of ionizing-
radiation-resistant bacteria (IRRB)—vegetative bacterial cells with D10 (acute ionizing-radia‐
tion dose for 90% reduction in colony-forming units (CFUs)) greater than 1 kilogray (kGy) [1].
Indeed, previously, IRRB were isolated from a high-level radioactive environments (Kineococ‐
cus radiotolerans SRS30216 [2]) and were engineered for metal remediation in radioactive mixed
waste environments [3–5]. Yet, it is important to remember that, for instance, for the most studied
“gold medalist” for radiation resistance, D. radiodurans, its ionizing-radiation resistance seems
to be uncorrelated with its metal or actinide tolerance except in cases where the metal/acti‐
nide directly damages DNA [6].

Since the outer envelope—regular crystalline highly porous (glycol)protein meshworks
((s(urface)-layers)—of IRRB ([7, 8] and references therein) represents the first front that might
encounter HRW and damaging radiation, it is expected to possess pertinent characteristics
such as the ability to interact with actinides. These latter (e.g., americium-241 (241Am), neptu‐
nium-237 (237Np), plutonium-241 (241Pu), and thorium-230 (230Th)) might also be present in most
radioactive wastes; however, uranium-238 (238U) is the priority pollutant ([9] and references
therein). Analyses of the uranium bound to S-layer proteins (SLPs) of vegetative cells of IRRB
to form complexes were reported in previous studies [10–12]. Although it is assumed that
bacteria-carrying SLPs use S-layer variation—changing proteic expression through rearrange‐
ments of DNA, etc.—to adapt to different stress factors ([12] and references therein), the role
of S-layers in ionizing-radiation resistance has not yet been demonstrated, but a role in
response to radiation damage has been proposed [13].

SLP lattices are composed of a single protein or glycoprotein monomers with apparent relative
molecular weights ranging from 40 to 200 kDa depending on the particular bacterial species
[14]. The presence of SLPs has been reported in hundreds of different species belonging to all
major phylogenetic groups of (Gram-positive and Gram-negative) Eubacteria [15], e.g.,
Aeromonas salmonicida VapA; Bacillus anthracis Sap, EA1, and the BSL family; Campylobacter
fetus SapA and SapB; Caulobacter crescentus RsaA, Clostridium difficile SlpA, and the CWP family;
D. radiodurans SlpA and Hpi (Hexagonally packed intermediate-layer surface); Geobacillus
stearothermophilus SbsA, SbsB, SbsC, SbsD, and SgsE; Lactobacillus crispatus CsbA, SlpA, and
SlpC; Synechococcus spp. SwmA; Tannerella forsythia TfsA and TfsB; etc. ([16] and references
therein). For review, a survey of SLPs with known amino acid (AA) sequence was conducted
by Sára and Sleytr [14]. Among bacterial SLPs, glycosylated proteins have been observed [17],
for instance, for different species belonging to Firmicutes like two lactobacilli [18], Aneurini‐
bacillus thermoaerophilus [19], etc.

A major challenge is to uncover structure-function relationships of SLPs to obtain many
clues, for instance, about radioresistance and tolerance to toxic molecules. During decades
following their discovery [20], various high-resolution techniques have been used for the
observation of bacterial SLPs. Briefly, the biophysical methods of choice for studying the
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structure of SLPs might be categorized into three groups: (1) electron-microscopy-based
techniques (e.g., electron diffraction (e.g., SLPs of Acetogenium kivui [21]), freeze-etch elec‐
tron microscopy (e.g., SLPs of Thermoanaerobacter thermohydrosulfuricus [22]), atomic force
microscopy (AFM) (e.g., SbpA of Lysinibacillus sphaericus [23], Hpi layer of D. radiodurans
[24])); (2) scanning probe microscopy techniques (e.g., TfsA-GP TfsB-GP of Tannerella forsy‐
thia [25]); and (3) X-ray scattering techniques (e.g., X-ray crystallography (e.g., SbsB of Geo‐
bacillus stearothermophilus [26])). Except the latter, all the other methods are only useful to
determine the overall topologies of SLPs and the symmetrical associations between the dif‐
ferent molecular partners involved in their formation. The X-ray crystallography however is
able to get insight into the atomic arrangements between the AAs of the SLP. This kind of
data might be very useful for structure-function relationship studies as well as for develop‐
ing biotechnological applications [27]. Yet, the tendency of SLPs to form two-dimensional
lattices is considered as a major issue for growing crystals.

Spectroscopic methods such as nuclear magnetic resonance (NMR) spectroscopy, electron
paramagnetic resonance (EPR) spectroscopy (combined with site-directed spin-labeling), and
Fourier-transform infrared (FTIR) spectroscopy could also complement the structural and
biochemical techniques to study the dynamics of SLPs and their interaction with other
molecules (proteins, radionuclides, etc.). Indeed, for example, analyses of the secondary
structure of Lactobacillus SLPs and their behavior upon heating were studied by combining
FTIR and differential scanning calorimetry (DSC) methods [28]. In addition, instrumental
methods such as X-ray photoelectron spectroscopy and matrix-assisted laser desorption
ionization or electrospray ionization mass spectrometry have been introduced for the analysis
of the protein and glycan portions of SLPs ([29, 30] and references therein). Also, immobilized
C. crescentus S-layers on zincite-coated nanoparticles of iron oxide were investigated using
FTIR spectroscopy, powder X-ray diffraction (XRD)—the diffraction pattern is obtained from
a powder of the material rather than an individual crystal, AFM and field-emission scanning
electron microscope (FESEM) [31]. Recently, Madhurantakam et al. [32] revised the methods
employed to analyze the properties and structural characteristics of the S-layer lattice,
demonstrating the increase in the usage of X-ray-based methods, spectroscopy, cryo-electron
microscopy, and other high-throughput data-processing techniques to study the structure of
SLPs during the last two decades.

It goes without saying that theoretical methods, including homology modeling, threading, and
ab initio methods, cannot substitute experimental techniques to accurately determine the
molecular structure of proteins. Nevertheless, even inaccurate, models can be useful especially
to evaluate the overall fold of the proteic macromolecule, to map certain properties on
molecular surface or to probe the three-dimensional patterns and the spatial repartition of
certain AAs.

In this chapter, we present a survey of IRRB S-layers based on literature with a special focus
on D. radiodurans and SlpA. Moreover, we introduce an automated computational pipeline
adapted for the ease of use for the identification and analyses of SLP structures. The proposed
pipeline was applied to completely sequenced genomes of previously known IRRB available
in the genomes online database (GOLD) [33] and the radioresistant prokaryotes database
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(RadioP) [34]. Accordingly, we suggest prospective applications of IRRB SLPs in nanobio‐
technology for bioremediation of hazardous and radioactive wastes.

2. Survey of S-layer proteins (SLPs) in Deinococcus radiodurans R1

The order of D. radiodurans envelope layers and their nature has been investigated in many
studies ([8] and references therein). Using electron microscopy, Rothfuss et al. [8] have
identified five layers: (1) the inner membrane, (2) the peptidoglycan cell wall, (3) the interstitial
layer, (4) Hpi and the backing layer, and (5) the carbohydrate coat. D. radiodurans envelope has
an unusual structure and composition with the outermost surface of this formation is the “pink
envelope” containing carbohydrates, proteins, carotenoid (deinoxanthin [7]), lipids, and most
likely the outer membrane [8]. SlpA (DR_2577) and Hpi (DR_2508) are the most abundant
components responsible for the envelope maintaining [35]. The S-layer regular topology is
distinguished in electron microscopy even when hpi gene is altered; however, the deletion of
slpA results in the incapacity of Hpi to form the hexagonal porous structure on the S-layer
outer surface and in losing the integrity of the pink envelope [8].

Fagan and Fairweather [16] estimated that the C. difficile S-layer contains up to 500,000
subunits, synthesized at a rate of 140 subunits per second per cell during the exponential
growth phase. Several distinct mechanisms have evolved to cope with this high-protein flux.
In many Gram-negative species, S-layer secretion relies on a specific type I secretion system;
and in some studied Gram-positive bacteria, the secretion of the S-layer precursor is dependent
on the accessory Sec secretion system. Interestingly, there is a striking degree of genetic linkage
between the genes that encode SLPs and their dedicated secretion systems in many bacteria
([16] and references therein). This genetic linkage was not observed in the case of D. radiodurans
slpA and hpi (Figure 1).

Figure 1. Gene local context and predicted Deinococcus radiodurans R1 slpA and hpi operons [36]. Locus tags and abbre‐
viations: DR_2576, putative manganese-dependent inorganic pyrophosphatase; DR_2577, slpA; tgt, Queuine tRNA-ri‐
bosyltransferase; DR_2507, medium-chain fatty-acid-CoA ligase; DR_2508, hpi; DR_2509, hypothetical open reading
frame.

The S-layer is anchored to the cell surface via non-covalent interactions with cell surface
structures, usually with lipopolysaccharides (LPSs) in Gram-negative bacteria and with cell
wall polysaccharides in Gram-positive bacteria [14]. For example, in C. crescentus, the 225 N-
terminal AAs from a total of 1026 residues of RsaA SLP is required for the binding to LPS on
the cell surface [16, 37, 38]. Experimental evidence that the surface layer homology (SLH)
domains recognize a cell envelope by binding to peptidoglycan was further provided for the
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SLPs Sap and EA1 of B. anthracis [39, 40], SlpA of C. thermocellum [39, 41], and the SLP and cell-
wall-associated xylanase of Thermoanaerobacterium thermosulfurigenes EM1 [39]. Importantly, it
was shown that pure peptidoglycan was unable to bind the SLH domains [39] situated at the
N-terminal region of the SLP of C. crescentus. However, it recognizes distinct oligosaccharides
of the LPS as binding partners [42, 43]. On the other hand, it has been proposed that hydro‐
phobic interactions are responsible for attachment of the S-layer to the outer membrane in the
backing layer, as well as for the association of the S-layer units in D. radiodurans [44]; while
Hpi is involved in in vivo cleavage and is closely associated to SlpA. The SLH domain of SlpA
was shown to bind deinococcal peptidoglycan-containing cell wall sacculi [45]. Indeed, it has

Figure 2. A tentative model of the S-layer of Deinococcus radiodurans R1 cell envelope based on literature (see the text for
details). (A) Thin section electron micrograph of D. radiodurans tetrad. (B) Magnification of the membrane with indica‐
tion of different layers (Photos credit (A and B): Prof. Mary E. Lidstrom and co-authors [8], Frontiers (www.frontier‐
sin.org) and Microbiology Journal (http://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.
0.28971-0#results-1)). (C) The five layers in D. radiodurans cell envelope [8], PilQ (DR_0774) as a component related
with the S-layer [35] and the predicted association between: (i) SlpA and deinococcal peptidoglycan-containing cell
wall [45], (ii) SlpA and Hpi [45], and (iii) SlpA and deinoxanthin [7]. The association of SlpA with peptidoglycan on
one side and Hpi on the other localizes this protein in the “interstitial” layer of the deinoccocal cell wall [45]. (D) The
predicted association between the dimeric structure of SlpA and the hexameric structure of Hpi [47]. The blue, orange,
and purple shapes represent Hpi, SlpA, and DR_0774 (secretin), respectively.
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been previously determined that the backing layer of the pink envelope, rather than the Hpi
layer, provides the rigidity and the curvature of the cell envelope [46], suggesting that the SlpA
protein interacts with the backing layer [8].

Based on structural, functional, and proteomic data collected from literature, we propose in
this chapter a tentative model describing the interaction between SlpA, deinoxanthin, Hpi, and
PilQ (DR_0774) within D. radiodurans cell envelope (Figure 2).

The description of D. radiodurans SlpA and Hpi proteic network and domains is vital to our
understanding of the function(s) of SLPs in this extremophile. Figure 3 shows D. radiodurans
Hpi and SlpA known and potential functional partners predicted using the STRING database
available at http://string-db.org/ [48].

Figure 3. Network of Hpi (DR_2508) and SlpA (DR_2577) predicted functional partners. Prediction methods are based
on neighborhood, co-expression, gene fusion, experiments, co-occurrence, databases or text mining via the STRING
database [48] and pertinent literature [35, 45].

Proteic domains of D. radiodurans S-layer and S-layer-like proteins, presented in Figure 3, were
investigated using the SMART database [49], available at http://smart.embl-heidelberg.de/,
and listed in Figure 4. Several proteins showed the presence of an SLH domain.
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Figure 4. Proteic domains of Deinococcus radiodurans S-layer and S-layer-like proteins.
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3. Automated computational pipeline for identification and analyses of S-
layers in ionizing-radiation-resistant bacteria (IRRB)

IRRB were previously regrouped in the RadioP database [34]. In Deinococcus geothermalis and
D. radiodurans, SLP is among the top 20 predicted highly expressed (PHX) genes; whereas K.
radiotolerans and Rubrobacter xylanophilus have no similar genes [50]. In this work, the bioin‐
formatics pipeline, as illustrated in Figure 5, was developed to perform an integrated analysis
of IRRB SLPs (domains, interaction network, orthologs, etc.) including the prediction of the
exposed residues in their structures to be explored for a potential use of IRRB (e.g., nanobio‐
technology for bioremediation of radioactive waste). SlpA and Hpi were taken as working
examples.

In an attempt to identify SLP (highlighted in Figures 3 and 4) orthologs in the genomes of IRRB
species for which D10 is known [1, 34, 51], computational analyses using BLASTP program [52]
were performed based on the best reciprocal hits (BRH) approach (e-value threshold ≤ 1e−05).
While D. radiodurans SLP SlpA has orthologs in related IRRB species, Hpi protein did not show
any significant similarity with proteins in other related completely sequenced IRRB using our
submentioned approach. As D. radiodurans Hpi lacks homology to any predicted peptide from
other genomes of similar species, hpi can be considered as an orphan gene. In addition, analysis
of phyletic similarity patterns—patterns of presence or absence, using similarity measures, of

Figure 5. Computational pipeline for an integrated analysis including structural predictions of S-layer proteins (SLPs)
as illustrated with Deinococcus radiodurans R1 SlpA and Hpi.
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given proteins in the analyzed proteomes—suggests that several IRRB proteins might be key
ancestral surface-layer players as they are not taxonomically restricted (Figure 6).

Figure 6. Heatmap showing phyletic similarity patterns of Deinococcus radiodurans R1 SlpA-Hpi-associated proteins in
analyzed IRRB proteomes. D. radiodurans proteins were chosen based on STRING interactions with SlpA and Hpi and
pertinent literature (see Figures 3 and 4, and text for details). Patterns were derived from best reciprocal hits BLASTP
results. Colors indicate phyletic similarity measures. The species names are abbreviated as follows: Dde, Deinococcus
deserti; Dge, Deinococcus geothermalis; Dpr, Deinococcus proteolyticus; Dgo, Deinococcus gobiensis; Dra, Deinococcus radio‐
durans; Tra, Truepera radiotolerans; Rxy, Rubrobacter xylanophilus; Kra, Kineococcus radiotolerans; Cth, Chroococcidiopsis
thermalis.

Based on the BRH approach, a D. radiodurans SlpA ortholog could not be confidently identified
in the actinobacteria K. radiotolerans. To further validate this result, the conserved D. radiodur‐
ans SlpA SLH domain sequence (AAs 32 to 75) was extracted via the SMART (Simple Modular
Architecture Research Tool, smart.embl-heidelberg.de) web server [49]. Subsequently, an
iterative (five iterations) PSI-BLAST [53] analysis against a specific database (K. radiotolerans
(taxid:131568)) did not reveal any hit above the 0.005 threshold. Indeed, a statistically non‐
significant similarity (expect value of ~0.44) to a peptidase M20 (441 aa, WP_011981201) was
observed for the first hit. The same analysis realized with Kineococcus group sequences (taxid:
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83778) as a database identified an hypothetical ortholog (320 AAs, WP_056676327) from
Angustibacter sp. Root456 with four SLH domains, as a statistically significant (expect value of
~2e−15) hit. Further investigations should be done on genomes of “SLH-negative” IRRB, such
as K. radiotolerans, using sensitive methods for sequence similarity detection of highly diverged
homologs.

The multiple sequence alignment of SlpA orthologous proteins using M-Coffee program [54]
showed that conserved AAs between IRRB species (unpublished data) are extremely rare and
can be summarized in a high sequence identities limited to the N-terminal region probably
corresponding to the SLH domain, which is responsible for binding of the S-layer subunits to
the underlying cell envelope layer [17]. The middle and C-terminal S-layers parts, comprising
domains involved in the self-assembly process and exposed inside the pores and on the S-layer
surface, showed very low sequence similarities.

Domain architecture of D. radiodurans SlpA and of its statistically significant hits were
investigated using SMART database [49]. The structure of D. radiodurans SlpA vindicates
previous results—SLH domain(s) [21] at the N-terminal part of many SLPs [41]—that all SlpA
sequences display at least one SLH domain (Figure 7).

Figure 7. Structural domain topology of Deinococcus radiodurans R1 SlpA predicted by the Phyre2 web server [55].

Only 35% of the total sequence of the SlpA protein was assigned to a protein fold without
counting the signal peptide predicted by SignalP server [56]. There are two main protein
segments which were modeled with high degree of confidence returned by Phyre2 server [55].

The first segment corresponds to the SLH domain (99.6% degree of confidence) at the N-
terminal portion of the sequence and was built based on the B. anthracis homologous protein
domain. The domain adopts the form of a pseudo-trimer presenting a helix-bundle fold. A
central groove of the domain was previously proposed as the binding site of the secondary
cell wall polysaccharide (SCWP) molecules [57].

The second segment corresponds to C-terminal of SlpA that was associated with a β-barrel-
like fold, typical to porin structure (see Figure 7), with a degree of confidence of 88.4%. In fact,
it has been shown that the β-barrel assembly machinery (BAM) complex [58] is required for
the assembly of SlpA from Thermus thermophilus HB27 [59] a closely related bacteria to D.
radiodurans. Indeed, the signal sequence responsible for the efficient binding of main protein
from the BAM machinery to SlpA was also found in D. radiodurans. In particular, the highly
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conserved last phenylalanine (Phe/F) residue of the C-terminal is required for the protein-
protein interaction to ensure the proper folding of SlpA. Mutants of T. thermophilus lacking the
terminal Phe of SlpA showed defective folding of the SlpA protein that was more sensitive to
proteases than in a wild-type strain [59]. The amphipathic character of the β strands from the
C-terminal segment supports also the presence of the β-barrel-fold type. Phylogenetic
relationship between porins and S-layer has been already suggested and was supported by
the electron microscopy imaging from T. thermophilus S-layer [60, 61].

The threading prediction was also applied for the constructed sequences set of IRRB species
(Figure 8).

Figure 8. Prediction of the structures of multiple SlpA proteins from different radioresistant bacteria using Phyre2
server. The confidence level represents the probability (from 0 to 100%) that the match between the submitted se‐
quence and the template used to generate the model is weak/strong. In the case of D. radiodurans, for example, the tem‐
plate used is the structure of OpdL protein (PDB code: 2Y0H). We reported only the structural domains with more
than 90% of confidence or with less than 90% but with extended range over the protein sequence. Each confidence lev‐
el is associated with one domain highlighted with the same color.

The first information to notice is the high conservation of the SLH domain in all taxa which is
in concordance with previous findings using sequence analysis tools [41, 62]. However, the
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length of the SLH domain differs and this is due to a variation in the numbers of the SARP
subdomain units even among paralogs (e.g., Chroococcidiopsis thermalis and Deinococcus
proteolyticus). This result suggests that the length of SlpA SLH domains does not affect its
binding to the peptidoglycan layer.

Also, it was observed that the SlpA presents different folding categories for the non-SLH
segments. This result suggests that IRRB SLPs have evolved different molecule preferences
and specific biological functions although evolution of molecule preferences does not neces‐
sarily follow proteic divergence. In all the cases, the Phyre2 server succeeded to model either
one or two structural domains for the orthologous sequences. Among them, six does not
present any structural assignment except for the SLH domain. Except for Deinococcus gobien‐
sis (gi|386855514), all domains are assigned to a bacterial porin like structure built by the server
using different templates. Among studied IRRB species, Truepera radiovictrix (D10 > 5 kGy [63])
is the only one with SlpA non-SLH domain presenting elusively an all α-fold type. Eight
sequences showed an all β-barrel fold type for this non-SLH domain. In this context, it is
important to note that previous findings have pointed out that Hpi contains a β-strand rich
region [64]. Moreover, the main secondary structure of the domain PEGA (e.g., in DR_1185)
—found in both archaea and bacteria and presenting similarity to SLPs—is predicted to be β-
strands [65]. Taken together, these observations strongly suggest that the β-barrel fold type is
“under positive selection” within the non-SLH domain of SLPs.

Based on the proposed model, it should be emphasized that the C-terminal part of the protein
including the region with no assigned fold is the most interesting part being probably the
outermost segment of the SLP (unpublished results). The orientation of the protein toward the
outer membrane is reported in Figure 8. The residues fulfilling the criteria to chelate radio‐
nuclides (exposed, charged and forming structural clusters) generated by our pipeline are
highlighted in the next section.

4. Prospective applications of ionizing-radiation-resistant bacteria (IRRB)
S-layers in nanobiotechnology for bioremediation of hazardous and
radioactive wastes

Many protocols related to nanobiotechnology with SLPs were previously highlighted by
Schuster et al. [66]. Indeed, SLPs possess mesmerizing features that have attracted attention
for their various promising applications as building blocks in nanobiotechnology (1–100 nm)
for bioremediation of hazardous and radioactive wastes:

1. self-assembly in vivo and in vitro into crystalline arrays on many surfaces ([67] and
references therein);

2. highly repetitive surface structures—oblique (p1, p2), square (p4) or hexagonal (p3, p6)
array structures—with nanometric lattice spacing with different sizes (center-to-center
spacing: 3–30 nm; thickness: 5–10 nm) [17];
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3. enhanced properties (e.g., optical nonlinearity) suitable for bottom-up fabrication of novel
types of active nanoelectronic devices ([68] and references therein);

4. localization of functional proteins at cellular surface [45];

5. negative charges and strong interaction with cations ([67] and references therein);

6. binding noble metal ions and cleaning up of uranium contaminated soils and waters with
selective and reversible binding of high amounts of U (up to 20 mg U/g protein), Cu, Pb,
Al, and Cd ([12] and references therein); and

7. diverseness (e.g., position of SLH domains).

Bacterial interactions with uranium have been documented extensively ([12, 69] and references
therein): (i) biosorption and bioaccumulation; (ii) biotransformation of organic and inorganic
uranium complexes; and (iii) enzymatically catalyzed reduction of U(VI) to U(IV), resulting
in the precipitation as uraninite (UO2). To the best of our knowledge, the molecular interaction
of uranium with an SLP has been reported only for L. sphaericus JG-A12 (also known as B.
sphaericus JG-A12) isolated from a uranium mining waste pile [12, 70]. The percentage AA
identity between the known S-layer proteins of B. sphaericus strains was shown to be between
71 and 98% for the N-terminal parts and 20 and 87% for the C-terminal segments [71].
Interestingly, ortholog of D. radiodurans SlpA in L. sphaericus (e-value = 7e−08, 1258 aa,
WP_010861478.1, hypothetical protein) shows three SLH domains at its C-terminal as depicted
in Figure 9.

Figure 9. Surface layer homology (SLH) domains (blue shapes) at the N-terminal and C-terminal of two S-layer pro‐
teins (SLPs) of Lysinibacillus sphaericus JG-A12.

However, there remains the question of which and how specific SLPs AA sites interact with
actinides, particularly uranium? In general, the relevant functional groups involved in the
interaction between bacteria and metals are reported to be –COOH, –OH, –NH2, and –PO4, etc.
[72, 73]. The segments at the outermost surface of SLPs are harboring –COOH, –OH, and –
NH2 groups [74]. In addition, using analyses of post-translational modifications, it was
highlighted that SLPs can be phosphorylated [10]. Moreover, it was observed that, at acidic
pH (4.3), SLPs formed complexes with U(VI), where uranium (U(VI)) is coordinated to carboxyl
groups, in a bidendate binding fashion, and to phosphate groups in a monodendate binding
mode [10–12]. Using our pipeline, exposed residues of D. radiodurans SlpA were predicted
from the model we generated with Phyre2 [55]—[YVPTTATATTGDFSG], [TQLDSRPA],
[YTADNRVAAGNYNANA], [AQNRQYTPFDGD], [SYG], and [KVN]; and interactions with
uranium were modeled based on previous literature [10–12] (Figure 10).

This model (Figure 10) highlights the importance of the acidic residues (aspartic acid (Asp/D)
and glutamic acid (Glu/E)) and the phosphorylation of the SLPs which can be carried at serine
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(Ser/S) and threonine (Thr/T) groups. In this context, it is important to remember that the
interaction between uranium and SLPs is dependent on the oxidation state of the actinide
which in turn depends on the extracellular pH. Indeed, previously, the speciation of uranium
associated with Idiomarina loihiensis strain MAH1 was shown to depend mainly on the pH [11].
Taking together, the S-layer could serve as a binding matrix to introduce new functional
properties like metal sorption [75].

Figure 10. Model for the interaction between an S-layer protein (SLP) and an actinide (uranium) at pH 4.3 [10–12]. (A)
Model of coordination between uranyl [UO2]2+ (red: O, blue: uranium) with residues (aspartic acid (Asp/D), glutamic
acid (Glu/E), serine (Ser/S) and threonine (Thr/T)) from Bacillus sphaericus SLP as proposed by Merroun et al. [10]. (B)
Mapping of negatively charged (red) and putatively phosphorylated Ser and Thr residues (orange) on the outermost
exposed segments of SlpA predicted using the presented workflow. The residues are indicated by spheres correspond‐
ing to Cα atom. The model is truncated because the structure was not fully predicted by Phyre2 [55].

There is plenty of room for improvement of the proposed computational pipeline to enhance
its predictive power of SLPs within IRRB. Text mining, a careful analysis of the sequence data,
and structure prediction methods were revealed to be useful in probing pertinent functional
groups of SLPs. Overall, this chapter is expected to incite in vitro research that might elucidate
various aspects related to IRRB SLPs and bioremediation of hazardous and radioactive wastes.
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