
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 5

Enhancing Estimates of Breakpoints in Genome Copy
Number Alteration using Confidence Masks

Jorge Muñoz‐Minjares, Yuriy Shmaliy and
Oscar Ibarra‐Manzano

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63913

Abstract

Chromosomal structural changes in human body known as copy number alteration
(CNA) are often associated with diseases, such as various forms of cancer. Therefore,
accurate estimation of breakpoints of the CNAs is important to understand the genetic
basis of many diseases. The high‐resolution comparative genomic hybridization (HR‐
CGH) and single‐nucleotide polymorphism (SNP) technologies enable cost‐efficient
and high‐throughput CNA detection. However, probing provided using these profiles
gives data highly contaminated by intensive Gaussian noise having white properties.
We observe the probabilistic properties of CNA in HR‐CGH and SNP measurements
and show that jitter in the breakpoints can statistically be described with either the
discrete  skew Laplace distribution when the segmental  signal‐to‐noise  ratio  (SNR)
exceeds unity or modified Bessel function‐based approximation when SNR is <1. Based
upon these approaches, the confidence masks can be developed and used to enhance
the estimates of the CNAs for the given confidence probability by removing some
unlikely existing breakpoints.

Keywords: copy number alterations, HR‐CGH, SNP, breakpoints, confidence masks

1. Introduction

It is well known that the deoxyribonucleic acid (DNA) of a genome essential for human life often
demonstrates structural changes [1–3] called genome copy number alterations (CNAs) [4–6],
which are associated with disease such as cancer [7]. Analysis of the breakpoint locations in the
CAN structure is still an important issue because it helps detecting structural alterations, load
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of alterations in the tumor genome, and absolute segment copy numbers. Thus, efficient
estimators are required to extract information about the breakpoints with accuracy acceptable
for medical needs. To produce CNA profile, several technologies have been developed such as
comparative genomic hybridization (CGH) [8], high‐resolution CGH (HR‐CGH) [9], whole
genome sequencing [10], and most recently single‐nucleotide polymorphism (SNP) [11]. The
HR‐CGH technology is still used widely in spite of its low resolution [12]. It has been reported
in [13] that the HR‐CGH arrays are accurate to detect structural variations (SVs) at the resolu‐
tion of 200 bp (base pairs). Most recently, the single‐nucleotide polymorphism technology was
developed in the study of Wang et al. [11] to provide high‐resolution measurements of the CNAs.
In spite of their high resolution, the modern methods still demonstrate the inability in obtain‐
ing good estimates of the breakpoint locations because of the following factors: (1) the nature
of biological material (tumor is contaminated by normal tissue, relative values, and unknown
baseline for copy number estimation), (2) technological biases (quality of material and hybrid‐
ization/sequencing), and (3) intensive random noise. The HR‐CGH and SNP profiles have
demonstrated deficiency in detecting the CNAs, but noise in the detected changes still re‐
mains at a high level [14] and accurate estimators are required to extract information about
structural changes.

In the HR‐CGH microarray technique, the CNAs are often normalized and plotted as
log2R / G = log2  ratio, where R and G are the fluorescent Red and Green intensities, respectively
[12]. The CNA measurements using SNP technologies are represented by the Log‐R ratios
(LRRs), which are the log‐transformed ratios of experimental and normal reference SNP
intensities centered at zero for each sample [14]. From the standpoint of signal processing, the
following properties of the CNA function are of importance [15]:

• It is piecewise constant (PWC) and sparse with a small number of alterations on a long base‐
pair length.

• Constant values are integer, although this property is not survived in the log‐R ratio.

• The measurement noise in the log‐R ratio is highly intensive and can be modeled as additive
white Gaussian.

The CNA estimation problem is thus to predict the breakpoint locations and the segmental
levels with a maximum possible accuracy and precision acceptable for medical applications.
In this work, we developed our methods to two types of cancer: B‐cell chronic lymphocytic
leukemia (B‐CLL) and BLC primary breast carcinoma. Nevertheless, the methods were
designed to any samples of cancer with the characteristics described above.

2. Methods

2.1. CNA model and problem statement

Consider a chromosome section observed with some resolution Δ , bp at M  discrete break‐
points, n ∈ 1, M . An example of the CNA probes with a single breakpoint and two segments
is shown in Figure 1. Suppose that the copy numbers change at K  breakpoints,
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1< i1 < … < iK <M , united in a vector I =  i1i2 … iK T. The measurement can thus be represented

with a vector y∈ℛM  as

1 1 21 2  1  .
K

T

i i i i My y y y y y y yé ù= ¼ + ¼ ¼ ¼ë û (1)

Figure 1. Typical CNA measurements with white Gaussian noise with a single breakpoint, between two segments l
and l + 1 having different segmental variances. The pdf for neighboring segments are depicted as pl(x) and pl+1(x).

Introduce a vector a∈ℛK +1 of segmental levels,a=  a1a2 …aK +1
T , where a1 corresponds to the

interval 1, i1 , aK +1 to iK , M , and aK , k ≥2, to ik −1, ik . In such a formulation, y obeys the linear
regression model

( )   = + νy A I a (2)
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where the regression matrix A∈ℛM ×(K +1) is sparse,

1 2 1    ,
TT T T

K +é ù= ¼ë ûA A A A (3)

having a component

0 1 0
0 1 0

,

0 1 0

k

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

L L
L L

M O M O M
L L

A (4)

in which the kth column is filled with unity and all others are zeros. The number of the columns
in Ak  is exactly K + 1. However, the number or the row depends on the interval ik − ik −1. Thus,

the row‐variant matrix (4) is Ak ∈ℛ(ik −ik −1)×(K +1). Additive noise v in Eq. (2) is zero mean,
E {v}=0, and white Gaussian with the covariance R =σv

2I , where I ∈ℛM ×M  is an identity matrix
and σv

2 is a know variance.

The CNA estimation problem is thus to predict the breakpoint locations and evaluate the
segmental changes x =A(I )a with a maximum possible accuracy and precision acceptable for
medical applications. The problem is complicated by short number of the probes in each
neighboring segment and indistinct edges. Therefore, an analysis of the estimation errors
caused by the segmental noise and jitter in the breakpoints is required.

2.2. Jitter probability in the breakpoints

Consider a typical genomic measurement of two neighboring CNA segments in white
Gaussian noise with different segmental variances as shown in Figure 1. A constant signal
changes from level al  to level al+1 around the breakpoint il . In the presence of noise, the location
of il  is not clear owing to commonly large segmental variances σl

2 and σl+1
2 . As an example, the

Gaussian noise probability density functions (pdfs) pl(x) and pl+1(x) are shown in Figure 1 for
σl

2 >σl+1
2 . Let us notice that pl(x) and pl+1(x) cross each other in two points, αl  and βl , provided

that σl
2 ≠σl+1

2 .

Now considerer N  probes in each segment neighboring to il  with an average resolution. We
thus may assign an event Alj meaning that measurement at point il − N ≤ j < il  belongs to the lth
segment. Another event Blj means that measurement at il ≤ j < il + N −1 belongs to the (l + 1)th
segment. In our approach, we think that a measured value belongs to one segment if the
probability is larger than if it belongs to another segment. For example, any measurement point
in the interval between αl  and βl  (Figure 1) is supposed to belong to the (l + 1)th segment.
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Following Figure 1 and assuming different noise variances σl
2 and σl+1

2 , the events Alj and Blj

can be specified as follows [16]:

( ) 2 2
1

2 2
1

2 2
1

( ) , ,

is  , ,
, ,

l j j l l l

lj
j l l l

l l l
l j l l l

x x
A

x
i N j i

x

a b s s

a s s
a b s s

+

+

+

ì < Ú < >
ïï > =í- £ < ï < < <ïî

(5)

( )

2 2
1

2 2
1

2 2
1

,
is  , ,
1

( ) ,   .

l j l l l
lj

j l l l
l l l

j l j l l l

x
B

x
i j i N

x x

b a s s
a s s

a b s s

+

+

+

ì < < <
ïï < =í£ < + - ï < Ú > >ïî

(6)

Because each point can belong only to one segment, the inverse events are Ā=1− Alj and
B̄ =1− Blj.

Events Alj and Blj can be united into two blocks:
Al = {Al (il −N )Al (il −N +1) … Al (il −1)} and Bl = {Bl (il )Bl (il +1) … Bl (il +N −1)}.

If Al  and Bl  occur simultaneously with unit probability each, then jitter at il  will never occur.
However, some other events may be found, which do not obligatorily lead to jitter. We ignore
such events and define approximately the probability P(Al , Bl) of the jitter‐free breakpoint as

( ) ( )l l l li i 1 i i 1, A A B B .l l N NP P - - + -= ¼ ¼A B (7)

The inverse event P̄(Al , Bl)=1− P(Al , Bl) can be called the approximate jitter probability [17].

2.3. Jitter distribution in the breakpoints

To determine the confidence limits for CNAs using high‐resolution genomic arrays, jitter in
the breakpoints must be specified statistically for the segmental Gaussian distribution. This
can be done approximately if to employ either the discrete skew Laplace distribution or, more
accurately, the modified Bessel function of the second kind and zeroth order.

2.3.1. Approximation with discrete skew Laplace distribution

Following the definition of the jitter probability given in Section 2.1 and taking into considera‐
tion that all the events are independent in white Gaussian noise, Eq. (7) can be rewritten as:
P(Al , Bl)= P N (Al)P N (Bl),  where, following Eqs. (5) and (6), the probabilities P(Al) and P(Bl)
can be specified as, respectively,
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where pl(x)=1 / 2πσl
2e −((x−al )2)/σl

2

 is the Gaussian density.

Suppose that jitter occurs at some point il ± k , 0≤k ≤ N ,  as shown, for example, in Figure 1, and
assign two additional blocks of events Alk = {Ail −N … Ail −1−k } and Blk = {Bil +k … Bil +N −1}. The

probability Pk
− ≜ Pk

−(Alk Āl (il −k ) … Āil −1Bl) that jitter occurs at the kth point to the left from il  (left

jitter) and the probability Pk
+ ≜ Pk

+(Al B̄ l (il +1) … B̄ l (il +k −1)Bk ) that jitter occurs at the kth point to the
right from il (right jitter) can thus be written as, respectively,

( ) ( ) ( )1  ,
kN k N

k l l lP P A P A P B- -= é - ùë û (10)

( ) ( ) ( )1  ,
kN N k

k l l lP P A P B P B+ -= é - ùë û (11)

By normalizing Eqs. (11) and (12) with Eq. (8), one can arrive at a function that turns out to be
independent on N :

( )
( )

( )

1

1

[ 1] ,   0, ( t)
1 0  . 

[ 1 ] , 0. ( )

k
l

l
k

l

P A k lef
f k k

P B k right

-

-

ì - <
ï

= =í
ï - <î

(12)

Further normalization of f l(k ) to have a unit area leads to the pdf pl(k)= 1
φl

f l(k ), where φl  is the
sum of f l(k ) for all k ,
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( ) ( )
1

1 [ ] ,
k

A B
l l lk kf j j

=

¥

= + +å (13)

where φl
A(k )= P −1(Al)−1 k   and φl

B(k )= P −1(Bl)−1 k .

It follows from the approximation admitted that f l(k ) converges with k  only if
0.5< P̃ ={P(A), P(B)}<1. Otherwise, if P̃ <0.5, the sum φl  is infinite and f l(k ) cannot be trans‐
formed to pl(k). It has been shown in [18] that such a situation is practically rare. It can be
observed with extremely small and different segmental SNRs when the probabilities are
comparable that the measurement point belongs to one of another segment.

Accepting 0.5< P̃ ={P(A), P(B)}<1, one concludes that P̃ <0, ln(1− P̃)<0, and ln(1− P̃)< ln(P̃). Next,

using a standard relation ∑
k=1

∞

x k =1 / (x −1 −1), where x <1, and after little transformations, Eq. (14)

can be brought to

( ) ( )
( ) ( )

1
.

[1 2 1 2
l l

l
l l

P A P B
P A P B

f
+ -

=
- é - ùë û

(14)

The jitter pdf pl(k) associated with the lth breakpoint can finally be found to be

( )
( )

( )

1

1

[ 1] , 0 ,
1 1, 0 ,  

[ 1] 0 ,

k
l

l
l k

l

P A k
p k k

P B k
f

-

-

ì - <
ï

= =í
ï - >î

(15)

where ϕl  is specified by Eq. (15) and 0.5< P(Al), P(Bl)<1.

If now to substitute ql = P −1(Al)−1 and dl = P −1(Bl)−1, find P(Al)=1 / (1 + ql) and P(Bl)=1 / (1 + dl),
and provide the transformations, then one may arrive at a conclusion that Eq. (16) is the discrete
skew Laplace pdf [19].

( )
, 0(1 )(1 ,)|

1 0

k
ll l

l l k
l l l

p kd qp k d q
d q q k

ì ³- - ï= í
- £ïî

(16)

where dl = e −(κl /νl ) ∈ 0, 1  and ql = e −(1/κl νl ) ∈ 0, 1  and in which κl  and νl >0 still need to be con‐
nected to Eq. (16). With this aim, consider Eqs. (16) and (17) at k = −1, k =0, and k =1. By equating
Eqs. (16) and (17), first obtain ((1−dl)(1−ql)dl) / (1−dlql)=1 / ϕl(1− P(Bl)) / P(Bl) for k =1 and
((1−dl)(1−ql)ql) / (1−dlql)=1 / ϕl(1− P(Al)) / P(Al) for k = −1 that yields
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21  ,
ln

l
l

l l

kn
k m
-

= (17)

where μl =(P(Al) 1− P(Bl) ) / (P(Bl) 1− P(Al) ). For k =0 we have ((1−dl)(1−ql)) / (1−dlql)=1 / ϕl  and

transform it to the equation xl
2 −(ϕl(1 + μl)) / (1 + ϕl)x −(1−ϕl) / (1 + ϕl)μl =0, where a proper

solution is

( )

2

22

(1 ) 4 (1 )1 1
2(1 ) 1
l l l l

l l l

x f m m f
f f m

æ ö+ -ç ÷= - -
ç ÷+ +è ø

(18)

and which xl =μl
−(κl

2)/(1−κl
2) gives us

( )ln  . 
ln( / )

l
l

l l

x
x

k
m

= (19)

By combining Eq. (18) with Eq. (20), one may also get a simpler form for νl , namely

νl = −κl / lnxl .

Now, introduce the segmental signal‐to‐noise ratios (SNRs): γl
− =

Δl
2

σl
2 , and γl

+ =
Δl

2

σl +1
2  , where

Δl =al+1 −al , substitute the Gaussian pdf to Eqs. (9) and (10), provide the transformations, and

rewrite Eqs. (9) and (10) as

( )

( ) ( )

( )

( ) ( )

11 erf erf ,
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1  erf ,  , 
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1 erf erf ,
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(21)
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where gl
β =(βl −Δl) / |Δl | γl

− / 2, gl
α =(αl −Δl) / |Δl | γl

− / 2, h l
β =βl / |Δl | γl

+ / 2,

h l
α =αl / |Δl | γl

+ / 2, erf(x) is the error function, erfc(x) is the complementary error function, and

( ) ( )2
1

1, 2 ln  .l l l l l
l l l l l l l l l

l l l l l

a a a ag g ga b g g g g
g g g g g

- + -
- + - +

+- + - + +

-
= ´ - + D -

- -
m (22)

2.3.2. Approximation of jitter distribution using the modified Bessel functions

An analysis shows that the discrete skew Laplace pdf (17) gives good results only if SNR is >1.
Otherwise, real measurements do not fit well, and a more accurate function is required. Below,
we show that better approach to real jitter distribution can be provided using the modified
Bessel functions.

2.3.2.1. Modified Bessel function

Figure 2 demonstrates the jitter pdf measured experimentally (dotted) for different SNRs. The
breakpoint corresponds here to the peak density and the probability of the breakpoint location
diminishes to the left and to the right of this point. Note that the discrete skew Laplace pdf
(17) behaves linearly in such scales. Therefore, Eq. (17) cannot be applied when SNR is <1 and
a more accurate function is required.

Figure 2. Experimentally defined one‐sided jitter probability densities (dotted) of the breakpoint location for equal seg‐
mental SNR γ in the range of M =400 points with a true breakpoint at n =200. The experimental density functions were
found using the Maximum Likelihood (ML) estimator. The histogram was plotted over 50×103 runs repeated nine times
and average. Approximations (continuous) are provided using the proposed Bessel‐based approximation depicted as
MBA.
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Among available functions demonstrating the pdf properties, the modified Bessel function of
the second kind K0(x) and zeroth order is a most good candidate to fit the experimentally
measured densities (Figure 2). The following form of K0(x) can be used:

( ) ( )

( ) ( )

0
0

20

cos sinh

cos
0,  0 ,

1

K x k x k t dt

x k t
dt x k

t

¥

¥

é ù = ò é ùë û ë û

é ùë û= ò > >
+

(23)

in which a variable x(k ) depends on index k ,  which represents a discrete departure from the
assumed breakpoint location. Because K0 x(k )  is a positive‐valued for x(k )>0 smooth function
decreasing with x to zero, it can be used to approximate the probability density.

2.3.2.2. Approximation

In order to use Eq. (24) as an approximating function

( ) ( )0|k K x kg = é ùë ûB (24)

Figure 3. Simulated CNA with a single breakpoint at n = 200 and segmental standard deviations σl  and σl+1 corre‐
sponding to SNRs γl

− =γl
+ =1.37: (a) measurement and (b) jitter distribution. Here, ML (circled) is the jitter pdf obtained

experimentally using an ML estimator through a histogram over 50×103 runs, SkL (solid) is the Laplace distribution,
and MBA (dashed) is the Bessel‐based approximation.
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conditioned on γ for the one‐sided jitter probability densities shown in Figure 2, we represent
a variable x via k  as x(k , γ)= ln Φ(k , γ)  in a way such that small k ≥0 correspond to large values
x of and vice versa. Among several candidates, it has been found empirically that the following
function Φ(k , γ) fits the histograms with highest accuracy:

( ) ( ) 1, 1 ,
k

k k
r t g

g
g

+ é ù+
F = + -ê ú

ê úë û
ò (25)

if to set γ =γl
− for k <0, γ =

γl
− + γl

+

2  for k =0, and γ =γl
+ for k >0, and represent the coefficients and

as τ(γ), ρ(γ), and �(γ) as

( ) 0 1a at g g= + (26)

( ) ( )1
0 0 2  bb a br g g g= + + (27)

( ) 1
0 2

cc cg g= +ò (28)

where a0 =0.02737, a1 = −4.5×10−3, b0 =0.3674, b1 = −0.3137, b2 =0.8066, c0=0.8865, c1 = −1.033,  and
c2 = −1.233 were found in the mean square error (MSE) sense. These values were found in several
iterations until the MSE reached a minimum.

In summary, Figure 3 gives a typical example of a simulated CNA, where the modified Bessel
function‐based approximation (depicted as MBA) demonstrates better accuracy than the
approximation obtained using the skew Laplace distribution (depicted as SkL).

2.4. Probabilistic masks

It follows from Figure 3 that, in view of large noise, estimates of the CNAs may have low
confidence, especially with small SNR γ ≤1. Thus, each estimate requires confidence bounda‐
ries within which it may exist with a given probability [20, 21].

Given an estimate âl  of the lth segmental level in white Gaussian noise, the probabilistic upper
boundary (UB) and lower boundary (LB) can be specified for the given confidence probability
P(ϑ) in the ϑ‐sigma sense as [20]

2

ˆ ˆ ˆ ˆ ˆjUB
l l l l l

l

a a a a
N
s

e J Js@ + = + = + (29)
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2

ˆ ˆ ˆ ˆ ˆjLB
l l l l l

l

a a a a
N
s

e J Js@ - = + = + (30)

where ϑ indicates the boundary wideness in terms of the segmental noise variance σ̂ l  on an
interval N l  points, from n̂ l−1 to n̂ l −1.

Likewise, detected the lth breakpoint location n̂ l , the jitter probabilistic left boundary J l
L  and

right boundary J l
R can be defined, following [20], as

,ˆL R
l l lJ n k@ - (31)

,ˆR L
l l lJ n k@ + (32)

where kl
R(ϑ) and kl

L (ϑ) are specified by the jitter distribution in the ϑ‐sigma sense.

By combining Eqs. (30) and (31) with Eqs. (32) and (33), the probabilistic masks can be formed
as shown in [20] to bound the CNA estimates in the ϑ‐sigma sense for the given confidence
probability P(ϑ). An important property of these masks is that they can be used not only to
bound the estimates and show their possible locations on a probabilistic field [20, 21] but also
to remove supposedly wrong breakpoints. Such situations occur each time when the masks
reveal double UB and LB uniformities in a gap of three neighboring detected breakpoints. If
so, then the unlikely existing intermediate breakpoint ought to be removed.

Noticing that the segmental boundaries (30) and (31) remain the same irrespective of the jitter
in the breakpoints, below we specify the masks for the jitter represented with the Laplace
distribution (17) and Bessel‐based approximation (25).

2.4.1. Masks for Laplace distribution

For the Laplace distribution (17), the jitter left boundary J l
L  (32) and right boundary J l

R(33)

can be defined in the ϑ–‐sigma sense if to specify kl
R(ϑ) and kl

L (ϑ) as shown in [18],

( )( )
( )

1 1
ln ,

1
l lR

l
l l

d q
k

d q
n
k x
é ù- -

= ê ú
-ê úë û

(33)

( )( )
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1 1
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1
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d q
nk

x
é ù- -

= ê ú
-ê úë û

(34)
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where [x] means a maximum integer lower than or equal to x. Note that functions (34) and (35)
were obtained in [18] by equating (17) to ξ(N l)=erfc(ϑ / 2) and solving for kl .

The probabilistic UB mask  and LB mask  for the Laplace distribution were formed in
[17,20,21] by the segmental upper boundary âl

UB and lower boundary âl
LB and by the jitter left

boundary J l
L and jitter right boundary J l

R. The algorithm for computing  and  masks has
been developed and applied to the CNA probes in [22].

2.4.2. Masks for Bessel‐based approximation

The UB mask  and LB mask  for the Bessel‐based approximation can be formed using
the same equations as for the Laplace distribution. Suppose that the Laplace pdf (17) is equal
to the approximating function Βl(k ) at k =0,

( ) ( )0| , 0 ,l l lp k d q k= = =Β (35)

that yields Βl(k =0)= 1
ϕl

. Then, define the probabilities P B(Al) at k = −1 and P Β(Bl) at k =1 as

( ) ( )
( ) ( )

0
,

1 0
l

l
l l

k
P A

k k
=

=
= - + =

Β
Β Β

B
(36)

( ) ( )
( ) ( )

0
.

1 0
l

l
l l

k
P B

k k
=

=
= + =

Β
Β Β

B
(37)

Next, substitute Eqs. (37) and (38) into Eqs. (19) and (20) to obtain κl
B and νl

B. The right‐hand
jitter kl

BR and left‐hand jitter kl
BL can now be specified by, respectively,

R 1ln ,
( 0)

l
l

l l

k
k

n
k x
é ù

= ê ú=ë û

B
B

B B (38)

L 1ln .
( 0)l l l
l

k
k

n k
x

é ù
= ê ú=ë û

B B B

B (39)

Finally, define the jitter left boundary J l
BL and right boundary J l

BR as, respectively,

L Rˆ ,l l lJ n k@ -B B (40)
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R Lˆ ,l l lJ n k@ -B B (41)

and use the algorithm previously designed in the study of Munoz‐Minjares and Shmaliy [22]
for the confidence masks based on the Laplace distribution.

Figure 4.  and  masks for the seventh chromosome taken from “159A–vs–159D–cut” of ROMA: (a) genomic
location from 130 to 146 Mb and (b) genomic location from 146 to 156 Mb. Breakpoints î1, î6, î7, î9, î10, î12, and î13 are
well detectable because jitter is moderate. Owing to large jitter the breakpoints î2, î3, î4, î5, î8, î9, and î11 cannot be
estimated correctly. There is a probability that the breakpoints î2, î3, î4, î5, and î11 do not exist. There is a high proba‐
bility that breakpoint î5 does not exist.
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3. Results

In this section, we test some CNA measurements and estimates by the algorithm developed
in [22] based on the Laplace and Bessel approximations. In order to demonstrate the efficiency
of the probabilistic masks and getting practically useful results, we exploit probes obtained by
different technologies. First, we employ the results obtained with the HR‐CGH profile and test
them by the probabilistic masks using Laplace distribution. We next demonstrate the efficiency
of the Bessel‐based probabilistic masks versus the Laplace‐based masks for the probes obtained
with the SNP profile.

3.1. HR‐CGH‐based probing

The first test is conducted in the three‐sigma sense suggesting that the CNAs exist between
the UB and LB masks with high probability of P =99.73%. The tested HR‐CGH array data are
available from the representational oligonucleotide microarray analysis (ROMA) [23]. The
breakpoint locations are also given in [23]. Voluntarily, we select data associated with
potentially large jitter and large segmental errors. For clarity, we first compute some charac‐
teristics of the detected CNAs and notice that the segmental estimates found by averaging [18]
are in a good correspondence with [23]. The database processed is a part of the seventh
chromosome in archive “159A–vs–159D–cut” of ROMA a sample of B‐cell chronic lymphocytic
leukemia (B‐CLL). It is shown to have 14 segments and 13 breakpoints (Figure 4a and b). Below,
we shall show that, owing to large detection noise, there is a high probability that some
breakpoints do not exist.

It follows from Figure 4a that the only breakpoint which location can be estimated with high
accuracy is i1. Jitter in î6 and î7 is moderate. All other breakpoints have large jitter. It is seen
that the UB mask covering second to sixth segments is almost uniform. Thus, there is a
probability that the second to fifth breakpoints do not exist. If to follow the LB mask, the
locations of the second to fourth breakpoints can be predicted even with large errors. At least
they can be supposed to exist. However, nothing definitive can be said about the fifth break‐
point and one may suppose that it does not exist. It is also hard to distinguish a true location
of the eighth breakpoint. In Figure 4b, i10, i12, and i13 are well detectable owing to large
segmental SNRs. The breakpoint i9 has a moderate jitter. In turn, the location of i11 is unclear.
Moreover, there is a probability that i11 does not exist.

3.2. SNP‐based probing

Our purpose now is to apply the probabilistic mask with SNP profile that represents the CNA
with low levels of SNR. Specifically, we employ the probes of the first chromosome available
from “BLC_B1_T45.txt” a sample of primary breast carcinoma.

Inherently, the more accurate Bessel‐based approximation extends the jitter probabilistic
boundaries with respect to the Laplace‐based ones, especially for low SNRs. We illustrate it in
Figure 5, where the estimates of the first chromosome were tested by , , , and  for
ϑ =3 (confidence probability P =99.73%).
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In Figure 6, the masks  and  are placed in the vicinity of segment â18 for several confidence
probabilities: ϑ =0.6745(P =50%), ϑ =1(P =68.27%), ϑ =2(P =95.45%), and ϑ =3(P =99.73%). What
the masks suggest here is that the CNA evidently exists with high probability, but the
segmental levels and the breakpoint locations cannot be estimated with high accuracy, owing
to low SNRs.

Figure 5. Jitter left boundaries ℬl
ℬL, J l

L and right boundaries J l
ℬR, J l

R for the breakpoint î2 of first chromosome from
sample BLC_B1_T45.txt (primary breast carcinoma). The probabilistic masks detect a breakpoint with a confidence
probability ϑ =3(P =99.73%).

Figure 6. The  and  masks placed around the segmental level a18 for several confidence probabilities [20]. Here,
the CNA exists with high probability, but the segmental levels and the breakpoint locations cannot estimate with high
accuracy.
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Figure 7. The confidence masks placed around a10 for ϑ =0.6745(P =50%) and ϑ =3(P =99.73%). Masks  and  do

not confirm an existence of segmental changes while  and  indicate a small change.

Figure 8. The confidence masks , ℒl
LB, ℬl

UB and . placed around the breakpoint î20 for confidence probabilities
ϑ =0.6745 and ϑ =3 of first chromosome from sample BLC_B1_T45.txt. The confidence masks based on Laplace distri‐
bution cannot detect the breakpoint î20.
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A special case can also be noticed when the masks  and  are not able to confirm or deny
an existence of segmental changes with high probability, owing to the inability of computing
the Laplace‐based masks for extremely low SNRs. Figures 7 and 8 illustrate such situations.
Just on the contrary, masks  and  can be computed for any reasonable SNR.

A conclusion that can be made based on the results illustrated in Figures 5–8 is that the Bessel‐
based probabilistic masks can be used to improve estimates of the chromosomal changes for
the required probability.

We finally notice that the computation time required by the masks to process the first chro‐
mosome from sample “BLC B1 T45.txt” with a length of n = 905215 was 2.634599 s using
MATLAB software on a personal computer with a processor Intel Core i5, 2.5 GHz.

4. Discussion

We evaluate the breakpoints obtained by the projects representational oligonucleotide
microarray analysis [23] and GAP [14] with the confidence masks. As has been shown before,
not all of the detected chromosomal changes have the same confidence to mean that there is a
probability that some breakpoints do not exist. In order to improve the CNA estimates for the
required confidence, the following process can be used:

1. Obtain estimates of the CNA using the standard CBS algorithm [24, 25] or any other
algorithm.

2. Compute masks  and  for the given confidence probability P , % and bound the
estimates.

3. If the masks reveal double uniformities, in UB and LB, in a GAP of any three neighboring
breakpoints, then remove the intermediate breakpoint and estimate the segmental level
between the survived breakpoints by simple averaging. The CNAs estimated in such a
way will be valid for the given confidence P , %.

Application of this methodology to the CNA structure detected in frames of the Project GAP
is shown in Figure 9. Its special feature is a number of hardly recognized small chromosomal
changes (Figure 9a). We test them by the proposed masks ℬl

UB and ℬl
LB. To this end, we first

start with equal confidence probabilities of P =50% for each estimate to exist or not exist and
find out that three breakpoints demonstrate no detectability. We remove these breakpoints
and depict their locations with “×”. Reasoning similarly, we remove four breakpoints to retain
only probable changes, by P =75%,  nine breakpoints to show a picture combined with almost
certain changes, by P =93%, and 10 breakpoints in the three‐sigma sense, P =99.73%. Observing
the results, we infer that the masks are able to correct only the estimates obtained under the
low SNRs. The relevant chromosomal sections S1–S7 are circled in Figure 9. It is not surprising
because changes existing with high SNRs are seen visually. An estimator thus can easily detect
them with high confidence.
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Figure 9. Improving estimates of the CNAs obtained in Project GAP [25] by removing some unlikely existing break‐
points: (a) original estimates, (b) even changes, P =50%, (c) probable changes, P =75%,  (d) almost certain changes,
P =93%, and (e) three‐sigma sense, P =99.73%.

5. Conclusions

Modern technologies developed to produce the CNA profiles with high resolution still admit
intensive white Gaussian noise. Accordingly, not one estimator even ideal is able to provide
jitter‐free estimation of segmental changes. Thus, in order to avoid wrong decisions, the
estimates must be bounded for the confidence probability. Jitter exists in the CNA's break‐
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points fundamentally. When SNR is >1, it can statistically be described using the discrete skew
Laplace distribution. Otherwise, if SNR is <1, the Bessel‐based approximation produces more
accuracy. By the jitter distribution, it is easy to find a region within which the breakpoint exists
for the required probability. Of practical importance are the confidence UB and LB masks,
which can be created based on the segmental and jitter distributions for the given confidence
probability. The masks can serve as an auxiliary tool for medical experts to make decisions
about the CNA structures. Applications to probes obtained using the HR‐CGH and SNP
technologies confirm efficiency of the confidence masks.
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