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Abstract

In real environments, data obtained from a dynamic system were more or less contami‐
nated by noise. In addition, the dynamic system was often very complicated, non‐linear,
even chaotic, and sometimes unknown. These might generally lead the measured data to
be very complex and seemingly stochastic. In order to obtain the more intrinsic charac‐
teristics of the dynamical system, especially chaotic systems, from the measured data,
how to effectively reduce noise was still a crucial issue. The aim of this chapter is to
introduce a method of noise reduction based on symplectic geometry for the continuous
chaotic systems with noise called symplectic principal component analysis (SPCA). The
symplectic geometry was a kind of phase space geometry that could preserve the dynamical
structure of the system, especially non‐linear structure. In symplectic space, the SPCA
method could give the dominant  principal  component  values  of  the data  and the
component values of the noise floor by the measure‐preserving symplectic transform. In
the end, this chapter investigated the performance of the SPCA method and applied it to
reduce noise in the chaotic time series and experimental data.

Keywords: symplectic geometry, noise reduction, chaotic continuous systems, sym‐
plectic principal component analysis (SPCA), principal component analysis (PCA), lo‐
cally projective non‐linear noise reduction (NNR), time series, sunspot, signal
processing

1. Introduction

Data measured from a system were often very complicated since the underlying dynamical
system was usually complex, non‐linear, stochastic, or even unknown. And it was generally
heavily corrupted by noise in experimental situations or real environments so that the data
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might be treated as noise and disregarded. Since chaotic phenomena had been discovered,
interpretation of irregular dynamics of various systems as a deterministic chaotic process had
been popular and widely studied in almost all fields of science and engineering, such as health
sciences, nanosciences, physical sciences, economics, ecology, biomedicine, fault diagnosis, and
so on. The seemingly random data had been reanalysed. A number of important algorithms
based on chaos theory had been employed to distinguish between the chaotic data and noise,
or reduce noise from the data, or infer the system dynamics from the data [1–6]. However, it was
still challenging how to get the most information of the underlying dynamical system from a
measured data. Meanwhile, how to appropriately reduce noise from a measured data was a first
crucial issue.

At present, a number of noise reduction methods had been used for noisy contaminated chaotic
times series [7–10]. These methods had mainly employed the delay‐embedded time series to
reduce the noise of a measured data. In other words, the analysed data were firstly recon‐
structed into a phase space according to Takens’ embedding theorem [11–12]. Then, various
approaches were applied to deal with the reconstructed phase space, such as the singular value
decomposition (SVD)‐based denoising method. In the study field of noise reduction, the SVD
method was one of the most commonly used methods to reduce noise from a time series.
However, the heart of the SVD was linear in nature so that it might become misleading
technique when it dealt with a non‐linear time series [13]. For this, we proposed a novel method
based on symplectic geometry, which was non‐linear in nature.

The symplectic geometry was a kind of phase space geometry that could preserve the system
structure, especially non‐linear structure. Since Kang [14] had proposed a symplectic algorithm
for solving symplectic differential, the symplectic geometry method had been widely used to
investigate the equation solving problems of various complex dynamical systems in physics,
mathematics, classical mechanics, quantum mechanics, elasticity and Hamiltonian mechanics,
and so on [15–25]. For some bottleneck basic problems in elasticity, the novel symplectic
approaches were explored and developed by Zhong and his group [17, 18] and references
therein and Lim et al. [19–25] to study the numerical solutions of the plates and beams. Some
researchers had also studied eigenvalue problems of the Hamilton matrix in symplectic
geometry [26–34]. For main eigenvalues of a large Hamiltonian matrix, an inverse substation
method and an adjoint symplectic inverse substation method had been proposed [26–27]. The
symplectic elementary transformation had been used to solve the eigenvalues of the Hamilton
matrices, because it could preserve the structures of the Hamiltonian matrices [28–33]. A new
algorithm (SROSH) for computing the SR factorization was proposed by optimal symplectic
Householder transformations [28]. A detailed error analysis of the (SROSH) method was
described by Salam and Al‐Aidarous [30]. For sparse and large‐structured matrices, some
modified versions were usually involved in structure‐preserving Krylov subspace‐type
methods [33]. The SR decomposition could be obtained using a symplectic QR‐like decompo‐
sition [29–32] or symplectic Gram‐Schmidt algorithm [34]. More results on numerical aspects
of symplectic Gram‐Schmidt algorithms could be found in the study of Salam [34]. These
methods based on symplectic geometry had mainly been used to solve the eigenvalue
problems of the 2n × 2n real matrices or Hamiltonian matrices in the systems of dynamical
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mechanics and control theory. To our knowledge, a few literatures had employed symplectic
geometry theory to analyse the data generated from the non‐linear systems [35–39]. The
purpose of this chapter was to use symplectic geometry method to reduce noise from the
chaotic time series and experimental data.

The remainder of this chapter was organized as follows. Section 2 introduced the symplectic
principal component analysis (SPCA) method based on Householder transform. Section 3
provides the reduced noise method based on symplectic geometry and its algorithm. In Section
4, numerical and experimental data were described. Section 5 was devoted to analysing the
noise reduction of these data. In Section 6, a general conclusion was given.

2. Symplectic principal component analysis (SPCA)

In the real life, the studied system could usually give one observable that was a noisy one‐
dimensional (1D) signal sampled with a finite precision. Little was known about a system
equation or its phase portrait. One only could reconstruct the original system from the sampled
noisy 1D signal to study the dynamical characteristics of the system. First, a time series was
constructed into a trajectory matrix X (i.e., an attractor in the phase space) in terms of Takens’
embedding theorem. Second, the reconstructed attractor was transformed into a Hamiltonian
matrix in symplectic space. Then, the symplectic transformations were used to deal with the
Hamiltonian matrix [40–41].

2.1. Phase space reconstruction (Attractor reconstruction)

A dynamical system was defined in phase space Rd. A discretized trajectory X at times t = nts,
n = 1, 2, … might be described by maps of the form

1 ( )n n+ =x f x (2.1)

where x1, x2, ⋯, xn is the measured data, that is, the observable of the system under study, ts is
sampling interval, n is the number of samples, and d is the dimension of phase space. According
to Takens’ embedding theorem, if d was large enough, then under certain genericity assump‐
tions, a one‐to‐one image of the original set {x} was given from the time series. The time‐delay
embedding approach could map the time series {x} into a d‐dimensional space Rd:
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where m = n ‐ d + 1 is the number of dots in d‐dimensional reconstruction attractor, Xm×d denoted
the trajectory matrix of the dynamical system in phase space, that is, the attractor in phase
space. The matrix X contained all the dynamical information of the system that generated the
data x.

2.2. Basic theory and concept of symplectic geometry

In common, the referred space was Euclidean space Rn. The architecture of Euclidean space
was dependent on the bilinear symmetrical non‐singular cross product:

If x≠ 0,

, 0

, 0.

>

\ = >

x x

x x x
(2.3)

This showed that the measurement of Euclidean space was length scale. Unlike Euclidean
space, the concept of orthogonal cross course existed in symplectic space. Symplectic space
was the space with a special symplectic structure and dependent on a bilinear antisymmetric
non‐singular cross product—symplectic cross product:

[ ]x, y = x, Jy , (2.4)

where

é ù
ê ú
ë û

n
2n

n

0 +I
J = J = .

-I 0

When n = 1, there was

[ ] 1 1

2 2

, .
x y
x y

=x y

In traditional meaning, odd dimension concept did not exist in the non‐singular antisymmetric
matrix, and hence, symplectic space was even dimension.

Therefore, the measurement of symplectic space was area scale. The length of arbitrary vector
in symplectic space always equalled to zero and without any signification. This was essential
difference between symplectic and Euclidean spaces [14–16, 42]. In symplectic geometry, the
symplectic similar transform was the regular transform, which could preserve measure and
keep the essential character of the primary time series unchanged, so it was fit to analyse non‐
linear system process.
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Definition 2.1. Let S be a matrix, if JSJ‐1 = S-*, then S was a symplectic matrix.

Definition 2.2. Let H be a matrix, if JHJ‐1 = ‐H*, then H was a Hamilton matrix.

Theorem 2.1. Any n × n matrix could be made into a Hamilton matrix. Let a matrix as An×n, if the
matrix M could be constructed as follows:

(2.5)

M is a Hamilton matrix.

Proof:

1
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∴ According to Definition 2.2, M was a Hamilton matrix.□

Theorem 2.2. Hamilton matrix kept unchanged at symplectic similar transform.

Proof:

Let S as a symplectic transform matrix, H as a Hamilton matrix. Then, S‐1 is also symplectic
matrix. According to Definitions 2.1 and 2.2, there was

( )

( )
( )
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∴ SHS‐1 is also a Hamilton matrix.

∴ SHS‐1 ~ H

So, Hamilton matrix H kept unchanged at symplectic similar transform.
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Theorem 2.3. Let M ∈ C2d × 2d be Hamilton matrix, so eM was symplectic matrix.

Theorem 2.4. The product of sympletcic matrices was also a symplectic matrix.

Proof:

Let S1, S2, …, Sn as symplectic matrix, respectively. According to Definition 2.1, there were

( )

( )
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So, the product of sympletcic matrixes was also a symplectic matrix.

Theorem 2.5 Suppose a Householder matrix H was

0
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So, H is a symplectic unitary matrix. * is  conjugate transposition.

Proof:

In order to prove that the matrix H was symplectic matrix, we only needed to prove H*JH = J.
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where  = (0, ⋯, 0; ωk ,... , ωn)T ≠ 0

Plugging Eq. (2.8) into Eq. (2.7), we had:

*H JH J= (2.9)

∴ H is a symplectic matrix.
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(2.10)

∴ H is also a unitary matrix.

∴ The Householder matrix H is a symplectic unitary matrix.

In the real calculation, the above householder matrix H could be constructed from a time series
according to Theorem 2.6.

Theorem 2.6. Suppose x and y were two unequal n dimension vectors, and � 2 = � 2, so there was

elementary reflective array � = 1 − 2���, which made Hx = y, where � = � − �� − � 2 .

For a non‐zero n dimension vector x = (x1, x2, ⋯, xn)T we could note � = � 2. Then, there was
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1,Hx ea= (2.11)
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(2.12)

Then � 2 = 1, and H is elementary reflective array.

It was easy to testify that the elementary reflective array H was symmetry matrix (HT = H),
orthogonal matrix (HTH = 1) and involution matrix (H2 = 1).

2.3. Building Hamiltonian matrix

For a time series x, the covariance matrix A of the matrix X (see Eq. (2.2)) could first be given
as follows:

TA X X= × (2.13)

Where � was a mean‐centred matrix by removing the mean values of the columns of the data
matrix A is a d × d symmetrical matrix. Then, the Hamiltonian matrix M could be constructed
by Eq. (2.5).

2.4. Symplectic principal component analysis (SPCA)

For Hamilton matrix M (2n × 2n), its eigenvalues could be obtained by symplectic similar
transform, such as symplectic QR decomposition. At present, there had been some algorithms
for symplectic QR decomposition [28–34, 43]. Here, we could use symplectic Householder
transform instead of the matrix Q to decompose the matrix M:

M QR= (2.14)

where Q is a Householder matrix, that is, a symplectic unitary matrix (the eigenvector matrix).
R is an upper triangular matrix. It was easy to prove that the Householder matrix Q was a
symplectic unitary matrix according to Theorem 2.5.

Advances in Noise Analysis, Mitigation and Control30



In theory, for a Hamiltonian matrix � = � 00 −��  (see Eq. (2.5)), there was a Householder matrix

H, which made HMHT as an upper Hessenberg matrix, namely

T
T
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P 0 A 0 P 0
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0 P 0 A 0 P
æ öæ öæ ö

= ç ÷ç ÷ç ÷-è øè øè ø
(2.15)
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= ç ÷
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( ) ( )A Bl l\ = (2.16)

Thus, the primary 2n‐dimension space could be transformed into n‐dimension space to resolve.
The symplectic eigenvalues (μ = {μ1, μ2, ⋯, μ2d}) of the matrix M could be composed of those
(λ(A) = {μ1, μ2, ⋯, μd}) of the matrix A. The symplectic eigenvectors of the Householder matrix
H could consist of those of the matrix P corresponding to the symplectic eigenvalues of the
matrix A. These eigenvalues were given by descending order as following:

1 2 1l l dm m m m m+> > > >> ³ ³L L (2.17)

The above symplectic eigenvalue method could be used to analyse the principal components
of a system, called symplectic principal component analysis (SPCA) [40].

3. Noise reduction based on SPCA

For the above Hamiltonian matrix M, its symplectic eigenvalues μ = {μ1, μ2, ⋯, μ2d} could be
got by using symplectic QR decomposition in Section 2.4. According to Eq. 2.17, the dominant
symplectic eigenvalues μi (i = 1, …, l) of A could be obtained, that is

1 2 lm m m> > >L (3.1)

when μi >> μi+1. The lower symplectic eigenvalues μi, (i =l+1, …, d) got into a noise floor.
Consequently, noise could be reduced from the data x by eliminating the lower eigenvalue
components μi, (i =l+1, …, d). Corresponding to the dominant components μi, (i = 1, …, l), the
truncation matrix W could be got from the Householder matrix H. The new data with reduced
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noise could be generated using W to transform the original data x. The procedure of the SPCA
method was given as follows:

1. Reconstruct the trajectory matrix X from the raw data x in terms of Eq. (2.2);

2. Build the real d × d symmetry matrix A (see Eq. (2.13));

3. Calculate the matrix P of the Householder matrix H from the matrix A [37]. Let A as
follows:

11 12 1
(1)

21 22 2 11 12
(1) (1)
21 22

1 2

n

n

n n nn

a a a
a a a a A

A
A

a a a
a

æ ö
ç ÷ æ öç ÷= = ç ÷ç ÷ è øç ÷ç ÷
è ø

L
L

M M L M
L

(3.2)

First, suppose �211 ≠ 0, otherwise this column would be skipped and the next column

would be considered until the ith column of �2�1 ≠ 0. Set first column vector of A:

( ) ( )(1) (1) (1) (1)
11 21 1 11 21 1, , , , , ,

T

n nS a a a a a a= =L L (3.3)

Then, the elementary reflective matrix P(1) is computed by:

(1) (1) (1)2 ( )TP I v v= - (3.4)

where
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a
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(3.5)

So, A is changed to a matrix A(2):
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(2) (2)
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where the first element of the first column is σ1. Other elements were zeros.

Then, the second column vector of A(2) is also given like the above way. Let

( )(2) (2) (2)
22 20, , ,

T

nS a a= L (3.7)

construct P(2) matrix:

(2) (2) (2)2 ( )TP I w v= - (3.8)

where
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(3.9)

Thus, the second column of A(2) is also changed to all zero vector except the first and second
elements. A(3) is obtained:

(2) (2) (3)P A A= (3.10)

By repeating above‐mentioned method, the matrix P could be obtained until A(n) became
an upper triangle matrix:

( ) ( 1) (1)n nP P P P-= L (3.11)

It was easy to show that P was a symmetrical, orthogonal and involution matrix.

4. Use the matrix P to transform the matrix A into the upper triangular matrix T. The absolute
values of the diagonal components Tii by descending order were called as the symplectic
eigenvalues of the matrix A (see Eq. (2.17));
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5. Corresponding to the dominant symplectic principal component values μi, (i= 1,…, l), let
the first l column vectors of W as those of P. Corresponding to the lower eigenvalues μi,
(i=l+1,…,d), the other vectors of W were zeros;

6. Construct the symplectic transform matrix Q and the Hamiltonian matrix S, i.e.

0
0
W

Q
W

æ ö
= ç ÷
è ø

(3.12)

0
0
X

S
X

æ ö
= ç ÷-è ø

(3.13)

where X is given by Eq. (2.2).

7. Use the Q project S into Y,

TY Q S= (3.14)

8. Reestimate the � with reduced‐noise,

X̂ QY= (3.15)

The reduced‐noise data could be given by the first row of the matrix �.

For the heavily noisy time series, the first estimation of data was usually not good. Here, one
could repeat the above steps 7 and 8 several times. Generally, the second or third reconstructed
data would be better than the first reconstructed data.

4. Numerical and experimental data

This chapter employed the three typical chaotic equations [41].

1. Lorenz equation

( )x y x
y x y xz
z bz xy

s
g

ì = -
ï

= - -í
ï = - +î

&
&
&

(4.1)

where σ = 10, b = 8/3, and γ = 28.
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2. Duffing equation

2(1 ) cos( )x cx x x A te w+ - - =&& & (4.2)

where ε=1, c=0.4, A=0.4, and ω=1.

3. Chua’s equation

( ( )

( ) ( 1 1)
2

x y x f x
y x y z
z y

a bf x bx x x

a

b

= - -
= - +
= -

-
= + + - -

&
&
& (4.3)

where α = 15.6, β = 28.58, a = ‐8/7, and b = ‐5/7.

A measurement noise e was used because all the real measurements were polluted by noise.
Here, the Gaussian white noise e as a measure noise was added to the clean signal x generated
from the above chaotic equations. The contaminated data xn is obtained as follows:

( ) ( ) ( )nx t x t e t= + (4.4)

The signal‐to‐noise ratio was defined by the following:

2 210log( / )x nSNR s s= (4.5)

where σx and σn are the standard deviation of the clean signal x and the noise e, respectively.
The more details of noise notions were referred to the literature [44–46]. Here, SNR is 10 dB.

As for a practical example of noise reduction, we chose the sunspot number data obtained from
monthly observations. Sunspot number series were short, highly non‐linear and noisy [49]. It
was hard to predict accurately the sunspot period, although Wolf had reported the well‐known
11‐year cycle.

5. Noise reduction analysis based on SPCA

5.1. Performance evaluation of SPCA

SPCA, like PCA, could not only represent the original data by capturing the relationship
between the variables but also reduce the contribution of errors in the original data. Here, the
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performance evaluation of SPCA was first given based on the analysis of Lorenz chaotic time
series [39].

5.1.1. Performance evaluation on the representation analysis

Since the real systems were usually unknown, it was necessary to study the influence of
sampling time, data length, and noise on the representation analysis based on the SPCA
approach. For a clean chaotic time series, the root mean square error (RMSE) as a measure was
employed in order to estimate the difference between the clean original data and the SPCA-
filtered data:

2
1

1 ˆ[ ( ) ( )]N

i
RMSE x i x i

N =
= -å (5.1)

where x(i) and � �  are the clean original data and the estimated data, respectively.

In order to analyse noisy data, the percentage of principal components (PCs) was defined to
study the occupancy rate of each PC in order to reduce noise as follows:

1

100%i
i d

ii

P m
m

=

= ´
å (5.2)

where d is the embedding dimension and μi is the ith principal component value.

Figure 1. RMSE versus sampling time curves for the SPCA and PCA.
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Here, we took the Lorenz system as an example. The dimension of the Lorenz system was 3,
then, the embedding dimension d of the matrix A was chosen as 8. For the clean Lorenz time
series generated by Eq. (4.1) (i.e., no noise e = 0 in Eq. (4.4)), when k = d, the estimated data were
obtained by SPCA and PCA with k=d, respectively. For the different sampling time Ts, the RMSE
values are calculated in Figure 1 by Eq. (5.1). The RMSE values of SPCA were lower than 10−14

for the different sampling time (see Figure 1). The results showed that the SPCA method was
better than the PCA. Figure 2 shows the RMSE values of the different data lengths for SPCA
and PCA, respectively. For the different data lengths, the RMSE values of SPCA were also lower
than 10−14 (see Figure 2). From the Figures 1 and 2, we could see that the sampling time and
the data length had less effect on SPCA method in the case of free noise.

Figure 2. RMSE versus data length curves for the SPCA and PCA.

Figure 3. The percentage of PCs for the SPCA and PCA.
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From Figure 3, all of the principal components were given by Equation. (5.2) for the clean
Lorenz time series according to the SPCA and PCA methods, respectively. We could see that
the first largest symplectic principal component (SPC) of the SPCA was a little larger than that
of the PCA. For the SPCA method, the first largest SPC was almost possessed of all the
proportion of the SPCs. Next, the reduced space spanned by a few largest SPCs was explored
to estimate the chaotic Lorenz time series without noise. For the different data length, we gave
the RMSE values between the original data and the data estimated from the first seven largest
SPCs and PCs, respectively, that is, in the case of k = 7 (see Figure 4). The sampling time is 0.1.
The result showed that the data length had less effect on the SPCA than the PCA. Figure 5
shows the effect of sampling time on different number of PCs for the SPCA and the PCA
methods, respectively. When the PCs number k =1 and k =7, respectively, the change of RMSE
values with the sampling time is given in Figure 5. We could see that the RMSE values of the
SPCA were smaller than those of the PCA. The sampling time had also less impact on the SPCA
than the PCA.

Figure 4. The RMSE versus the data length for the SPCA and PCA, where k =7. The sampling time is 0.1.

Figure 5. The RMSE values versus the sampling time for the SPCA and PCA, where (a) the PCs number k =7; (b) k =1.
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Furthermore, the estimated data based on the first three largest SPCs are calculated in
Figure 6, where the original data x are given with a sampling time of 0.01 from chaotic Lorenz
system. The average error between the original data and the estimated data was −6.55e‐16. The
corresponding standard deviation was 1.03e‐2. The estimated data were very close to the
original data not only in time domain (see Figure 6a) but also in phase space (see Figure 6b).

Figure 6. Chaotic signal reconstructed by the proposed SPCA algorithm with k=3, where (a) the time series of the origi‐
nal Lorenz data x without noise and the estimated data; (b) phase diagrams with L = 11 for the original Lorenz data x
without noise and the estimated data. The sampling time Ts = 0.01.

To sum up, we could see that the SPCA method preserved the essential dynamical character
of the primary time series generated from chaotic continuous systems. These indicated that
the SPCA could reflect intrinsic non‐linear characteristics of the original time series. The SPCA
could elucidate the dominant features in the observed data. It was feasible for the SPCA to
study the principal component analysis (PCA) of time series. Moreover, the SPCA would help
to retrieve dominant patterns from the noisy data.

5.1.2. Performance evaluation on noise reduction

For the performance evaluation on noise reduction, the SPCA method was further studied by
dealing with the noisy Lorenz data x with Gaussian white noise of zero mean and one variance.
The phase diagrams of the noisy and clean data are given in Figure 7a and b. The clean data
x were obtained by the sampling time 0.01 from the chaotic Lorenz system with noise‐free. The
noisy data were the chaotic Lorenz data x with Gaussian white noise of zero mean and one
variance (Eqs. (4.1) and (4.4)). The time delay L is 11 in Figure 7. It was obvious that noise is
very strong (see Figure 7a). Here, we first built an attractor X with the embedding dimension
of 8. Then, the transform matrix W was constructed when k=1. The first denoised data are
generated according to Section 3 (see Figure 7c and d). In Figure 7c, the first denoised data are
compared with the noisy Lorenz data x from the view of time field. Figure 7d shows the
corresponding phase diagram of the first denoised data. Compared with Figure 7a, the first
denoised data could basically give the structure of the original system. In order to obtain better
results, these denoised data were reduced noise again by the step (8). For the second noise
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reduction, the results were greatly improved in Figure 7e and f. Comparing by Figure 7c, d, e
and f, the curves of the second denoised data were better than those of the first denoised data
whether in time domain or in phase space. Figure 7g shows that the PCA technique gave the
first denoised result. Like Figure 7e, the second denoised data are obtained by the PCA (see
Figure 7h). Although some of noise had been further reduced in Figure 7h, the curve of PCA
was not better than that of SPCA in Figure 7e. The reason was that the PCA was a linear method
indeed. When non‐linear structures had to be considered, it could be misleading, especially in
the case of a large sampling time (see Figure 8). The used program code of the PCA came from
the TISEAN tools (http://www.mpipks– dresden.mpg.de/~tisean).

Figure 7. The noise reduction analysis of the proposed SPCA algorithm and PCA for the noisy Lorenz time series,
where L=11. (a) Phase diagram for noisy data, (b) phase diagram for the clean data, (c) Lorenz time series, (d) phase
diagram for the SPCA, (e) phase diagram for the SPCA, (f) the second denoised data, (g) phase diagram of the first
denoised data for PCA and (h) phase diagram of the second denoised data for PCA.
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In order to evaluate the effectiveness of noise reduction, the correlation dimension D2 was
estimated by the Grassberger-Procaccia’s algorithm [47–48] because it manifested non-linear
properties of chaotic systems. The variations of correlation dimension D2 with embedding
dimension d were given for the clean, noisy, and denoised Lorenz data (see Figure 8). The
sampling time was 0.1. The results showed that, for the clean and SPCA denoised data, the
trend of the curves had a platform and tended to smooth in the vicinity of 2. For the noisy data,
the trend of the curve was constantly increasing and had no platform. For the PCA denoised
data, the trend of the curve was also increasing and trended to a platform with 2. However,
this platform was smaller than that of SPCA. The PCA algorithm was less effective than the
SPCA algorithm. The result indicated that it was difficult for the PCA to describe the non-linear
structure of a system.

Figure 8. D2 versus embedding dimension d.

Besides, it was necessary to show that the method of the locally projective non-linear noise
reduction (NNR) in the TISEAN package (http://www.mpipks-dresden.mpg.de/~tisean) could
not give the better result than SPCA and PCA [41].

5.2. Noise reduction based on SPCA

In the noise level SNR = 10 dB, the noisy Duffing chaotic data (see Figure 9a) and the noisy
Chua’s chaotic data (see Figure 9c) show reduced noise by applying the SPCA. Embedding
dimension d=8 had been used with the time delay k=1. The reduced noise results of SPCA are
shown in Figure 9. The third denoised data of the noisy Duffing chaotic data are shown in
Figure 9b. For the noisy Chua’s chaotic data, the third denoised data are given in Figure 9d.
Obviously, a lot of noise had been removed from the noisy time series. Here, the number of
dominant components was chosen as one according to the curves of SPCs in Figures 10 and 11.
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Figure 9. The noise reduction for the noisy Duffing chaotic data and the noisy Chua's chaotic data based on the SPCA.
(a) Duffing chaotic data with SNR=10 dB, (b)The third denoised data for Duffing data, (c)Chua's chaotic data with
SNR=10 dB and (d) The third denoised data for Chua's data.

Figure 10. The symplectic principal component analysis of the noisy Duffing chaotic data x.
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Figure 11. The symplectic principal component analysis of the noisy Chua’s chaotic data x.

Figure 12. The noise reduction analysis of the monthly sunspot number based on the SPCA. (a) The monthly sunspot
number, (b) the second denoised data, (c) phase diagram for SPCA, (d) the yearly sunspot data and the denoised
monthly sunspot data.

The SPCA method was also applied to reduce noise from the monthly sunspot data (see
Figure 12a). The time range was from January 1850 to February 2004. There was a lot of noise
in the monthly data. According to our SPCA noise reduction algorithm, the resultant data were
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given by reducing noise twice when d =8, k=1 (see Figure 12b). It could be seen that plenty of
noise had been removed from the monthly sunspot numbers. Its attractor in phase space was
clearly shown with L=12 in Figure 12c. It was obvious that the sunspot cycle could be explained
neither by regular periodicity nor by a sequence of random process. The sunspot numbers
contained non‐linear characteristics [49]. Furthermore, we compared the denoised monthly
data and the yearly data in Figure 12d. The denoised monthly data were very close to the yearly
data. The results showed that SPCA could effectively remove the noise from the monthly
sunspot data.

Here, the first symplectic principal component was chosen to reduce the noise in the monthly
sunspot numbers x referring to Figure 13.

Figure 13. he symplectic principal component analysis of the monthly sunspot numbers x.

6. Conclusion

This chapter had proposed the symplectic principal component analysis method (SPCA) and
the noise reduction method based on SPCA. In theory, the SPCA method was intrinsically non‐
linear, which could reflect non‐linear structure of non‐linear dynamical systems very well.
Therefore, the clean chaotic Lorenz data were used to study the performance of the SPCA
method by calculating RMSE, percentage, correlation dimension, and phase space diagrams.
The results showed that the SPCA method could yield more reliable results for chaotic time
series under the different data lengths and sampling times, especially with short data length
and undersampled sampling time, than the classic PCA. With regard to noise reduction, SPCA
algorithm was also more effective than PCA and NNR. It could reduce more noise than the
other two methods. And for the SPCA noise reduction, the denoised data could catch the non‐
linear structure of the systems. The SPCA method was used to remove noise from the noisy
Lorenz data, Duffing data, Chua’s data, and sunspot data. The results showed that the SPCA
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algorithm had a good effect of noise reduction. It was suitable for the SPCA method to analyse
the non‐linear time series and deal with the noisy data.
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