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Abstract

Dark hydrogen fermentation (DHF) is a process that can achieve two simultaneous
objectives: the production of bioenergy and reduction of pollution. Complex microbio‐
logical communities containing efficient producers of hydrogen usually carry out the
process. Ordinarily, control and operation strategies optimized the process by chemical
and physical factors that usually provide only short‐term solutions and adverse effects
on microbial properties. Microbial population optimization methods are designed to
overcome  these  problems  using  knowledge  on  microbiological  aspects,  especially
regarding  optimizing  microbial  community  structure  and  property.  Optimizing
microbial community structure and property should be an explicit aim for the (i) design
and operation of reactors for DHF process, (ii) creating conditions that select for the
stable and productive growth of desired microbes,  and (iii)  preventing or limiting
growth of organisms that would be reducing hydrogen yields. Microbial population
optimization could be managed by biostimulization by adding nutrient species specific
for  their  community,  bioaugmentation  by  adding  dominant  species  or  efficient
hydrogen‐producing bacteria into the system, and online process control for maintain‐
ing their community.

Keywords: dark fermentation processes, biohydrogen production, sludge population
optimization, molecular biological techniques, microbial community structure

1. Introduction

In recent years, the worldwide awareness of global climate change, urban air pollution, and
security of future supply of energy carriers stimulates the study on alternative fuels. Hydrogen
is a clean and promising fuel when it is ultimately derived from renewable energy sources. It is
also efficient and environmentally friendly, as it has high energy content and water is the sole
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end product [1, 2]. Today, approximately 95% of commercial hydrogen is generated by steam
reforming of natural gas and gasification of coal [3]. As these processes use fossil fuels, they are
not environmentally friendly. An alternative way to circumvent the dependence of hydrogen
production from fossil fuels is to utilize the potential of hydrogen producing microorganisms
to drive hydrogen from widely available biomass. Given these perspectives, biological hydrogen
production hashigh potential as an alternative energy source. Dark fermentative hydrogen
production from wastewater yields relatively higher hydrogen production rates than other
biohydrogen production processes [4], with the benefit that the substrate cost (wastewater) is
free. For example, a fermentative hydrogen‐producing process produces hydrogen at a higher
rate (0.5–65.0 l H2l‐1d‐1) compared to a light‐driven process (0.04–4.3 l H2l‐1d‐1) [5]. In addition,
the major advantages are low energy demands, resulting in minimal pollution, operation without
light sources, no oxygen limitation problems, and low capital costs for at least small‐scale
production facilities (100–1000 m3 H2·h‐1) [5, 6–9]. Both mesophilic and thermophilic continuous
dark fermentative hydrogen production have been investigated. Thermophilic operation may
be particularly appropriate when meeting legislation for the treatment of feedstock containing
pathogens or coupled to a process with associated waste heat. Otherwise, because of the energy
input needed, thermophilic operation is less likely to be the technically and economically favored
option.

An economically feasible biological approach for hydrogen generation is the conversion of
(often negatively valued) organic wastes into hydrogen‐rich gas using fermentative bacteria
[2, 10]. Various organic waste materials and wastewater from corn, palm oil, soybean, and meat
processing plants have been studied for hydrogen production [11, 12]. As dark‐fermentative
hydrogen production processes involve non‐sterile feedstock, mixed microflora derived from
natural sources has been commonly used. Theoretically, 4 moles of hydrogen are produced
from glucose concomitantly with 2 moles of acetate (Eq. 1,3) with only 2 moles of hydrogen
produced when butyrate is the main fermentation product (Eq. 2,4). From the above reactions,
it can be concluded that the highest theoretical yield of hydrogen is associated with acetic acid
as the fermentation end product. In practice, however, when contents of acetic acid and
butyrate in mixture are higher than that of propionate, the yield of hydrogen is higher than in
other cases [6, 13]. Typically, 60–70% of the aqueous product during sugar fermentation is
butyrate and low hydrogen yields (up to 2.5‐2.9 mol H2/mol glucose) compared to the
theoretical yield of 4 mol H2/mol glucose for fermentation with only acetate as liquid end
fermentation product [14]. Hydrogen yields can be improved by increasing hydrogen pro‐
duction through reaction (1) and decreasing or preventing reaction (2). This could be accom‐
plished through dark hydrogen fermentation (DHF) with thermophiles or extreme
thermophiles, operating at temperatures above 60°C [15, 16].

Mesophilic (35°C)

1
6 12 6 2 2 2 2 4 2C H O  2H O 4H  2CO  2C H O G°   184.2 kJ mol-+ ® + + ® D = - (1)
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1
6 12 6 2 2 4 8 2C H O 2H  2CO  C H O   G°   244.2 kJ  mol-® + + ® D = - (2)

Thermophilic (60°C)

1
6 12 6 2 2 2 2 4 2C H O  2H O 4H  2CO  2C H O G°   20.1 kJ mol-+ ® + + ® D = - (3)

1
6 12 6 2 2 4 8 2C H O 2H  2CO  C H O G°   84.2 kJ mol-® + + ® D = - (4)

Higher temperatures thermodynamically favor hydrogen production. Besides, elevated
temperatures contribute to better pathogenic destruction and limit hydrogen consumption by
hydrogen consumers (methanogens, homoacetogens, sulfate reducers). Normally 67% of the
original organic matter will remain in solution (chemical oxygen demand (COD) basis) under
optimal conditions of the DHF process. For achieving a full gain of chemical energy preserved
in biomass, a coupled process is required that involves the recovery of the remaining organic
matter and production of methane, electricity, bioplastics, and hydrogen by photofermentation
process. Two‐stage processes are already well developed, and they could conceivably be
adapted for both hydrogen and methane production [17], and hydrogen and electricity
generated from microbial fuel cells [18]. The efficiency of DHF from food waste in anaerobic
mesophilic and thermophilic acidogenesis, followed by a two‐phase digestion or photo‐
fermentation, has also been assessed [19]. Overall, many technologies for the improvement of
biohydrogen production have been increasingly examined to determine their likely successful
industrial implementation and sustainability for the generation of alternative renewable
bioenergy.

A large number of microbial species, including strict and facultative anaerobic chemohetero‐
trophs such as Clostridia, Enteric bacteria, Caldicellulosiruptor spp., Thermotoga spp., and
Thermoanaerobacterium spp., are efficient producers of hydrogen, while degrading various
types of carbohydrates [20]. When using mixed microflora, experimental conditions to
suppress methanogenic activity (which consumes hydrogen) and favor hydrogen producing
metabolism are necessary. These include inoculum conditioning, optimizing operating
conditions such as hydraulic retention time (HRT), pH and substrate concentration, and
reducing hydrogen partial pressure [4, 7, 21]. Some challenges for optimizing dark hydrogen
fermentation processes have been summarized by Hawkes et al. [7] and there has been
considerable progress in research in the last few years, although an economically and techni‐
cally feasible process is not yet established. In general, control and operation strategies are
used to optimize the process by chemical, physical, and biological factors independently that
usually provide only short‐term solutions by adversely affecting the microbial properties of
the system. The process is usually carried out by complex microbiological communities
containing efficient producers of hydrogen. Recently, many studies [19, 22–28] have demon‐
strated molecular evidence related to these various effects. Most of Clostridium species have
been recognized as desirable bacteria for mesophilic, whereas Thermoanaerobacterium species,
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C. thermocellum, C. cellulose, and C. thermoamyloticum have been recognized as desirable bacteria
for thermophilic conditions. Knowledge and information of microbial community structure
and function is the key to improvement of hydrogen productivities through microbial
population optimization. Microbial population optimization is a solution based on the existing
knowledge of the microbial community data to overcome various technical barriers, such as
low hydrogen yields, biomass washout, inhibition by hydrogen, non‐stable hydrogen pro‐
duction, and short‐time reactor operation. Microbial population optimization requires an
integrated knowledge of the microbiology and the physicochemical characteristics of the
process. Knowledge on microbiological aspects includes microbial consortia structure and
function, the interactions that occur within, and the microbial key players for hydrogen
production and their kinetics. The strategies that can be employed following an analysis of the
population structure and function include controlling the growth of undesirable microorgan‐
isms (i.e., methanogens, propionic acid bacteria, and lactic acid bacteria) that consume
hydrogen, while enhancing the numbers and stability of the hydrogen‐producing bacteria.

2. The dark hydrogen fermentation process

2.1. Basic principle for dark hydrogen fermentation

Fermentative hydrogen production yields theoretically a maximum of 4 moles (498 ml‐H2/g‐1

glucose) of hydrogen from glucose concomitantly with 2 moles of acetate, and 2 moles (249
ml‐H2/g‐1 glucose) of hydrogen are produced from glucose concomitantly with 1 moles of
butyrate. A large number of microbial species, including strict and facultative anaerobic
chemoheterotrophs, such as Clostridia, enteric bacteria, and Thermoanaerobacterium, are efficient
producers of hydrogen. Fermentation of glucose to hydrogen, pyruvate, and acetyl CoA, which
can be converted to acetyl phosphate, subsequently results in the generation of ATP and the
excretion of acetate. Pyruvate oxidation to acetyl CoA requires reduction by ferredoxin (Fd).
Reduced Fd is oxidized by hydrogenase, which generates oxidized Fd and releases electrons
as molecular hydrogen (Eq.5–8). The practical yield is even lower when other metabolic
compounds such as propionate, ethanol, and lactate are produced as the fermentation
products. These metabolic products bypass the major hydrogen‐producing reaction in
carbohydrate fermentation as a consequence of thermodynamic limitations [9].

6 12 6 2 2 2 2 4 2C H O  2H O 4H 2CO  2C H O+ ® + ® + (5)

6 12 6 2 2 4 8 2C H O 2H    2CO  C H O® + ® + (6)

( ) ( ) 2Pyruvate   CoA   2Fd  ox Acetyl CoA   2Fd  red    CO+ + ® + +‐ (7)
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( ) ( ) 22 Fd  red 2 Fd  ox    H® + (8)

The proton‐reducing ability of Fdred and NADH is thermodynamically limited by the maxi‐
mum hydrogen partial pressures (PH2) of 0.3 and 6x10‐4 atm (60 Pa), respectively. This confers
that as long as the PH2 is still less than 0.3 atm, hydrogen production can continue with
transferring electrons from Fdred which contains electrons from oxidative decarboxylation of
pyruvate by pyruvate:ferredoxin oxidoreductase (PFOR). Meanwhile, the oxidation of NADH
by NADH:Fd oxidoreductase (NFOR) can generate Fdred that subsequently generates addi‐
tional hydrogen when the PH2 is maintained less than 60 Pa. However, the PH2 limited to
hydrogen generation via the oxidation of NADH could be increased to 0.1–0.2 atm at a
temperature of 70°C [16]. Therefore, increasing cultivation temperature is necessary to
overcome thermodynamic limitation, thereby resulting in a decrease of the Gibbs free energy
of conversion according to the second law of thermodynamics (ΔG = ΔH‐T ΔS) [29]. Thermo‐
philic microorganisms produce generally higher hydrogen yields compared to mesophiles
because they are thermodynamically favorable [30]. High hydrogen yields in the range of
314.0–473.0 ml‐H2/g‐1 sugars have been previously reported using thermophiles such as C.
thermocellum and Thermoanaerobacterium thermosaccharolyticum and extreme thermophiles
such as Thermotoga elfi, Caldicellulosiruptor saccharilyticus, and Caldanaerobacter subterraneus [15,
31–34]. In a practical sense, through controlling the fermentative types of microorganisms, it
is possible to maximize the amount of hydrogen produced by fermentation.

2.2. Dark hydrogen fermentation by mixed cultures

Dark fermentation process in combination with environmental biotechnology in terms of
organic wastes or residue treatment with industrial biotechnology that aims for hydrogen
maximization and mixed culture fermentation could thereby become more attractive com‐
pared to pure culture fermentation, as mixed cultures are applied originally in the waste
treatment fields. Compared to pure culture fermentation, mixed culture fermentation does not
require sterilization of the media, offers better adaptation capacity due to its high microbial
content and the possibility of mixed substrate co‐fermentation, and also allows a continuous
fermentation process [35]. Undefined mixed cultures taken from different natural sources need
pretreatment or enrichment, by manipulating the operation of the fermentation process
and/or by varying the sources of the natural inoculum in order to obtain the required metabolic
capacities and the corresponding microbial population for development of the dark fermen‐
tation process [36, 37]. To prepare the inoculum for hydrogen production by fermentation of
carbohydrates, the original anaerobic sludge is first pretreated to suppress methanogenic
archaea, which consume hydrogen generated and subsequently enrich hydrogen‐producing
bacteria in various reactor configurations [38]. Pretreating anaerobic seed sludge under harsh
conditions, spore‐forming bacteria involved in anaerobic conversion of carbohydrates to
hydrogen could have a better chance to survive compared to the non‐spore‐forming metha‐
nogenic archaea. The spores formed can be activated when the required environmental
conditions are provided during subsequent enriching for hydrogen production [39]. Methods,
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including heat shock, load shock, acid, base, and chemical pretreatments are usually applied
to pretreat anaerobic seed sludge for fermentative hydrogen production

2.2.1. Heat shock

Heat shock has been the most common and effective method for eliminating methanogenic
archaea and is achieved by steam heating the seed sludge at 75–121°C with an exposure
time between 15 and 120 min, which is relatively easy and inexpensive. The heat shock may
also suppress the activity of non‐spore‐forming propionate producers, but could not effec‐
tively deactivate homoacetogens [21, 40]. The existence of homoacetogenic bacteria results
in a decrease of hydrogen production because these bacteria further consume hydrogen pro‐
duced from the fermentation process for the production of acetate [41]. In addition, Duang‐
manee et al. [42] have previously observed that an inoculum pretreated by heat shock was
not stable for hydrogen production in the continuous reactor, and a repeated heat treatment
was needed every month to maintain some stability in hydrogen production.

2.2.2. Load shock

During load shock using the pulse load technique in batch and organic fermentation, or
hydraulic shock in continuous fermentation, volatile fatty acids (VFAs) tend to accumulate in
the fermentative reactor in high concentrations, associated with acidic conditions, and they
inhibit methanogens [42, 43]. Applying a load shock with a pulse load of about 40–50 g‐sugar/
l, the pretreated anaerobic sludge effectively suppressed methanogenic activity [24, 44].
Furthermore, O‐Thong et al. [24] have described that load shock‐pretreated seed sludge could
result in high level of hydrogen production similar to the heat shock‐pretreated seed sludge
and that load shock would be technically easier to do and more economical than heat shock
for implementation on an industrial scale.

2.2.3. Acid and alkali pretreatment

The bioactivity of methanogens during the conventional anaerobic process treatment of or‐
ganic wastes occurs in neutral to slightly alkaline environments (pH 6.8–8.0) [38]. Limiting
methanogenesis can be achieved by adjusting the acidity of the anaerobic sludge substan‐
tially away from the preferable range to either pH 3–4 or pH 12. The acid or alkali pretreat‐
ment is considered to be technically easier than the heat shock pretreatment for industrial
scale implementation [21]; however, the inoculum obtained from an acid or alkali pretreat‐
ment requires a much longer acclimatization time of 10 to 30 days to establish hydrogen
production [45].

2.2.4. Methanogen inhibitors

2‐bromoethanesulfonate acid (BESA), an analog of the coenzyme‐M in methanogens, is a
chemical that deactivates methanogens. Using BESA at concentrations of 25–100 mM has been
found to effectively inhibit the bioactivity of methanogens; however, treating an anaerobic
sludge at these levels would not be cost effective for a commercial scale operation [39].
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3. Molecular methods for microbial community structure and function
studies

Molecular monitoring techniques such as fluorescence in situ hybridization (FISH) [46], a
combination of FISH and microautoradiography (FISH–MAR) [47], stable isotope probing
(SIP) [48], denaturing gradient gel electrophoresis (DGGE) [49], ribosomal intergenic spacer
analysis (RISA) [23], and clone libraries have been developed for studying microbial com‐
munity and function. These methods are used intensively in natural and engineered systems
for wastewater treatment. Principles of and deeper insights on these molecular tools are
available elsewhere (e.g. [50]). Among these techniques, cloning and the creation of a gene
library, DGGE, TRFLP, RISA, and FISH stand out. DGGE was one of the first techniques used
to describe DHF microflora [51, 52]. DGGE is a rapid and simple method that provides
characteristic band patterns for different samples, allowing quick sample profiling, while
retaining the possibility of a more thorough genetic analysis by sequencing of particular bands.
DGGE provides information about the structure of microbial communities and can relatively
quantify species abundance through DNA band intensities. Cloning provides very precise
taxonomical information, but is time consuming and requires specialized personnel and hence,
its introduction in the DHF process has been slow. FISH helps identify microorganisms at any
desired taxonomical level, depending on the specificity of the probe used. It is the only
quantitative molecular biology technique, although quantification is either complex or tedious
and subjective. Combination with a confocal laser scanning microscope allows the visualiza‐
tion of three‐dimensional microbial structures (granules and biofilms). Both DGGE and FISH
have been extensively employed. Other techniques such as RISA [23] provide information on
microbial diversity and species dominance. The advantages and disadvantages of the molec‐
ular techniques frequently applied to microbial ecology research in DHF process are shown
in Table 1.

Molecular

methods 

Nucleic

acid

extraction 

PCR Advantages  Disadvantages 

Fluorescence in

situ

hybridization

(FISH) 

No  No  ‐ Direct analysis and

quantification

‐ Suitable for targeting specific

group/species

‐Easy and fast if required

‐Allows direct visualization of

non‐cultured microorganisms

‐Differential/preferential

detection of active

microorganisms 

‐ Require genes/RNA with high number of

copies

‐ Limit for total diversity mapping

‐ The design of a specific and unambiguously

restrictive probe for a certain group of

microorganisms is not always possible

‐ The design and optimization of a new probe

is a difficult process

‐ Structural analysis of granular requires a

confocal microscope 

Denaturing

gradient gel

yes  yes  ‐ Permits rapid and simple

monitoring of the spatial

‐ Bias from PCR
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Molecular

methods 

Nucleic

acid

extraction 

PCR Advantages  Disadvantages 

electrophoresis

(DGGE) 

temporal variability of microbial

populations if just band

patterns are considered

‐ It is relatively easy to obtain an

overview of the dominant

species of an ecosystem

‐ It is adequate for analysis of a

large number of samples

(far more than cloning) 

‐ The number of detected bands is usually

small, which implies: the number of identified

species is also small; the bands correspond,

although not necessarily, to the predominant

species in the original sample

‐ The sequences of the bands obtained from a

gel correspond to short DNA fragments (200–

600 bp), and so phylogenetic relations are less

reliably established than with cloning of the

whole 16S rRNA gene. In addition, short

sequences are less useful for designing new

specific primers and probes.

‐ GC content of the amplified DNA can

modulate the Tag polymerase activity 

Cloning and

sequencing 

Yes  Yes  ‐ Contain larger sequence

‐ Complete 16S rRNA

sequencing allows: very precise

taxonomic studies and

phylogenetic trees

of high resolution to be obtained

‐ Identification of

microorganisms that have not

been yet cultured

or identified

‐ Covers most microorganisms,

including minority groups,

which would be hard to detect

with genetic fingerprinting

methods 

‐ A large number of clones must be sequenced

for positive diversity

‐ Sequences need to be compared with each

other and libraries

‐ Very time consuming and laborious, making

it unpractical for high sample throughput

‐ It is not quantitative. The PCR step can favor

certain species due to differences in DNA

target site accessibility

‐ Bias from PCR, total universal primers

cannot be totally universal bacteria

‐ Exponential amplification of the DNA

mixture may result in ratio discrepancies

between the amplified 16S rDNA fragments

and the original mixture 

Table 1. Brief description of frequently molecular methods that have been used for microbial community analysis in
dark fermentative hydrogen production.

For decades, a biological reactor has been considered as a black box. The new insights in
microbiology have helped to improve the design and performance of new generation reactors
[53, 54]. Probably it is true that it is not essential to know the phylogenetic position of the
individual microorganisms that dwell inside a system for the design of a biohydrogen facility.
But the knowledge on microbial community structure and function is needed. The more recent
reports on microbial community structures of DHF processes still interpret the results with
reactor performance and metabolic by‐products (indirect function) [55, 56]. However, we are
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still uncertain regarding which microorganisms can function effectively in DHF and whether
the whole community takes part. Thus, deeper insight into the function is required, not just
community structure. The latter is due to a general shortcoming in all these molecular tools.
However, some attempts have been made in this direction, as FISH–MAR and FISH combined
with biosensors could be applied to reveal the microbial community structure and function in
parallel. Furthermore, other techniques such as DNA microarrays are being developed with
the goal of being able to infer the in situ physiology of the microorganisms [57], and these
should find application in the hydrogen‐producing biosystems.

Post‐genomic research and systems biology tools such as metaproteomics will greatly con‐
tribute to the development by providing functional performance insights of the microorgan‐
isms and their metabolism [55]. Recent work on post‐genomics involving microbial ecosystems
has expanded to both natural microbial biofilms and activated sludge [56, 58]. These cutting‐
edge technologies are aimed at using new molecular tools to understand the microbial
community structures in relation to functions [55] or metabolic transformations [58]. It is
commonly known that 16S rRNA genes approaches have copy numbers and PCR bias
problems. Housekeeping genes with a single copy are now the focus for population genomic
analysis. Multilocus sequence typing (MLST) of housekeeping genes could provide a deeper
insight on how microbial populations evolved [59]. These modern molecular monitoring
techniques are vital tools and could also be applied for DHF, as they will particularly break
new ground for the quantification and dynamics of microorganisms in complex consortia.

A whole variety of analytical methods for both microbial community structure and function
are now available. However, microbiologists and engineers should take efforts to apply these
tools for quantitative studies of DHF. With a more thorough understanding of the microbial
community and its dynamics, an improvement of expectations and optimization of fermen‐
tative processes will be possible. The microbial community structure and microbial function
may be further optimized by adding species and specific nutrients for the dominant species.

4. Molecular evidence in dark hydrogen fermentation processes

4.1. Effect of inoculum types and conditioning on microbial community structure

It has been previously reported that the methods for seed preparation can affect both start up
and overall efficiency of the hydrogen‐producing reactors [7]. Quick recovery from process
upsets in full‐scale applications may also require large quantities of readily available hydro‐
gen‐producing seeds. Therefore, induction of hydrogen accumulation in fermentative consor‐
tia is related to the inhibition of hydrogen consumers which is essential for its further scale‐
up and industrial applications. Several types of inocula have been used for anaerobic hydrogen
fermentation, such as anaerobic‐digested sludge [60], sewage treatment sludge [61], agricul‐
tural soil [62], sludge compost [63], and isolated bacteria [64]. In addition, several methods are
used for conditioning inocula such as acid conditioning [65], heat conditioning [60, 62],
chemicals conditioning such as 2‐bromoethanesulfonic acid (BESA) [66], short hydraulic
retention time (HRT) without conditioning [67], and overload conditioning [24]. All condi‐
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tioning methods aid in inhibiting methane formation, as well as accelerating the enrichment
of hydrogen producing bacteria, such as spore‐forming Clostridium species, as these are highly
tolerant to extreme environments [68]. The effect of conditioning on hydrogen production rates
is inoculum dependent, with appreciable hydrogen production yields being demonstrated
with anaerobic‐digested sludge and agricultural soil [69]. Several studies (e.g. [23, 51, 70–73]
reveal that heat‐conditioned anaerobic‐digested sludge guarantees the highest hydrogen
production yields. Heat shock treatment of sludge gave highest hydrogen yield (2 mol H2/mol
glucose), while base treatment of sludge gave lowest hydrogen yield (0.48 mol H2/mol
glucose) [74]. Sung et al. [71] illustrated that hydrogen production using heat‐treated seeds
declined after 1‐month operation and repeated heat treatment of sludge to recover from reactor
every month is not credible. However, others claim that high yields can be achieved without
heat treatment [68]. Zhu and Beland [75] have demonstrated that heat shock and acid treatment
methods completely repressed methanogenic activity, while base treatment methods did not
completely repress methanogenic activity and also significantly affected hydrogen production.
Hwang et al. [76] reported that the acidic conditions (pH 4.5–6) can act as a weak inhibitor, but
not complete long‐term inhibition of methanogenic activity. Elsewhere, it has been shown that
acid pretreatment is particularly effective for enhancing the growth of lactic acid bacteria
(LAB) [52, 77]. Five methods for preparation of hydrogen‐producing seeds (base, acid, 2‐
bromoethanesulfonic acid (BESA), and load shock and heat shock treatments) as well as an
untreated anaerobic digested sludge were evaluated for their hydrogen production perform‐
ance and responsible microbial community structures under thermophilic conditions (60°C)
by O‐Thong et al. [24]. The results showed that the load shock treatment method was the best
for enriching thermophilic hydrogen‐producing seeds from mixed anaerobic cultures as it
completely repressed methanogenic activity and gave a maximum hydrogen production yield
of 1.96 mol H2 mol‐1 hexose with a hydrogen production rate of 11.2 mmol H2 l‐1 h‐1.

In general, microbial profiles in fermentative production processes occur as a result of a
combination of process conditions, such as feedstock characteristics, environmental conditions
(pH, temperature, and H2 partial pressure), and metabolic pathways existing in the microbes
involved [51]. Iyer et al. [51] investigated hydrogen‐producing bacterial communities from a
heat‐treated soil inoculum by RISA. They found that species of Clostridiaceae, Bacillaceae, and
Enterobacteriaceae responded to hydrogen production at 30°C and a 30‐h HRT. The gene pool
at 30‐h HRT, as determined by 16S rRNA gene sequences, was more diverse than at the 10‐h
HRT, as only Clostridiaceae were detected at this later point. The application of DGGE
indicated Clostridium tyrobutyricum, Lactobacillus ferintoshensis, Lactobacillus paracasei, and
Coprothermobacter species to be dominant in bacterial communities developed from pH‐
pretreated inocula [68]. Lactobacillus species are common coexisting bacteria in hydrogen
fermentation processes. However, they have adverse effects on hydrogen production by
competing for sugars and producing acidic products [78, 79]. Interference by lactic acid bacteria
is often prevented by feedstock heat treatment at 50°C or by thermophilic fermentation at
temperatures beyond 50°C [80]. Load shock and heat shock treatments under thermophilic
conditions resulted in a dominance of T. thermosaccharolyticum while base‐ and acid‐treated
seeds were dominated by Clostridium and BESA‐treated seeds were dominated by Bacillus sp.
[24]. The comparative experimental results from hydrogen production performance and
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microbial community analysis showed that the load shock treatment method was better than
base‐ and acid‐treated, heat shock, BESA‐treated methods for enriching thermophilic hydro‐
gen‐producing seeds from anaerobic‐digested sludge. Load shock‐treated sludge was imple‐
mented in palm oil mill effluent (POME) fermentation and was found to give maximum
hydrogen production rates of 13.34 mmol H2 l‐1h‐1 and resulted in a dominance of Thermoa‐
naerobacterium spp. Load shock treatment is an easy and practical method for enriching
thermophilic hydrogen‐producing bacteria from anaerobic‐digested sludge. The efficiency of
preparation methods could be considered based on hydrogen production yield together with
microorganisms revealed in the process. Therefore, the microbiological aspects and hydrogen
production performance information are needed to identify effective methods for preparation
of hydrogen‐producing seeds.

4.2. Effect of reactor design and operation on microbial community structure

Various reactor types seeded with the same inoculum and operating under similar process
conditions could develop microbial communities with different properties. For instance, in
batch mode under mesophilic conditions with glucose as a substrate, microbial communities
became dominated by Clostridium butyricum‐like species [51], Clostridium spp. [52] C. butyricum
[81], and Clostridium sp_T5zd [77]. Conversely, a continuous stirred tank reactor (CSTR) was
dominated by Clostridium sporogenes‐like and Clostridium celerecrescens‐like species [82]. Yet, in
an anaerobic membrane reactor (MBR), the main population consisted of Clostridiaceae,
Flexibacteraceae, Clostridium acidisoli, Linmingia china, and Cytophaga [23]. Clostridium spp.
were also dominant in a CSTR used to produce hydrogen from sucrose at 35°C, pH 5.5, and
HRT 12 h, as analyzed by DGGE [51, 71]. Xing et al. [83] followed communities in a CSTR
operating on molasses at a low pH with acidophilic bacteria from sewage, which established
an ethanol–acetate hydrogen‐producing community after 28 days. This was also consistent
with other studies, i.e., the hydrogen production rate increased with the increase of Ethanolo‐
genbacterium sp., Clostridium sp., and Spirochaetes. Some types of Clostridium sp., Acidovorax sp.,
Kluyvera sp., and Bacteriodes were found throughout all periods of reactor operation [83]. It
appeared that hydrogen production depended not only on hydrogen producers but also on
cometabolism in the whole community.

In common with many other systems, in batch fermentations without pH control, it has been
found that microbial communities change with pH [77], and their biodiversity decreased
considerably as the pH decreased from 6.5 to 4.5. Kim et al. [81] reported the effect of substrate
concentration on dark hydrogen fermentation using a CSTR. At the peak of hydrogen
production yields, all bacterial species detected by DGGE analysis were Clostridium spp. and
at inlet sucrose concentrations below 20 gCOD l‐1, the hydrogen yield per hexose consumed
decreased, while Clostridium scatologenes (an H2‐consuming acetogen) was found in the sludge.
Moreover, it has been shown that short HRT operation without anaerobic sludge preparation
allowed for more microbial diversity and increasing the system robustness [22]. Species that
differ in optimal growth conditions but are metabolically similar are then present, sharing the
same function. Such advantages allow for flexibility in performance when perturbations in
process conditions occur. Overall, under mesophilic conditions, hydrogen may be produced
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by a large group of bacteria such as the three main groups belonging to the low‐GC(guanine‐
cytosine)gram positive bacteria, i.e., Clostridaceae, Enterobacteriacea, and Bacillaceae. A
number of studies have focused on the analysis of the 16S rRNA gene to understand the species
richness of microbial communities in lab‐scale reactors under mesophilic conditions, as
shown in Table 2.

Substrate Processes and operation condition Dominating
microorganisms

H2 yield
(mol H2

mol-1

hexose)

H2 rates (l
H2 l-1d-1)

References

Glucose  Batch experiment, pH 5.5 and
36°C 

Clostridiaceae
Enterobacteriaceae
Streptococcus bovis 

0.47  4.6  [52] 

Carbohydrate‐
containing
wastewater 

Two‐step process using CSTR, pH
5.5, HRT 6 h, 36°C and
complete‐mix cylindrical
photoreactor, HRT 25 h, pH 8.0,
32°C 

Clostridia
Rhodobacter capsulatus 

2.1 and
2.5 

4.5 and
0.3 

[84] 

Glucose  Anaerobic membrane reactor, HRT
3.3 h, pH 5.5, mixed at 200 rpm and
35°C 

Clostridiaceae
Flexibacteracae
Clostridium acidisoli
Linmingia china
Cytophaga 

1.1  15.36  [23] 

Food waste  CSTR, HRT 5 d, pH 5.6 and 35°C  Thermotogales
Bacillus spp.
Prevotella species 

0.03–0.1  0.22  [19] 

Sucrose  CSTR, HRT 24 h, 37°C and pH 5.5  Clostridium sp.
Bacillus sp. 

2.3  0.1  [71] 

Glucose  CSTR, pH 5.5 and 30°C at
30 h and 10 h HRT 

Bacillaceae
Clostridiaceae
Enterobacteriaceae
Only Clostridiaceae
at HRT 10 h 

1.61  10.4  [51] 

Rice slurry  Batch experiment, pH 4.5 and
45°C 

Clostridium sp. 44a‐T5zd  2.5  2.1  [77] 

Sucrose  CSTR, gas sparging at 300 ml/min,
pH 5.3 and 35°C 

Clostridium tyrobutyricum
Clostridium
ptoteolyticum
Clostridium acidisoli 

1.68  6.45  [81] 

Sucrose  CSTR, HRT 12 h, pH 6.8 and 35°C  Clostridium ramosum  0.9–3.5  9.1  [85] 

Glucose  CSTR; glucose to peptone ratio (5:3)
35°C, pH 7 and HRT 12 h 

Clostridium sporogenes
Clostridium celerecrescens 

0.6  6.8  [82] 

Glucose  Batch; glucose to peptone ratio (5:3)
35°C, pH 7 and HRT 12 h 

Clostridium butyricum  1.11  5.2  [83] 

Table 2. Microbial community structure, operational conditions and reactor performance of fermentative hydrogen
production process from various organic wastes under mesophilic condition.
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Different microbial community structures develop within different temperature regimes. For
instance, a comparative study on hydrogen production from food waste between mesophilic
and thermophilic acidogenic conditions revealed that biogas produced in thermophilic
conditions was methane free, whereas methane was still detected under mesophilic condi‐
tions [19]. Species such as Thermoanaerobacterium thermosaccharolytium and Desulfotomaculum
geothermicum were detected in the thermophilic acidogenic culture, while Clostridium and
Bacillus species were detected in the mesophilic acidogenic culture with DGGE. The compo‐
sition of microbial communities in thermophilic dark hydrogen fermentation production was
investigated in more detail using quantitative FISH and DGGE [8, 22, 86]. This demonstrated
that Thermoanaerobacterium made up almost half of the total community in thermophilic dark
hydrogen fermentation production.

In thermophilic fermentative hydrogen production, a number of microbial species are
known, including C. thermoamylolyticum [84], C. cellulose, C. thermocellum, T. thermosaccharoly‐
tium [22, 84], D. geothermicum [19], Saccharococcus sp. clone ETV‐T2 [8], Mitsuokella jalaludinii
[84]. Thermoanaerobacterium sp. and the related genotypes are found to be dominant in many
thermophilic fermentations operating at 55°C and neutral pH with feedstocks, including
starch, organic waste [22], and cellulose‐rich materials [84]. Thus, many studies on microbial
consortia of thermophilic fermentations resulted in the detection of the same dominant species.
This is in contrast to observations from mesophilic fermentations, and it might therefore
indicate that thermophilic conditions lead to a convergence of microbial populations. In this
way, thermophilic reactors can provide an additional benefit for the application in sludge
population optimization. One of the problems of bioreactor operation is washout of microor‐
ganisms. Trickling biofilter reactors (TBR) have been proposed as a solution to this problem,
with continuous hydrogen production under thermophilic conditions being successfully
demonstrated [22, 23]. In those studies, the TBR was dominated by T. thermosaccharolytium and
Clostridia and Bacilli in the phylum Firmicutes.

Microbial community structure dynamics in the ASBR for biohydrogen production from palm
oil mill effluent during changing of hydraulic retention time (HRT) and organic loading rate
(OLR) was studied by denaturing gradient gel electrophoresis (DGGE) aiming at improved
insight into the hydrogen fermentation microorganisms. The microbial community structure
was strongly dependent on the HRT and OLR. DGGE profiling illustrated that Thermoanaero‐
bacterium spp., such as T. thermosaccharolyticum, and T. bryantii, were dominant and probably
played an important role in hydrogen production under thermophilic conditions. The shift in
the microbial community from a dominance of T. thermosaccharolyticum to a community where
Caloramator proteoclasticus also constituted a major component occurred at suboptimal HRT (1
d) and OLR (80 gCOD l‐1d‐1) conditions [25]. The information showed that the hydrogen
production performance was closely correlated with the bacterial community structure. A
number of studies have focused on the analysis of the 16S rRNA gene to understand the species
richness of microbial communities in lab‐scale reactors under thermophilic conditions, as
shown in Table 3.

Microbial Population Optimization for Control and Improvement of Dark Hydrogen Fermentation
http://dx.doi.org/10.5772/64208

131



Substrate  Processes and operation

condition 

Dominating microorganisms  H2 yield (mol

H2 mol-1

hexose) 

H2 rates (l

H2 l-1d-1) 

References 

Glucose  Fed batch experiment,

HRT 0.5 d, pH 6.6, and

60°C 

Thermoanaerobacterium

thermosaccharolyticum KU‐001 

2.4  3.5  [70] 

Cellulose  Batch experiment, stirring

at 200 rpm, pH 6.4, and

60°C 

Clostridium and Bacillus

T. thermosaccharolyticum

Clostridium thermocellum

Clostridium cellulosi 

2.0  1.35  [87] 

Starch in

wastewater 

Batch experiment, pH 6.0

and 55°C 

Thermoanaerobacteriaceae

Saccharococcus sp. clone ETV‐

T2 

0.68  2.8  [8] 

Cellulose  Batch experiment, pH 6.5

and 55°C 

Thermoanaerobacterium

Clostridium thermoamylolyticum 

0.2  0.82  [84] 

Food waste  CSTR, HRT 5 d, pH 5.6,

and 55°C 

Thermoanaerobacterium

thermosaccharolytium

Desulfotomaculum

geothermicum 

0.9–1.8  4.56  [19] 

Glucose  Trickling biofilter reactor

(TBR), HRT 2 h and 55–

64°C 

T. thermosaccharolyticum  1.1  23.25  [22] 

Food waste  CSTR; HRT 5 d, pH 5.5,

and 55°C 

T. thermosaccharolyticum  2.2  1.4  [86] 

Artificial

garbage slurry 

Jar fermentor; HRT 1d, pH

6.0, and 60°C 

T. thermosaccharolyticum  1.99  4.46  [88] 

Table 3. Microbial community structure, operational conditions and reactor performance of fermentative hydrogen
production process from various organic wastes under thermophilic condition.

In addition to volatile fatty acids (VFAs), anaerobic fermentations may also lead to the
production of reduced end products such as ethanol, butanol, and lactate [5], thus reducing
H2 yield potential. Therefore, bacterial metabolism must avoid VFAs by efficient product
removal [7, 8] or metabolic engineering. Stripping gas may be used to remove H2 from the
liquid phase to prevent product inhibition. N2 is used often, but it increases the costs of H2

purification. For economical reasons, CO2 might be a better choice, as it is relatively easy to
separate from the gas phase. Using CO2 rather than N2 for stripping H2 resulted in a higher
production of H2 and butyrate [79, 89]. High CO2 partial pressures had little effect on hydrogen‐
producing bacteria but were inhibitory to other competitive microorganisms such as acetogens
and lactic acid bacteria. The microbial community structure under CO2 sparging conditions
was dominated by C. tyrobutylicum, C. proteolyticum, and C. acidisoli. CO2 sparging has another
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beneficial effect on reactor performance by improving mixing and contact between substrate
and microorganisms and also decreased the effects of hydrogen partial pressure [89, 90].

4.3. Microbial key players in dark hydrogen fermentation

Figure 1 summarizes the richness of the microbial key players of mesophiles. Fermentative
hydrogen production has been studied for a large group of pure cultures, including species of
Enterobacter, Bacillus, and Clostridium. However, hydrogen‐producing microflora obtained
from natural sources, which are able to survive on non‐sterile substrates, contain mostly
Clostridium spp., such as C. butyricum, C. acidosoli, C. tyrobutylicum, and C. acetobutylicum.
Although the numbers of case studies are still low to infer solid conclusions, they indicate
that the Clostridium genus represents the major group in dark mesophilic fermentation under
mesophilic conditions. Various Clostridium species are found in mesophilic environments, but
only four species are highly frequently observed (C. acetobutylicum (24%), C. tyrobutyricum (9%),
C. acidisoli (16%), and C. pasteurianum (13%)) and related with high hydrogen yield [52,81].
However, C. saccharolyticum, C. butyricum, C. sporogenes, C. celerecrescens, C. cellulosi, and C.
beijerinkii were also found to be strong hydrogen producers [83]. Others species (Citrobacter sp.,
Sporolactobacillus racemicus, Streptococcus bovis, and B. racemilaticus) that differ in optimal
growth conditions from Clostridium but are metabolically similar are allow for flexibility in
performance when perturbations in process conditions occur.

Figure 1. Summary of all fermentative hydrogen‐producing bacteria frequently observed based on molecular tools
studied under mesophilic conditions.
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The Thermoanaerobacterium genus represents the major group in dark thermophilic fermenta‐
tion. Figure 2 summarizes the richness of the microbial key players of thermophiles. Thermo‐
philic conditions clearly show that T. thermosaccharolyticum is a key player in fermentative
hydrogen production. Thermoanaerobacterium spp. have also been found to dominate in a long‐
term hydrogen production reactor. Bacteria species are highly frequently observed under
thermophilic conditions and they are Thermoanaerobacterium sp. (47%) and T. thermosaccharo‐
lyticum (30%). The microbial community structure of thermophilic mixed culture sludge used
for biohydrogen production from palm oil mill effluent was analyzed by fluorescence in situ
hybridization (FISH) and 16S rRNA gene clone library techniques. The microbial community
was dominated by Thermoanaerobacterium species (∼66%). The remaining microorganisms
belonged to Clostridium and Desulfotomaculum spp. (∼28% and ∼6%, respectively). The
hydrogen‐producing bacteria were isolated and their ability to produce hydrogen was
confirmed. Three hydrogen‐producing strains, namely HPB‐1, HPB‐2, and HPB‐3, were
isolated. The 16S rRNA gene sequence analysis of HPB‐1 and HPB‐2 revealed a high similar‐
ity to T. thermosaccharolyticum (98.6% and 99.0%, respectively). The Thermoanaerobacterium sp.
HPB‐2 strain was a promising candidate for thermophilic fermentative hydrogen production
with a hydrogen yield of 2.53 mol H2 mol‐1 hexose from organic waste and wastewater
containing a mixture of hexose and pentose sugars. Thermoanaerobacterium species play a major
role in thermophilic hydrogen production as confirmed by both molecular and cultivation‐
based analyses [91]. Various Clostridium species ( C. cellulose, C. thermoamyloticum, and C.
thermocellum) that differ in optimal growth conditions from Thermoanaerobacterium but are
metabolically similar are allow for flexibility in performance when perturbations in process
conditions occur. Other species (Saccharococcus spp., D. geothermicum, and Bacillus spp.) could
allowed for more microbial diversity and increasing the system robustness.

Figure 2. Summary of all fermentative hydrogen producing bacteria frequently observed based on molecular tools
studied under thermophilic conditions.
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5. Microbial population optimization for dark hydrogen fermentation

Different species likely possess different growth properties (growth rates, affinity constants
with substrates, and yields), and perhaps different capacities in coping with stress arising from
variations in growth conditions. Obviously, the species with the most desirable properties
would be selected to perform a required function. The possibility of selecting species with
better properties has huge potential for improving the performance (efficiency and reliability)
of a DHF system. Unfortunately, we still lack knowledge concerning the species to be selected
and how they may be selected. Furthermore, 16S rRNA sequence‐based identification does not
allow inference of functional properties. The correlation between microbial community
composition and reactor performance would provide a rationale to further improve the
efficiency of fermentative hydrogen production. The characterization of the microbial com‐
munity as a whole contributes to meaningful data regarding structure and function of such
communities and their activities.

The interest in hydrogen as a clean energy carrier has strongly increased recently. Cost‐effective
generation of hydrogen through fermentation will have an important role in making this idea
a reality. Future dark hydrogen fermentation from organic wastes depends on a thorough
understanding of the microbiological community structure and function for enhanced or
controllable hydrogen production and reactor. Sludge population optimization aims to obtain
the best performance of a system through maximizing the properties of the sludge such as
kinetics, yields, and robustness to environmental disturbance. A systematic investigation on
the effects of a number of operational conditions on fermentative hydrogen production
community and their properties is essential for sludge population optimization. The opera‐
tional parameters to be studied include pH, temperature, hydraulic retention time, sludge
retention time, organic loading rate, and nutrient concentration.

Additional improvements of microbial communities should be considered such as creating
conditions that select for the stable and productive growth of desired microbes, while pre‐
venting or limiting growth of organisms that reduce hydrogen yields. Microbial population
optimization could be achieved by biostimulation using the additive of various nutrient species
specifically for the community, bioaugmentation using the additive of dominant species or
efficient hydrogen‐producing bacteria into the system, and online process control for main‐
taining their community.

A successful selection of such organisms, in particular those responsible for hydrogen
production, will be used for recovery from off‐set reactors by bioaugmentation strategy. To
achieve high and stable hydrogen yield and long‐term operation, it is necessary to control the
growth of undesirable microorganisms such as hydrogen‐consuming bacteria, propionic acid
bacteria, and lactic acid bacteria via pH adjustment and reducing of H2 partial pressure. The
absence of hydrogen‐consuming bacteria leads to relatively high hydrogen concentrations in
the biogas and would significantly reduce costs for gas purification. Enhancement of hydro‐
gen‐producing bacteria via specific nutrient supplements will improve the reliability and
performance of the process. Sludge population optimization strategies under thermophilic
conditions shown in Figure 3.
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Figure 3. Summary of sludge population optimization strategies under thermophilic conditions.

6. Future directions

The use of hydrogen as a clean energy carrier has recently attracted great interest. The cost‐
effective generation of hydrogen via fermentation will have an important role in this endeavor.
Future DHF from organic wastes depends on microbiological community structure and
function for enhanced or controllable hydrogen production and reactor. Sludge population
optimization aims to obtain the best performance of a system through maximizing the
properties of the sludge such as kinetics, yields, and robustness to environmental disturbance.
A systematic investigation on the effects of a number of operational conditions on fermentative
hydrogen production community and their properties is essential for sludge population
optimization. The operational parameters on the appearance of function of microbial species
to be studied include pH, temperature, hydraulic retention time, sludge retention time, organic
loading rate, and nutrient concentration. Additional improvements on microbial communities
should be considered such as creating conditions that select for the stable and productive
growth of desired microbes, while preventing or limiting growth of organisms that would
reduce hydrogen yields. Microbial population optimization could be managed by biostimu‐
lization with the addition of nutrient species specific for their community, bioaugmentation
by addition of dominant species or efficient hydrogen‐producing bacteria into the system, and
online process control for maintaining their community. A successful selection of such
organisms, in particular those responsible for hydrogen production, will be useful for the
recovery of off‐set reactor by bioaugmentation strategy. To achieve high hydrogen yield and
long‐term operation, it is necessary to control the growth of undesirable microorganisms such
as hydrogen‐consuming bacteria, propionic acid bacteria, and lactic acid bacteria via pH
adjustment and reduction of pH2. The absence of hydrogen‐consuming bacteria leads to

Fermentation Processes136



relatively high hydrogen concentrations in the biogas and would significantly reduce costs for
gas purification. Enhancement of hydrogen‐producing bacteria via specific nutrient supple‐
ments will improve the reliability and performance of the process.
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