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Abstract

Stroke-prone spontaneously hypertensive (SHRSP) rats develop severe hypertension,
and more than 95% of them die of cerebral stroke. Cerebral ischemia or hypoxia and/or
subsequent oxygen reperfusion strongly induces neuronal damage in SHRSP rats. The
biochemical features of brain cells such as neuronal cells and astrocytes of SHRSP rats
might contribute to the strong tendency of SHRSP rats to suffer strokes. In SHRSP rats,
the production of hydroxyl radicals was strongly elevated after reperfusion. Neuronal
expression of thioredoxin (Txn1) and Bcl2 genes was significantly reduced in SHRSP rats
compared with Wistar Kyoto (WKY) rats. In SHRSP rats, the susceptibility of neuronal
cells to death is partly due to an insufficiency of mitochondrial redox regulation and a
deficiency of the apoptosis-inhibitory protein Bcl-2. Antioxidant vitamin E may regulate
the expression of redox and apoptosis-related proteins in neuronal damage. In
astrocytes isolated from SHRSP rats, the cells’ proliferative ability and expression of
vascular cell adhesion molecule-1 (VCAM-1) and high-mobility group box 1 (HMGB1)
are strongly increased compared with those in the WKY rat strain. Astrocytic lactate
production, an energy source for neuronal cells, was reduced in SHRSP rats in
comparison with the WKY rat strain. SHRSP astrocytes reduced their production of glial
cell line—-derived neurotrophic factor (GDNF) and L-serine compared to WKY astrocytes
during hypoxia and reoxygenation (H/R). Furthermore, sphingosine-1-phosphate (S1P)
reduced the expression of GDNF in primary SHRSP rat astrocytes. On the other hand,
production of rL-serine and the expression of alanine/serine/cysteine/threonine trans-
porter (ASCT1) were lower in SHRSP than in WKY rat astrocytes after exposure to
arginine vasopressin (AVP). In this chapter, we describe the neuronal vulnerabilities and
astrocytic dysfunctions of SHRSP rats induced by cerebral ischemia.
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1. Introduction

Stroke involves cerebral infarction and hemorrhaging and is associated with very high
mortality. Stroke causes a loss of brain function due to an insufficient blood supply to the brain.
The stroke-prone spontaneously hypertensive (SHRSP) rat is an experimental model of human
malignant hypertension (>200 mm Hg), and this rat strain has a high incidence of cerebrovas-
cular disease [1, 2]. Namely, SHRSP rats develop severe hypertension of more than 200 mm Hg,
and more than 95% die of stroke [1, 2]. In SHRSP rats, the increase of sodium intake accelerates
the rise of blood pressure (BP), and cerebral ischemia induces the appearance of cerebral
vasogenic edema [3]. Therefore, SHRSP rats are widely used as a model of human stroke [2].

Studies of SHRSP rats may provide considerable useful information regarding human strokes
and should indicate genetic susceptibility of particular types of cerebrovascular diseases [4].
Indeed, this strain shares features with human lacunar stroke [5]. Twenty minutes of cerebral
ischemia in SHRSP rats induced a large efflux of glutamate, causing strong delayed neuronal
death in region CA1 of the hippocampus, whereas the parental strain of SHRSP rats, Wistar
Kyoto (WKY) rats, lacked these characteristics under the same conditions [6]. The hippocampal
neurons of SHRSP rats were innately vulnerable to ischemic stimulation, and the Ca* channel
blockers prevented neuronal cell death in SHRSP rats [7]. The production of hydroxyl radicals
by neurons was strongly elevated after reperfusion of SHRSP rats. In neuronal cells, expression
of the thioredoxin gene (Txnl) and the Bcl2 gene was significantly reduced in SHRSP rats
compared with WKY rats [8]. We showed that SHRSP rat neurons were more vulnerable than
WKY rat neurons during cerebral ischemia-hypoxia [9, 10]. In these findings, we noticed that
unknown factors other than a hereditary weakness in the neurons themselves played addi-
tional roles in accelerating cell death in SHRSP rats during cerebral ischemia [9, 10]. On the
other hand, lactate production from astrocytes (an energy source for neuronal cells) was
reduced in SHRSP rat cells in comparison with the WKY rat strain [11]. Moreover, astrocytes
from SHRSP rats reduced lactate production, glial cell line-derived neurotrophic factor
(GDNF), and r-serine in comparison with WKY rat astrocytes during hypoxia and reoxyge-
nation (H/R) [12]. In addition, the release of L-serine and the expression of lactate transporter
were lower in SHRSP rats than in WKY rat astrocytes after exposure to arginine vasopressin
(AVP) [13].

Cerebral ischemia promotes blood-brain barrier (BBB) destruction, increases edema, and
increases nervous system cell death. In particular, the reperfusion after cerebral ischemia
rapidly generates a large quantity of reactive oxygen species (ROS), but the pathogenic
mechanism of SHRSP rats in stroke is not well understood. In SHRSP rats, endothelial injury
isinduced at multiple sites following BBB leakage. Ultimately, this results in vessel rupture [14,
15]. Thus, we asked whether there were significant differences between the functions of WKY
and SHRSP rat neurons and astrocytes during cerebral ischemia. Here, we present an overview
of the cellular characteristic of SHRSP rat and WKY rat neurons and astrocytes during cerebral
ischemia.
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2. Cerebral ischemic stress induces neuronal vulnerability in SHRSP rats

2.1. Cell death of neuronal cells isolated from SHRSP rats during ischemia

In SHRSP rats, cerebral ischemia of 20 min duration enhances the production of large amounts
of glutamate, causing delayed neuronal cell death in the CA1 region of the hippocampus [6].
Briefly, the neurons of SHRSP rats are more susceptible to H/R states than those of WKY rats
[7, 9, 10]. We examined cultured neuronal cells isolated from the brains of SHRSP rats and
WKY rats. The cells were cultured for 6-24 h under hypoxic conditions (1% O,) and subse-
quently for 1.5-5 h in a reoxygenated state to assess cell viability [9]. None of the neuronal cells
were stainable by trypan blue, indicating the absence of cell death in both strains. The majority
(65-85%) of neuronal cells survived even after 36 h of hypoxic culture. Following hypoxia, after
1.5 h of reoxygenation, only 10-30% of neurons survived. The percentages of neuronal cell
deaths in WKY rats and SHRSP rats were 41% (necrosis, 12%; apoptosis, 29%) and 78%
(necrosis, 15%; apoptosis, 63%), respectively. Following hypoxia, 3 h of reoxygenation led to
68% cell death in WKY rats, whereas 99% of the neuronal cells from SHRSP rats were dead.
Using the TdT-mediated dUTP nick end labeling (TUNEL) method, we found little or no DNA
fragmentation in SHRSP rat neuronal cells after culture in 20% oxygen. In contrast, following
36 h of hypoxia and 3 h of reoxygenation, we noted a markedly increased fragmentation of
DNA that was generally localized to areas containing many lipid droplets [9]. We classified
the levels of apoptosis in H/R status by a morphological analysis of neuronal cell death [9, 10].
Briefly, we showed the characteristics of neuronal apoptosis in SHRSP rats in Figure 1. In the
initial stage of apoptosis, neuronal cell axons and dendrites were lost, and many lipid droplets
appeared in the neuronal cell body (A). In the next stage of apoptosis, cell shrinkage was

Stage Final stage

= Electron-lucent, organelles decrease in number.
*Nuclei contain abnormal clusters of chromatin.

Advanced stage

*Lose cytoplasm and cell membrane.
*Nuclei become small, dark before disappearing.

Second stage

*Round, small, and electron-dense.

. *Nuclei demonstrate prominent invagination.

Initial stage
*Lose axons and dendrites.
*Numerous lipid droplets appear in the cell bodies.
* Although cell organelles remain intact.

)

Neuronal apoptosis

Figure 1. Characteristics of apoptosis in neuronal cells during H/R in SHRSP rats.
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observed (B) and, next, continued development of apoptotic morphology (C). Finally, the
neuronal cell membrane was lost and the nucleus disappeared (D). These processes eventually
led to neuronal cell death. In SHRSP rats, a report demonstrated that the angiotensin II type 1
receptor-activated caspase-3 in the rostral ventrolateral medulla and was involved in sympa-
thoexcitation [16]. These features may be associated with stroke pathogenic mechanisms of
SHRSP rats.

2.2. Oxidative stress-induced neuronal cell death and redox changes in SHRSP rats

In the brain, ischemia leads to the rapid generation of a large amount of ROS and induces
neuronal cell injury through self-perpetuating reactions. Cerebral ischemia increases the
intracellular level of calcium ions and activates calcium-dependent proteases. These reactions
activate xanthine dehydrogenase (XDH) and generate xanthine oxidase (XOD). The superox-
ide anion radicals generated via this pathway cause neuronal cell death in the brain [17]. Free
radicals are generated by reoxygenation after cerebral ischemia, and they enhance the injury
of brain neuronal cells [18]. These findings suggest that reducing the ROS (such as hydroxyl
radicals produced during H/R) would be beneficial for preventing neuronal injury [19]. This
might be achieved by increasing the level of antioxidant substances such as vitamin E.

Ischemic stimulation is considered to be the process that most strongly enhances cell death in
cerebral ischemia in the SHRSP rat stroke model. In SHRSP rats, ischemic stimulation, i.e., the
reoxygenation that occurs after hypoxia, generates a large amount of ROS that lead directly to
neuronal death [20]. The expression of the thioredoxin gene (Txn1) was significantly reduced
in neurons isolated from SHRSP rats compared with WKY rats [8]. Txn protein acts against
ROS via its SH group. Furthermore, Txn proteins have many functions that are involved in
intracellular signal transduction. For that reason, reduced expression of Txn1 is associated with
an attenuation of the defense system during oxidative stress in SHRSP rats. This in turn causes
H/R-induced neuronal cell death. These findings indicated that redox regulatory functions in
SHRSP rat neurons were markedly reduced by oxygen stimulation after hypoxia, and such
changes may be involved in neuronal vulnerability. From these results, we suggested that the
susceptibility of neurons to apoptosis in SHRSP rats is partly due to an insufficiency of
mitochondprial thioredoxin and apoptosis-inhibitory proteins.

2.3. Protective effects of antioxidant vitamin E in neuronal cell death of SHRSP rats

Vitamin E, which is present in biological membranes, contains a hydroxyl group that reacts
with unpaired electrons and can be reduced to form peroxyl radicals. The main antioxidant
effect of vitamin E is to rapidly add alkoxy radicals (RO-) and hydrogen to peroxy radicals
(ROO). This is the mechanism of a chain-breaking antioxidant that blocks reactive oxygen
metabolic cascades [21, 22].

We demonstrated the preventive effects of vitamin E against neuronal cell death associated
with cerebral ischemia-reperfusion, particularly apoptosis, in WKY and SHRSP rat strains [9,
19]. Hypoxic stimuli followed by oxygen reperfusion induced strong neuronal damage in both
WKY and SHRSP rats [9, 10]. The rate of neuronal cell death (mainly apoptosis) occurring
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during H/R was markedly higher in the neurons of SHRSP rats than in those of WKY rats.
Vitamin E is mostly enriched in microsomal cell membranes of mitochondria of the liver and
heart. Transport of vitamin E to mitochondria or the microsomes is achieved by vitamin E
binding to proteins [23]. Reports demonstrated that the a-tocopherol-binding protein, afamin,
transported a-tocopherol across an in vitro model of the BBB. The model consisted of porcine
brain capillary endothelial cells and cultured astrocytoma cells [24]. Thus, afamin might
function to maintain a-tocopherol homeostasis at the BBB in vivo. Furthermore, scavenger
receptor class B type I (SR-BI) facilitates selective uptake of HDL-related a-tocopherol at the
BBB [25]. Damage related to oxidative stress alters traffic to neuronal cells and changes the
levels of vitamin E in mitochondria. The addition of vitamin E almost completely inhibited
neuronal death in SHRSP and WKY rat lines. Vitamin E decreased neuronal cell death in a
dose-dependent manner over the range of 10-50 pg/mL. With vitamin E at 50-300 pg/mL,
neuronal death was almost completely prevented [9]. In SHRSP rat neurons, we used HPLC
to investigate the vitamin E levels in neuronal mitochondria after vitamin E supplementation
(20-300 pg/mL) [9]. The accumulation of vitamin E in mitochondria of neuronal cells after 36 h
of hypoxia was confirmed. Vitamin E accumulated most effectively into the mitochondria of
neuronal cells at 50 ug/mL. When neuronal cell death was induced by reoxygenation for 3 h
after 36 h of hypoxia, vitamin E prevented neuronal cell death at 50 ug/mL. Vitamin E
prevented stroke and loss of both memory and cognition functions [26]. Vitamin E might have
a marked inhibitory effect against neuronal damage after being incorporated into biological
membranes, particularly mitochondrial membranes, and capturing the reactive oxygen and
free radicals formed.

2.4. Regulation of the Bcl-2 family proteins in neuronal cell death

We pointed out that apoptosis is the likely mechanism responsible for ischemic neuronal death
in SHRSP rats [9, 27]. The expression of apoptosis-inducing molecules such as Bax was

Cerebral ischemia stress
(e.g. Hypoxia and reoxygenation)

‘ SHRSP rat Neuron
/ M ROS  Thioredoxin \

‘ J Bcl-2/Bax ratio ‘

v

‘ ‘M Neuronal apoptosis ‘

K Neuronalce@Ildeath j

Figure 2. Apoptosis of neuron in SHRSP rats by cerebral ischemia stimulation.
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enhanced in injured neuronal cells [8]. On the other hand, in surviving neurons, expression of
apoptosis-inhibiting molecules such as Bcl-2 and Bcl-XL was elevated in rat brains following
global ischemia [28]. The expression of BcI2 mRNA after H/R was investigated by quantitative
reverse transcriptase-polymerase chain reaction (RT-PCR) using cultured neuronal cells
isolated from SHRSP and WKY rats [8]. An analysis of BcI2 mRNA expression in SHRSP and
WKY rats showed that the most remarkable difference occurred after 30 min of reoxygenation.
The expression of BcI2 mRNA was significantly decreased in SHRSP compared to WKY rats.
The vulnerability of neuronal cells to ischemic stress promotes neuronal cell death during
stroke in SHRSP rats (Figure 2) [8].

3. Characteristics of astrocytes in SHRSP rats during stroke

3.1. Gliosis and the proliferation rate of astrocytes in SHRSP rats

After brain injury, the number of reactive astrocytes increases [29]. These reactive astrocytes
have prominent characteristics of growing cells [30]. The growth state of astrocytes in vitro
reflects the physiological abnormalities occurring in brain damage. In astrocytes cultured from
SHRSP rat brains in 10% fetal bovine serum (FBS), the cell growth rate was faster than
astrocytes from WKY rats. For example, the doubling time of cultured astrocytes isolated from
SHRSP rats was 21 h, whereas that of WKY rat astrocytes was 30 h [31]. These results indicated
the elevated growth capacity of SHRSP rat astrocytes. The greater increase in the numbers of
reactive astrocytes in SHRSP rats may have pathological consequences. In addition, reports
have indicated enhanced astrocytic reactivity to epidermal growth factor (EGF). SHRSP rat
astrocytes responded more strongly to EGF than WKY rat astrocytes, with larger increases in
cell number. In the ischemic brain, proliferative astrocytes were found around the infarcted
tissue [32]. Likewise, these proliferating astrocytes were immunoreactive for the EGF receptor
(EGFR). The increased growth activity of SHRSP rat astrocytes suggests that cerebral vascular
lesions in cerebral ischemia may be due to dysfunctional responses to EGF [32].

3.2. Production of neurotrophic factor by SHRSP astrocytes

Astrocytes modulate several functions such as the uptake of glutamate [33] and the induction
of the blood-brain barrier (BBB) [34] and induce production of cytokines [35] and neurotrophic
factors [36]. In SHRSP rat strain, astrocytic properties relate to the development of brain
disorders [37-39]. For example, neuron regeneration is controlled through the production of
neurotrophic factors from astrocytes after brain injury [32].

Neuronal vulnerability of SHRSP rats under ischemic conditions was correlated with reduced
GDNF production by SHRSP rat astrocytes [13]. The study focused on the production of GDNF
under normal conditions and H/R in cultured astrocytes from WKY and SHRSP rat strains.
SHRSP rat astrocytes released higher levels of GDNF than did WKY rats under normal oxygen
concentrations [13] (Figure 3). On the other hand, after hypoxia and 1.5 or 6 h reoxygenation,
the expression of GDNF was significantly lower in astrocytes from the SHRSP rat strain than
the WKY rat strain [13]. Furthermore, sphingosine-1-phosphate (51P) [40] and adenosine [41]
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reduced the expression of GDNF in primary SHRSP rat astrocytes. S1P is a lysophospholipid
released by activated platelets [42, 43], and it enhances the apoptosis of neuronal cells in the
central nervous system (CNS) [44]. A report demonstrated that GDNF is a potent factor for the
survival of neuronal cells [45]. Thus, in SHRSP rats, upregulation of S1P attenuates GDNF
production by astrocytes (Figure 4). This reduces neuronal protection mediated by the
neurotrophic factor, GDNEF. In traumatic injury of the CNS, the attenuated release of GDNF
by astrocytes may be involved in neuronal vulnerability in the SHRSP rat strain. Adenosine
enhances the levels of several growth factors in ischemic brain tissues, likely as part of a
preventive response. In the CNS, adenosine in the extracellular space acts as an intercellular
signaling molecule, and at high levels, it induces apoptosis [46]. Briefly, adenosine has both
immediate effects such as neurotransmission and neurotrophic effects that enhance changes
in cell metabolism and structure and has neuroprotective function [47, 48]. The expression of
GDNF was regulated differently in cultured astrocytes from SHRSP compared to WKY rats.
The amount of GDNF produced was lower in astrocytes of adenosine-treated SHRSP rats
compared with WKY rats. These results indicate that GDNF production is regulated dynam-
ically during reoxygenation and ischemic conditions by S1P and adenosine. Under postische-
mic reoxygenation conditions, the production of GDNEF, neurturin (NTN), and its receptor
increases in the brain tissue [49]. The pathogenesis of GDNF released by SHRSP rats is
unknown. However, the specific metabolic properties of SHRSP rats may be associated with
increased expression of GDNF [13].

Cerebral ischemia stress
(e.g. Hypoxia and reoxygenation)

SHRSP rats astrocytes

’ J Lactate ‘ ‘ { L-Serine ‘ ‘ {1 GDNF ‘

V

’ Decreased neuronal support ‘

Figure 3. Alteration of astrocytes in SHRSP rats by cerebral ischemia stimulation.

Cerebral ischemia Astrocytes
* Adenosine
* Hypoxia and reoxygenation ‘ Production of GDNF
* S1P
* H,0, WKY > SHRSP

Figure 4. Regulation of GDNF in astrocytes of SHRSP rats by cerebral ischemia status.
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3.3. Hypoxia and arginine vasopressin (AVP) induce astrocytic dysfunction in SHRSP rats

3.3.1. Altered regulation of L-serine in SHRSP astrocytes

In the CNS, r-serine is generated by astrocytes, and it accelerates neurite outgrowth from
ganglion neurons and enhances neuronal survival [50]. L-Serine is synthesized by 3-phospho-
glycerate dehydrogenase (3-PGDH) in glial cells but not in neurons [51]. L-Serine released from
astrocytes is transported to the extracellular space by neural amino acid transporter alanine/
serine/cysteine/threonine transporter (ASCT1) proteins and becomes available to neuronal
cells [52]. Induces outgrowth of ganglion neurons and neuronal survival by L-serine from
astrocytes. Hence, L-serine synthesis and the expression of ASCT1 protein were essential for
neuronal survival and differentiation [53]. On the other hand, the expression of 3-PGDH and
ASCT1 proteins is enhanced by excitotoxic damage in the mouse brain hippocampus [54]. In
astrocytes isolated from SHRSP rats, glutamate-induced stimulation of r-serine production
was reduced [55]. The production of L-serine was regulated by astrocytes in response to
molecules such as glutamate, kainic acid (KA), and free radicals and others that induced
neurodegenerative disorders [54, 56, 57].

Arginine vasopressin (AVP) induced the effects of inflammatory molecules in traumatic
neuronal injury [58]. Furthermore, ischemic conditions such as hypoxia and AVP affect cere-
bral cell volume [59, 60], ion uptake by cerebral cells via Na/H exchange (NHE) [61], and
Na-K-Cl cotransporter (NKCC) activities [62, 63]. AVP and hypoxia contribute to ischemia-
induced astrocyte swelling [64]. During cerebral ischemia, astrocyte swelling leads to ische-
mic neuronal cell death. AVP might contribute to astrocyte swelling induced by hypoxia
and reperfusion in SHRSP rats. On the other hand, rL-serine generation might be regulated
by astrocytes in response to a variety of molecules such as AVP that enhance brain edema in
SHRSP rats [12].

3.3.2. Inflammatory requlation and expression of HM GBI and adhesion molecules in SHRSP astrocytes

High-mobility group box 1 (HMGB1) regulates nucleosomal structure stabilization, modulates
inflammation, and is involved in recovery after stroke [65-67]. Hypoxia induces HMGB1
expression in neurons and astrocytes [68]. Furthermore, after hypoxia, HMGB1 enhances
breakdown of the blood-brain barrier (BBB) during ischemic injury [69]. These results indicate
that HMGBI is involved in inflammatory responses associated with stroke after ischemia [70].
One report demonstrated that HMGB1 is produced by neuronal cells and glial cells and
aggravates ischemic neurodegeneration [68]. In reactive astrocytes, production of HMGB1
accelerates endothelial progenitor cell-mediated neurovascular remodeling during stroke
recovery [71]. On the other hand, in oxygen-glucose deprivation or reperfusion, HMGB1
produced from astrocytes induces endogenous neural stem or progenitor cell proliferation [67,
72]. One study examined the expression of AVP-induced HMGBI in cultured primary
astrocytes isolated from WKY, SHR, SHRSP, and SHRpch1_18 rats [12]. AVP induced HMGB1
expression at 50 and 100 nM, and it was significantly higher in SHR, SHRSP, and SHRpch1_18
rat astrocytes than in WKY rat astrocytes. HMGB1 may relate to early stages of the inflamma-
tory response [69]. Reports have indicated that myelin loss is associated with neuroinflamma-
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tion [73] and that it induces inflammation after MCA occlusion [74] in the SHRSP rat strain.
This characteristic of SHRSP, SHR, and SHRpch1_18 rats is likely an important contributor to
enhanced inflammation in astrocytes and could explain how AVP augments the inflammatory
reaction and induces neuronal cell death [12].

Following exposure to tumor necrosis factor-alpha (TNF-a), the expression of vascular cell
adhesion molecule-1 (VCAM-1) by SHRSP rat astrocytes was increased compared with
those from WKY rats. Expression of TNF-a and adhesion molecules are related to the
presence of early neurological exacerbation and infarct volume in stroke [75, 76]. TNF-a is
generated by microglial cells and infiltrating macrophages following ischemic stroke [77].
In H/R treatment of SHRSP rat astrocytes, the expression of monocyte chemotactic pro-
tein-1 (MCP-1) was increased compared with that under normal oxygen. Inhibition or ge-
netic lack of these adhesion molecules decreased infarct volume, edema, and/or mortality
in different animal models of ischemic stroke [78]. These enhanced levels of adhesion mol-
ecules in H/R and TNF-a treatment may be induced by stroke in SHRSP rats. In SHRSP
rats, alteration and attenuation of astrocyte functions promote neuronal cell death during
stroke [79].

4. Conclusions

The level of neuronal cell death in SHRSP rats is significantly higher than in the WKY rat strain
[9, 10]. In cerebral ischemia, the properties of SHRSP rat neuronal cells, unlike those of WKY
rats, might be a factor in the elevated frequency of stroke. Vitamin E reduces neuronal cell
damage caused by ROS generated in cerebral ischemia. Thus, antioxidants such as vitamin E
could be used as a treatment for oxidative stress-mediated diseases. These antioxidants may
regulate redox potential and apoptosis-related proteins. Furthermore, in SHRSP rats, astrocyte
properties contribute to the development of brain disorders. In SHRSP rat astrocytes, attenu-
ation and loss of several functions such as GDNF and L-serine were demonstrated under
cerebral ischemic stroke conditions (Figure 4). In addition, after ischemic reperfusion, gener-
ation of MCP-1 is strongly enhanced in SHRSP rat astrocytes [80]. The expression of VCAM-1
and MCP-1 [81] is markedly elevated in SHRSP astrocytes compared with WKY rat astrocytes.
Taken together, neuronal vulnerability and altered regulation of the neuronal supportive
functions of astrocytes increase the risk of stroke in SHRSP rats.

Supply of oxygen is critical to neuronal cells viability. On the other hand, oxygen reperfusion
induces cellular dysfunction, apoptosis, and necrosis. From several animal experiment data,
clinical therapy by single-drug treatment may have little effect [82].
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