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Abstract

Diffusion welding is a solid joining technique allowing for full cross-section welding.
There is no heat-affected zone, but the whole part is subjected to a heat treatment. By
diffusion of atoms across the bonding planes, a monolithic compound is generated.

The process takes place in a vacuum or inert gas atmosphere at about 80% of the melting
temperature and is run batch-wisely. Hence, it is rarely used despite its advantages to
achieve holohedral joints and is widespread in the aerospace sector only.

The quality of a diffusion-welded joint is determined by the three main parameters
bonding temperature, time, and bearing pressure. The difficulty tailoring the process is
that they are interconnected in a strong nonlinear way.

Several additional factors may influence the result or may change the material, e.g.
surface roughness and passivation layers, all kinds of lattice defects, polymorphic
behaviour, and formation of precipitations at grain boundaries, design of the parts to
be welded and its aspect ratio as well as mechanical issues of the welding equipment.
Hence, experiments are necessary for almost each special part.

In this chapter, an overview about the experience of diffusion welding is given.
Influences are discussed in detail and conclusions are derived.

Keywords: diffusion welding, diffusion bonding, lattice defects, grain growth, precip‐
itation, sensitization, passivation layer
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1. Introduction

Diffusion welding is the only welding technique by means of which full cross-sectional welds,
also of internal structures, can be obtained. Normally, there is no liquid phase and the
monolithic compound is formed completely under solid-state conditions.

For the conditions to be appropriate, mechanical properties across the joined part are compa‐
rable to the bulk material. Due to heating of the whole parts, no distinct heat-affected zone
(HAZ) is formed. However, properties are changed compared to the as-delivered conditions
of the material. This may cause problems in some cases.

For diffusion welding, special and expensive equipment is required: the parts have to be
mated at high temperatures by applying high forces depending on the size and cross-sec‐
tion to be welded under a vacuum or inert gas environment. Equipment and parts are heat‐
ed mostly indirectly by radiation. To limit thermal stress, the heating rates are restricted to
some 10 K/min.

The welding process takes place in vacuum and cannot be performed on site. Mating surfa‐
ces must be free of any impurities and have a low surface roughness without deep scratch‐
es. Joining of multiple layers is possible in one step.

Diffusion welding is always accompanied by a certain deformation of the parts. This defor‐
mation depends mainly on bonding temperature, bonding time and bearing pressure.
Unfortunately, influences of temperature and bearing pressure are non-linear, making it
difficult to predict the deformation of a new design. Additionally, secondary impacts on
deformation and the quality of joining may be due to specific geometric parameters, e.g., the
aspect ratio, the number of layers, the micro-structure of the material itself and surface layers.

Recently, thin coatings of other metals, forming a temporary liquid phase (TLP) by passing a
eutectic composition, or multiple layers of different metals of nanometre thickness exploiting
the enormous interfacial energy of such compounds were investigated.

In contrast to conventional welding techniques, such processes are highly complex. The
process has to be optimised for each material and even for different compositions of alloys
depending on the geometry. For this reason, application of diffusion welding is limited to
the aerospace industry or special applications where other welding techniques fail. For ex‐
ample, large- and thin-walled titanium sheets are joined to reinforcing structures and inter‐
nal cooling channels for injection moulding tools and nozzles of rocket engines.

Unfortunately, not all the information necessary for reproducing the results, e.g., material,
procedure of sample preparation and process parameters, is given in the literature.

For joining micro-structured components, additional aspects must be taken into account.

The aim of this chapter is to summarise knowledge on diffusion welding in conjunction with
the fundamental processes taking place inside of the micro-structure of a material. For this,
lattice defects are discussed according to their dimensionality.
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2. Micro-structure of metals and the impact of lattice defects on diffusion
welding

2.1. Atoms in the lattice of metals

To minimise the energy of a system, isolated metal atoms tend to arrange in a regular lattice
at positions according to the annihilation of attractive and repulsive forces (Figure 1). The
positions are well-defined and specific of each metal. Hence, they can be used, e.g., for
determining the composition of an alloy by means of WDX (wavelength dispersive X-ray).
When forming a compound, atoms split up into positively charged atomic nuclei, while
valence electrons are transferred to the so-called electron gas and can move freely within the
lattice. Consequently, metals are good conductors of heat and electricity.

Figure 1. Equilibrium of attractive and repulsive forces in the metallic lattice [1].

2.1.1. Thermal expansion

Depending on the thermal energy of the whole system, the positively charged atomic nuclei
oscillate around their position, leading to a thermal expansion (Figure 2). According to
Grüneisen's rule, linear expansion is in the range of 2% and volumetric expansion is 6–7% up
to the melting point of a metal [1]. Hence, the melting point can be used to estimate the thermal
coefficient of expansion. Below the melting temperature, the oscillation amplitude is about
12% of the lattice constant [2].

Figure 2. Thermal oscillation of atoms.
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2.1.2. Thermal activation, diffusion, polymorphism and zero-dimensional lattice defects

With increasing thermal oscillation, not only the amplitude increases but also the energy of
collisions between atoms. Gradually, some atoms are facilitated to leave its lattice sites and a
vacancy is left leading to a punctual stress state (Figure 3). With increasing temperature, an
exponentially increasing number of atoms is displaced from the lattice sites and the density of
vacancies is considerably enhanced (Eq. (1)):

exp.V
n Uc
N RT

-Dæ ö= * ç ÷
è ø

(1)

Figure 3. Vacancy in the lattice causing punctual stress.

where cV is the concentration of vacancies (cm−3), n is the number of vacancies, N is the number
of sites in the metallic lattice, U is the energy of formation of vacancies (for metals 80–200 J/
mol), R is the gas constant (J/mol*K) and T is the temperature (K).

Vacancies are regular lattice sites not occupied by an atom. Due to a missing atom, the
surrounding atoms tend to fill the gap and the lattice is distorted at this point, representing a
zero-dimensional defect.

According to [3], the density of vacancies is 10−12 at room temperature and increases to 10−4

below the melting temperature.

Vacancies strongly facilitate the diffusion of atoms between different sites of the lattice and,
hence, concentration facilitates the formation of a monolithic compound during diffusion
welding. As a consequence, the coefficient of diffusion increases exponentially with temper‐
ature (Eq. (2)). An increase in bonding temperature by 20 K may result in a doubling of the
diffusion coefficient, thus illustrating the strong non-linear influence of temperature on
diffusion welding:

0 *exp.
UD D

RT
-Dæ ö= ç ÷

è ø
(2)
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where D is the diffusion coefficient (m2/s), D0 is the frequency factor (material constant) (m2/s)
and U is the energy of formation of vacancies (J/mol).

The number of vacancies versus temperature can be plotted as a logarithmic function, the so-
called Arrhenius plot (Figure 4).

Figure 4. Arrhenius plot. The density of vacancies increases with a logarithmic dependency with temperature.

Depending on the real micro-structure of technical materials, different types of diffusion can
be distinguished corresponding to different activation energies for different lattice defects.
Straight lines for different diffusion paths can be plotted for surface, grain boundary and
volume diffusion, respectively (Figure 5). For diffusion welding, grain boundary diffusion
predominates at low and medium temperature. As the cross-section of grain boundaries is
related to the volume and the density of vacancies increases exponentially, volume diffusion
becomes predominant at high temperature.

Figure 5. Different modes of diffusion of atoms versus temperature [1].
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At the same time, grain growth takes place at high temperatures, which minimises the
interfacial energy of the system. If the material shows no polymorphic transformation or the
grain boundaries are not pinned by insoluble intra-granular precipitations (e.g., for ODS
alloys), diffusion welding will be accompanied by grain growth.

Technical materials are no pure metals, but also contain other sorts of atoms, e.g., alloying
elements like manganese, chromium or carbon for steel. Similar to vacancies, these atoms are
integrated into the basic lattice as zero-dimensional defects. If they form the same type of lattice
(e.g., cubic face-or cubic space-centred), and if the difference in atomic radii is less than 15%,
they can occupy regular sites of the host lattice [4]. Small non-metallic atoms with an atomic
radius smaller than 59% of the host atoms can be dissolved interstitially like carbon in iron [1].

Although solubility of interstitial atoms is low, they have diffusion coefficients higher by some
orders of magnitude in the lattice, since more suitable gaps are available.

In case of low temperature rates during cooling down from diffusion welding temperature,
this may be of relevance to the formation of undesired precipitations. The dwell time during
diffusion welding should always be kept in the range of solution annealing for an alloy. This
may conflict with a low temperature to limit grain growth.

If a metal is polymorphic, abrupt changes in solubility and in the diffusion coefficient may
occur. For iron, e.g., these parameters change by two orders of magnitude (Figure 6). Reasons
are different solubilities for foreign atoms and different sizes of gaps between the atoms in the
lattice. For example, maximum solubility of carbon in α-ferrite (cubic space-centred) is 0.02%
at 723°C, whereas the solubility of carbon in Y-ferrite (cubic face-centred) is 2.06% at 1143°C,
i.e., higher by a factor of about 100 [1].

Figure 6. Diffusion coefficients of different sorts of atoms and depending on the type of lattice [5].
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Additionally, polymorphism is accompanied by a complete new formation of the micro-
structure, and grain size is reduced. Although grain growth occurs at high temperature, the
same transformation happens when cooling down. This is the reason why normal steels,
showing an a⇔Y transformation, can be diffusion welded easily with a finely grained micro-
structure (Figure 7).

Figure 7. Diffusion weld of St 37 (1.0254), T = 1075°C, t = 1 h, p = 10 MPa, normal α⇔γ-transformation, deformation:
3.13%.

On the other hand, a diffusion weld of austenitic steel is displayed in Figure 8. The impact of
the four times longer dwell time on the grain size can be seen clearly.

Figure 8. Diffusion weld of austenitic stainless steel AISI 304 (1.4301) at T = 1075°C, p ≈ 15 MPa. Left: t = 1 h, deforma‐
tion: 2.75%. Right: t = 4 h, deformation: 7.04%.

Although the bearing pressure for 1-h dwell time is 50% higher than for 1.0254, deformation
is comparable due to the lower diffusion coefficient in the cubic face-centred lattice. When
dwell time is increased by a factor of 4, however, deformation increases by a factor of about
2.5, see [6].

In Figure 9, ten 1-mm layers with a diameter of 40 mm of a fully ferritic stabilised stainless
steel were diffusion welded. Welding at T = 1075°C, t = 1 h and p = 10 MPa for comparison
failed due to excessive deformation. Even at a reduced temperature of T = 1000°C and reduced
bearing pressure of p = 6 MPa [7], the deformation was huge at 14.6%. For T = 950°C, t = 1 h, p
= 6 MPa, the deformation was still 3.8%.

These high deformations under these mild conditions have to be attributed to the high
diffusion coefficient in ferrite, see Figure 6. However, despite the high deformation and
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excessive grain growth due to lacking polymorphism, only very little grain growth across the
bonding planes is visible in Figure 9, illustrating the role of surface passivation layers, see
Section 2.2.

Figure 9. Diffusion weld of a fully ferritic stabilized stainless steel Crofer 22 APU (1.4760) at T = 1000°C, t = 1 h, p = 6
MPa. Deformation: 14.6%.

2.1.3. One-dimensional defects: impact of dislocation density on mechanical properties

Dislocations represent an inserted plane in a metallic lattice (Figure 10).

Figure 10. Plastic deformation by the movement of a dislocation across the lattice.

Of course, the inserted plane does not end at a constant level in different layers of the third
dimension, but at an arbitrary depth, leading to complex stress conditions. If adequate shear
stress appears, the dislocations are moved through the lattice in a step-wise manner, thus
causing a plastic deformation. However, the dislocation density is not dropping, despite the
dislocations leave the material at the surface. In opposite, it increases exponentially during
cold working due to the so-called Frank-Read mechanism. Dislocation density can be given as
a length of the dislocation line per unit of volume and can reach as much as 1012 cm−2 [2]. Only
by cold work hardening alone can the mechanical strength of a material be multiplied
(Figure 11).
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Figure 11. Increase of yield strength of pure iron by cold work hardening [8].

At room temperature, dislocation movement is the predominant deformation mechanism in
metals. Dislocations represent a one-dimensional lattice defect.

Dislocations mean an energy excess compared to an undistorted lattice. Hence, at elevated
temperatures of about 40% of the melting temperature of pure metals and 50% for alloys,
recrystallization takes place [9]. For metals showing no polymorphism, cold work hardening
and subsequent recrystallization is the only way to reduce the original grain size. However, it
is applicable to half-finished products only.

Hence, when cold-worked material is diffusion welded, recrystallization will be included and
affect the grain size.

2.1.4. Two-dimensional defects: grain and phase boundaries; interfacial layers and their influence on
diffusion welding

Two-dimensional defects of a metallic lattice are reflected, e.g., by grain boundaries. They can
be described as an interfacial area per unit of volume and can vary over a wide range, whereas
the grain size of technical alloys is in the range of about 5–200 μm. Coating technologies such
as galvanic deposition, physical vapor deposition (PVD) or chemical vapor deposition (CVD)
processes lead to amorphous or nanocrystalline micro-structures possessing a high internal
energy.

Two-dimensional defects affect diffusion welding in several ways: first, the dislocation
movement is limited according to the grain size, since grain boundaries are obstacles for
movement through the lattice. This means that for a constant strain, deformation by dislocation
movement will be smaller for a material with a small grain size. At elevated temperature,
however, grain growth occurs and the driving force is larger for a fine-grained material.

Diffusion Bonding: Influence of Process Parameters and Material Microstructure
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A similar effect is observed when using the so-called nanofoils, a thin stack of multiple
nanometre layers of different materials possessing a very high interfacial energy in a meta‐
stable state [10, 11]. As a result, very high temperatures can be achieved temporarily.

Secondly, deformation at elevated temperatures is governed by grain boundary sliding (Coble
creep) or the flow of vacancies through the volume (Nabarro-Herring creep) [12]. This means
a coarsely grained material will tend to a larger deformation during diffusion welding because
there are less obstacles for dislocation movement and grains tend to slide against each other.

In summary, it can be stated that the degree of deformation and the creep rate for a material
during diffusion welding will depend on its grain size and will be very sensitive to the
temperature used.

More complex deformation behaviour may result from multi-phase materials: phase bounda‐
ries can occur in a wide range of orders of magnitude, either between grains or within, e.g., as
thin lamellas in grains of eutectic or eutectoid composition, such as perlite for steel.

Temporarily liquid phases (TLP) can be formed, e.g., by galvanic or PVD deposition of thin
layers of two or more different metals, forming a low melting alloy during diffusion welding.
Since the inter-layer diffuses into the bulk material, ideally a homogeneous material is left after
finishing the process, which is insusceptible to inter-crystalline corrosion.

The opposite happens when different metals form inter-metallic compounds that are brittle
and have a high melting temperature. In this case, bonding temperature and time should be
limited, such that a thin layer only can be formed between both materials, which do not exhibit
any excessive brittleness.

2.1.5. Three-dimensional defects: precipitation

As regards precipitations, it must be distinguished between soluble and insoluble species at
diffusion welding temperature. Precipitation may be formed, e.g., due to a low cooling rate
after diffusion welding in the range of solution annealing temperature. As a consequence, a
two-phase micro-structure with coarse precipitations is formed at the grain boundaries. It is
subjected to inter-crystalline corrosion (Figure 12). Examples are nickel-based alloys that lose
their favourable corrosion resistance.

Figure 12. Micro-structure of Hastelloy C-22 (2.4602). Left: after quenching from 1100°C/70 min in water. Middle: after
cooling from 1100°C with a rate of 3 K/min (1100°C ≥ 650°C = 2.5 h). Right: corrosion attack after diffusion welding in
95–97% sulphuric acid at 100°C and 1008 h.
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Again, the size of precipitations determines the consequences. In case of nanoscaled, insoluble
precipitations, e.g., for ODS materials, dislocation movement and grain growth is restricted
very effectively [13].

For example, a pure OF-Cu showed good results at T = 850°C (Figure 13). The dimension of
the material was 28 × 15 mm2, consisting of six micro-structured layers with a thickness of 3.04
mm and an overall height of 13.04 mm, respectively.

Figure 13. Diffusion welding OF copper. T = 850°C, t = 4 h, p = 2 MPa, micro-structured stack: 18.2%, overall: 4.2%.

Especially in thin-walled micro-structures, perfect grain growth across the bonding planes can
be seen. However, in the massive border area, pores remain and grain growth is not as
pronounced. The reason probably is a local excess of bearing pressure at the thin walls.
However, in massive areas, the bearing pressure of 2 MPa is too low to deform asperities and
fill pores sufficiently at this temperature.

Comparative diffusion welding experiments were made using two discs made of ODS copper
Discup C3/80 with a diameter of 40 mm and an overall height of 6.88 mm (Figure 14). The
surfaces were flycut using a polycrystalline diamond tool at a feed rate of 240 mm/min and
3000 rpm, giving a period of 80 μm feed per revolution at a very low roughness in the range
of Rt = 1–1.5 μm, Ra = 0.2 μm. The roughness patterns of the discs were not aligned to each
other.

Figure 14. Diffusion welding experiment using Discup C3/80, an oxide-dispersion-strengthened copper alloy. T =
1000°C, t = 4 h, p = 6 MPa, deformation: 0.8%.

Diffusion Bonding: Influence of Process Parameters and Material Microstructure
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Discup alloys consist of pure copper containing a few tenths percent of sub-micron disperoids
generated by reactive milling. Afterwards, the material is strongly deformed by extruding.
The melting temperature is 1083°C like for pure copper. Despite a much higher temperature
and bearing pressure compared to the OF copper sample shown in Figure 13, the deformation
is as low as 0.8%. SEM images are taken, illustrating very poor joining of the mating surfaces.
Grain boundaries are not visible. However, lamellar enrichment of dispersoids can be seen.
Similar experiments were done using similar materials in [14].

2.2. Surface effects

For diffusion welding, a very good quality of surfaces is a pre-requisite. Surfaces must be free
of single deep scratches preventing vacuum-tight joints and of impurities from machining.
Careful cleaning using surfactants and subsequent rinsing with ethanol or acetone are
required. Gloves free of powder should be used for handling.

The number of stacked layers will also influence deformation at the given diffusion welding
parameters, since multiple surfaces are approached and levelled. Hence, it is not possible to
give a certain percentage of deformation to achieve highly vacuum-tight joints. Deformation
also depends on the composition of the material.

2.2.1. Influence of roughness

A pre-requisite for solid-state diffusion is a very good contact of the mating surfaces on the
atomic level. Often, a “low surface roughness” that is not specified otherwise is required in
the literature.

The diffusion welding process can be divided into several phases. In the beginning, surfaces
are approached by the deformation of asperities. At local spots, diffusion starts on the atomic
level. Between these centres, pores remain which must be closed subsequently by volume
diffusion. For this, the density of vacancies and, hence, the temperature and bonding time are
essential. Additionally, temperature affects the grain growth and deformation.

Several authors distinguish variable numbers of phases of the bonding process. An overview
of the historical development of theoretical models can be found in [15].

Roughness influences the formation of a monolithic bond by the height and shape of asperities
and the distance in between, forming temporary pores that must be filled.

Perfectly smooth surfaces made, e.g., by diamond fly cutting may prevent local deformation
because asperities are lacking. Shape and height of asperities, in conjunction with bearing
pressure, define the local deformation behaviour.

Asperities may also help penetrate surface passivation layers, thus producing local initial
metallic contact.

2.2.2. Passivation layers

Some metals and alloys like aluminium, stainless steel, nickel-based alloys or titanium
spontaneously form surface passivation layers. They consist mainly of oxides of the base metal,
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some alloying elements may be enriched. Often, oxygen is blocked to prevent further oxidation
and the passivation layers are responsible for the good corrosion resistance in aqueous media
or hot gases. Especially for aluminium, formation of passivation layers cannot be avoided
completely. The thickness of these passivation layers is in the range of 2–20 nm depending on
the type of metal and the content of alloying elements [16, 17]. Of course, composition,
thickness and nature of passivation layers differ for normal austenitic stainless steel, heat-
resistant steels or nickel-based alloys. Hence, the diffusion welding process must be optimised
and the joint must be checked for grain growth across the bonding plane (Figure 15). High
vacuum tightness is a necessary but not a sufficient criterion.

Figure 15. Diffusion-welded joint of Hastelloy C-22 (2.4602). T = 1100°C, t = 70 min, p = 12 MPa ≥ high vacuum tight‐
ness. Subsequently, solution annealed at T = 1125°C, t = 1 h, water-quenched ≥ leaky.

As mentioned above, a certain roughness may help penetrate this layer by local deformation.
Hence, the passivation layer comes into contact with matrix material. Passivation layers may
be removed by chemical pickling. Even if subsequent formation of a new passivation layer
may not be prevented, at least a reproducible surface condition is created.

Long bonding durations and high temperatures above 80% of the starting melting temperature
should be preferred in this case.

Another approach is to remove the surface passivation layer, e.g., by sputtering with argon
ions. Subsequently, a layer of a different metal may be deposited, which is not that susceptible
to oxidation, e.g., gold or silver, and may temporarily form a low-melting alloy helping to
create a bond.

For titanium, the passivation layer is soluble in the matrix material and diffusion welding of
titanium is widely used, e.g., in the aerospace industry [18, 19]. In Figure 16, a very good bond
between thin micro-structured layers can be seen. For parts consisting of multiple thin sheets,
however, it has to be kept in mind that grades 1–4 differ slightly only in terms of the contents
of nitrogen, oxygen and iron, while the mechanical properties are changed dramatically [20].
Consequently, the properties of diffusion-welded parts may be changed for inappropriate
ratios of surface layers to bulk material.

Diffusion Bonding: Influence of Process Parameters and Material Microstructure
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Figure 16. Diffusion weld of titanium, grade 2 at T = 850°C, t = 4 h, p = 13 MPa.

2.3. Influence of temperature, bearing pressure, bonding time and design

2.3.1. Influence of bonding temperature

For diffusion welding, the joining temperature is normally set in the range of about 80% of the
melting temperature for a pure metal or of the starting melting temperature for alloys.
Temperature is calculated in Kelvin. Obviously, similar to the appropriate temperature for
recrystallization, the temperature for alloys should exceed this level. For materials with surface
passivation layers, temperature should be even higher and the time longer, which changes the
whole process in terms of creep rate and appropriate bearing pressure. When comparing
diffusion welding of, e.g., pure aluminium (Ts = 660°C) and AlMg3 (Ts = 610–640°C), the whole
process has to be optimised. Otherwise, welding will fail due to excessive deformation [21].

The influence of temperature is strongly non-linear. Keeping in mind the dependence of
vacancy density on temperature, an increase of about 20 K can double the diffusion coefficient
and, hence, drastically increase the creep rate for a given bearing pressure.

2.3.2. Influence of bearing pressure

Bearing pressure is responsible for joining the mating surfaces. Influence of the bearing
pressure is contrary to that of temperature. When increasing the bonding time from 1 to 4 h,
the deformation is not proportional but increased by a factor of about 2.5 [5].

Obviously, a certain minimum bearing pressure is necessary to facilitate the deformation of
local contact areas of the sample depending on the temperature applied.

Additionally, deformation under the given conditions strongly depends on the aspect ratio of
the part and on the frictional cross-section between the part and the die applying the load.
Large format parts of low thickness are difficult to weld with a reproducible deformation.
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If the parts contain internal thin-walled micro-structures, the deformation behaviour may be
affected by grain boundary sliding. For comparison to the part displayed in Figure 13, a similar
part with a format of 40 × 30 mm, containing 12 layers of unstructured foils with a thickness
of 3.6 mm and an overall height of 13.84 mm was welded under the same conditions (T = 850°C,
t = 4 h, p = 2 MPa). Deformation of the 12 layers was 1.3% only, while overall deformation was
0.35%, showing the influence of both micro-structures and aspect ratio.

The effective bonding area of a part should be distributed uniformly across the part. Otherwise
irregular deformation or sink marks may occur (Figure 17). To prevent this, compensating
areas may be helpful.

Figure 17. Irregular deformation on a part made of titanium with micro-structured sheets stacked in the same direction
at T = 850°C, t = 4 h, p = 10 MPa.

2.3.3. Influence of bonding time

Bonding time is required for conducting the diffusion process. After the initial step of ap‐
proaching mating surfaces, time is needed to fill the pores left in between the local contact
areas. Hence, a sufficient long bonding time is required.

Bonding time, together with temperature, affects deformation. However, as mentioned above,
its influence is non-linear. As soon as creep takes place during diffusion bonding, a long
bonding time makes it difficult to control deformation and design changes may have a major
impact.

Therefore, the diffusion welding process should be optimised for each serial application. It is
difficult to weld prototypes of varying designs or materials without profound experience.

It is also hard to give a certain percentage of deformation to obtain a good diffusion bond. In
fact, bonding quality depends on the number of layers to be bonded.

In any case, the deformation behaviour depends not only on the composition of a material but
also on its micro-structure.

Diffusion Bonding: Influence of Process Parameters and Material Microstructure
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3. Special factors to be considered in diffusion welding of micro-devices

Some aspects relating to micro-structures have already been mentioned in the sections above.
From this, it can be concluded that bearing pressure should be kept as low as possible, while,
on the other hand, it must be sufficient to deform asperities and to increase the contact area
during the bonding process.

The temperature should be sufficient for a high density of vacancies and for filling the pores
by volume diffusion, which also depends on the bonding time.

Micro-devices mainly consist of micro-structured multiple sheets. Channels may run in the
same direction or cross-wisely, and the load-bearing structures may not proceed over the
whole thickness for technical reasons (Figure 18).

Figure 18. Displaced micro-structure with offsets made of 1.4301 diffusion-welded at locally varying bearing pressure
at T = 1075°C, t = 4 h.

Bottom and top are often closed by discs of a few millimetres in thickness, having coarse grains.
For thin sheet material, however, the grain size is about one order of magnitude smaller due
to cold work hardening and recrystallization. The micro-structured stack and thick plates will
deform completely differently and the deformation will be concentrated mostly on the micro-
structured section. An intelligent design may help achieve reasonable results.

3.1. Shapes of thin walls in micro-structures

The cross-section of thin walls may be important to the deformation behaviour: if the bearing
pressure forces the material to creep, cross-sections of rectangular wall may be bent or
deformed to a barrel shape, as can be seen in the left section of Figure 19. In the SEM of material
with etched micro-channels on the right, however, the part is stabilised, since the bonding
cross-section increases when deformation occurs.
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Figure 19. Impact of the cross-section of thin walls. Left: rectangular cross-section of thin walls. Right: self-reinforcing
cross-section due to etched micro-channels.

The dimension of the walls should exceed the grain size of the material: in most cases, walls
should be at least 100–200 μm in width. The aspect ratio should not exceed 1:1 for stability
reasons, e.g., to avoid bending.

3.2. Impact of the design of mechanical micro-structures, the aspect ratio and the number of
layers on the deformation

Moreover, the geometry of the micro-structured foils to be proper is important: the ratio
between the thickness of the remaining bottom and the width of a trench should not exceed
1:1 to transmit sufficient bearing pressure to the next layer and to prevent lacking fusion
(Figure 20, left).

Figure 20. Left: 1.4301, T = 1075°C, t = 4 h, p = 8 MPa, incomplete fusion due to insufficient thickness of the bottom in
relation to the width of trenches. Right: 1.4876, T = 1250°C, t = 1 h, p = 8 MPa, distortion due to grain boundary sliding
within a thin bottom.

Depending on the application, a grain boundary crossing the remaining thickness of the
bottom of a micro-channel should be avoided. In case of corrosion, this would be a favourable
path for failure. During diffusion welding it causes local grain boundary sliding and distortion
of the mechanical micro-structure (Figure 20, right).

Another topic is the aspect ratio of the parts to be welded, e.g., due to the different thermal
expansion coefficients of the TZM-stamps (see Section 4), and the parts and deformation
during the welding process, friction between both occurs. For a high aspect ratio in the range

Diffusion Bonding: Influence of Process Parameters and Material Microstructure
http://dx.doi.org/10.5772/64312

211



of one or more, a barrel-shaped profile results, accompanied by a high percentaged deforma‐
tion. Flat parts, however, possess a low deformation at the same conditions. For example, for
disks of 160 mm in diameter, a deformation of 10% was obtained for a height of 10 mm for T
= 1075°C, t = 4 h, p = 25 MPa. For a height of 150 mm, however, the deformation was more than
33% [22].

The number of layers affects the deformation obtained at the same conditions since the
roughness of more surfaces must be levelled. For example, a conical sample consisting of 51
layers had a deformation more than 30% higher than the same sample geometry consisting of
five segments only (Figure 21).

Figure 21. Conical samples made of 1.4301, T = 1000°C, t = 4 h, F = 17.55 kN, corresponding to 15–25 MPa. Left: Before
diffusion welding. Middle: Five segments, deformation: 5.41 and 5.11%, respectively. Right: Sample made of 51 layers;
deformation: 8.34% [6].

4. Equipment for diffusion welding

Diffusion bonding can be carried out using hot isostatic pressing (HIP) at a high isostatic
pressure applied by argon of up to 2.500 bar or using a heated press with uniaxial load. For
HIP, the parts must be placed inside a steel shield container which is evacuated before sealing.
This makes the handling of the parts and the process itself rather expensive.

Additionally, sticking of the parts to the container must be prevented, e.g., by rock wool layers
in between or boron nitride spray, or the container has to be machined off afterwards. When
using fibrous materials, desorption from a high specific surface area at high temperatures has
to be considered. However, also parts with an irregular bonding plane can be welded by HIP,
since homogeneous pressure is applied. HIP is widespread and offered by service providers,
e.g., ABRA Fluid AG [23].

Diffusion bonding using uniaxial heated presses is performed under a protective inert gas
atmosphere or high vacuum. Only a few companies supply equipment for diffusion welding,
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e.g., PVA TePla AG, FormTech GmbH, TAV VACUUM FURNACES SPA and Centorr Vacuum
Industries. Other companies such as MAYTEC Mess- und Regeltechnik GmbH and SYSTEC
Vacuum Systems GmbH & Co.KG modify equipment like tensile testing machines or produce
equipment for special needs (Figure 22). For this, a water-cooled vessel with a vacuum-sealed
feedthrough for the dies is installed. The oven is heated indirectly by metallic heaters, and a
vacuum in the order of 1E-05 Pa must be maintained for the protection of the heaters. Tem‐
peratures of not more than 1400°C are sufficient for the most commonly used materials.

Figure 22. Diffusion bonding furnaces. Left: Maytec diffusion bonding furnace, maximum force 20 kN. Right: Systec
diffusion bonding furnace, maximum force: 2 MN.

The stamps are often made of TZM, a molybdenum ODS-alloy, possessing still a high me‐
chanical stiffness at high temperatures [24]. However, the stability also depends on the
thickness-to-diameter ratio and must be adapted to the forces transferred to the sample to
prevent irregular deformation of the parts to be welded.

Due to the thermal mass of the equipment and to limit thermal stress, the heating rate and
especially the cooling rate are low. PVA TePla AG also offers a rapid cooling technology for
decreasing the cycle time [25].

During diffusion welding of stainless steel and nickel-based alloys under vacuum, chromium
depletion takes place at the surface due to high partial pressure of chromium oxide [26, 27].
Hence, corrosion properties differ from a heat treatment in inert gas or air. For these materials,
also enrichment of carbon must be prevented. Hence, unshielded heaters made of graphite are
unsuitable.

5. Discussion and outlook

Diffusion welding is the only welding process allowing for full cross-sectional welding, mostly
without any liquid phase formation. Since the whole part is subjected to a heat treatment,
attention must be paid to undesired material changes. Any cold work hardening effect
disappears and the grain size will be larger than before.

With reasonable efforts, high-melting metals, e.g., tungsten or tantalum, cannot be welded.
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The equipment is expensive. The process mostly runs batch-wise. Depending on the machinery
and the geometry of the parts to be joined, the output is relatively low. Mostly, costs are high.

The process has to be optimised with respect to temperature, bearing pressure and time, taking
into account the composition of an alloy and the mechanical history of the semi-finished
product. This makes it an interesting field of research for materials scientists. High tempera‐
tures and long bonding times are favourable as long as grain growth is not important.

Overall, the result of diffusion welding is difficult to control and depends on many other
geometrical factors as well. Therefore, it is used mainly for special applications or in the
aerospace industry where cost pressure is lower.

The design of a part must be adapted to diffusion welding, e.g., in terms of a constant distri‐
bution of the bonding net cross-section across the part to prevent sink marks. High vacuum
tightness is a necessary but not a sufficient criterion for diffusion welding of apparatuses.

To obtain good welding results, a certain deformation always must be accepted. It depends
on, e.g., the aspect ratio of the parts and the number of layers to be joined. Obviously, micro-
channels inside a part will affect the amount of deformation additionally. For multi-layered
parts, a higher deformation is required to achieve high vacuum tightness since more surfaces
have to be levelled. In consequence, it needs a lot of experience to define appropriate param‐
eters, especially for the bearing pressure, to ensure a sufficient deformation related to the
number of layers. Hence, it is not possible to give an exact value of deformation necessary to
obtain high vacuum tightness for a material itself.

Since a long bonding time makes it more difficult to control the deformation at a constant
bearing pressure, a short increase of bearing pressure for approaching the surfaces may be
helpful. Time should be given in between for closure of remaining pores at a reduced constant
bearing pressure without a steady strain rate.

As shown for different types of steel, also the material properties and surface passivation layers
may have high impact on the behaviour during diffusion welding. Not all materials of the
same class can be welded at the same temperature since passivation layers may possess
different thermal stability. Often an increased temperature is required to achieve grain growth
across the bonding planes, depending on the alloying elements and its content.
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