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Abstract

This chapter discusses the principle and application of two model‐based algorithms for
processing non‐dispersive and dispersive ground penetrating radar (GPR) data over
layered medium under monostatic antenna configuration. Both algorithms have been
selected for their super‐time resolution capability and reduced computational burden;
they allow GPR to measure a layer thickness smaller than the fraction of the dominant
wavelength. For non‐dispersive data, the ESPRIT algorithm is generalized to handle
different kinds of data models encountered in experiments and in the literature. For
dispersive data, the proposed adaptation of the MPM algorithm allows recovering the
full‐time resolution and jointly estimating the time delays and quality factors of a layered
medium with reduced bias. Both processing techniques are applied to probe‐layered
roadways for NDT&E purposes.

Keywords: ground penetrating radar, high‐resolution signal processing methods,
non‐dispersive media, dispersive media, civil engineering

1. Introduction and context

Ground penetrating radar (GPR) is a non‐destructive testing tool widely used in the fields of
defense, agriculture, and mainly in geological applications and civil  engineering [1–8].  It
allows measuring different surveyed media parameters or detecting and localizing buried
objects [9–15 19]. In this chapter, we focus on horizontally stratified media such as road‐
ways, walls, and soils. The inner structure of the media can be deduced from GPR profiles by
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means of echo detection and amplitude estimation. Some processing approaches to obtain
such  geometrical  information  can  use  the  full‐waveform  inversion  [6,  7]  or  migration
processing [8]. In this chapter, we focus on estimation‐based methods of low computational
burden, which allow estimating only one, two, or three parameters.

Echo detection provides time‐delay estimation (TDE) associated with each layer [15]. TDE is
usually performed using conventional FFT‐based methods (inverse FFT or cross‐correlation
methods), for which the time resolution depends on system GPR frequency bandwidth. To
afford enhanced time resolution, e.g., for measuring thin thickness of layered medium,
advanced model‐based signal processing techniques are required.

This chapter shows that subspace‐based methods are relevant for GPR applications for
improving the performance of classical TDE techniques. These techniques use simplified
assumptions, namely monostatic radar configuration at nadir probing layered non‐dispersive
media. Under these hypotheses, the data are conventionally modeled as the sum of shifted and
attenuated copies of the Tx pulse. When dealing with experiments, the latter simplified data
model is restricted to either lossless or weakly lossy materials, e.g., pavement, and to small
depth‐layered structures. Subspace‐based techniques then provide unbiased TDE and super‐
time resolution capability as opposed to the conventional FFT‐based techniques. Among the
subspace‐based techniques, the ESPRIT algorithm has been selected, thanks to its accuracy and
its reduced computational burden.

For dispersive media, the above simplified data model does not hold because the wavelets
undergo time spread and distortion with depth. Conventional subspace techniques then
provide biased TDE and highly degraded time resolution. A few specific advanced processing
techniques have been then developed and tested to extend the application of subspace
techniques to dispersive media. Given a particular dispersion–absorption model, namely the
Jonscher's parameterization of the medium permittivity, the MPM algorithm has been adapted
to dispersive media to estimate unbiased TDE and recover the super‐time resolution perform‐
ance.

Both subspace methods are based on the frequency domain data model. In this case, each echo
is mathematically represented by a complex pole from which the time delay can be readily
estimated. For non‐dispersive media, the pole is purely imaginary, i.e., e −2 jπf T k ; for dispersive
media, the complex pole includes both real and imaginary parts of which the ratio depends
on the Q factor, which characterizes the dispersion of the medium.

Therefore, this chapter develops two model‐based high‐resolution methods to estimate the
different parameters of both non‐dispersive and dispersive media, such as time delay,
thickness, permittivity, and quality factor Q. For non‐dispersive media, the ESPRIT algorithm
is extended to the signal model taking into account the radar pulse and any noise character‐
istics. Furthermore, six special cases of the ESPRIT method are introduced and discussed. The
influence of interface roughness and medium heterogeneity inside the medium is also
discussed. For dispersive media, the matrix pencil method is extended to two variants of signal
model: depth invariant (DI; Q does not vary from one layer to another) and depth variant (DV;
Q varies from one layer to another). The performance of the proposed methods in terms of
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time resolution, accuracy, and root mean square error is tested with simulated data. The
obtained results show that the two proposed methods succeed in improving the time resolu‐
tion in the case of non‐dispersive data and in jointly estimating the time delays and quality
factors in the case of dispersive data.

2. Non-dispersive media

2.1. Data model

In this section, we present the forward model used to process radar data with high‐resolution
methods. First, numerous physical considerations are discussed. Then, the forward model is
described. The high‐resolution methods are applied on a non‐dispersive medium like the
roadway [15]. The medium considered here is assumed to be a horizontally stratified medium
with K layers, as shown in Figure 1.

Figure 1. Horizontally stratified medium with K layers probed by Ground Penetrating Radar and the associated radar
profile (A‐scan) with three primary echoes.

A monostatic radar antenna is positioned in the far‐field zone of the probed medium (antenna
beyond the Fraunhoffer limit) at nadir. A vertical radar profile (function of time axis, called
A‐scan) is then obtained, as shown in Figure 1. When a sequence of A scans is acquired along
the scanning direction by collecting radar data at different locations, the radargram image
(which is also called B‐scan) is obtained, as shown in Figure 2.
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Figure 2. Example of B‐scan of GPR.

Each layer is composed of aggregates, which are embedded within the hosting material. The
size of the aggregates (1–2 cm in size) influences the scattering of waves depending on the
dominant radar wavelength. When the aggregates are smaller than the radar wavelength, each
layer can be considered as a homogeneous medium with smooth interfaces, which is charac‐
terized by its permittivity, conductivity, and thickness. However, when the aggregates are
bigger or of the same order of size as the radar wavelength, each layer must then be considered
as a heterogeneous medium comprising random rough interfaces. In such case, each layer is
characterized not only by its effective permittivity, conductivity, and thickness but also by the
two random rough interfaces delimiting each layer. These two rough interfaces are defined by
their height probability density function and their surface height autocorrelation function.
Note that, following Koudogbo et al. [17] and Pinel et al. [18], at nadir and within studied GPR
band, surface scattering dominates in comparison with volume scattering. This is an important
simplification that allows us to avoid modeling each aggregate individually, which would
involve volume scattering. Instead, we can model these aggregates by considering an effective
permittivity. Besides, as thoroughly analyzed by Pinel et al. [18], the roughness of the interfaces
plays a non‐negligible role in the backscattering process only for large bands, or in other words,
for high frequencies: typically, from about 3 GHz. To probe the roadway, the pulse GPRs are
more often used, and the typical frequency is between 0.1 and 3 GHz. Nowadays, some GPRs
of “stepped frequency radar” kind are also employed. They work at higher frequencies, but
the main drawback is the measurement time, which remains important.

Then, as a first approximation, the roadway structure is considered as a stratified medium
consisting of K homogeneous layers with small dielectric contrast, for which the interface
roughness can be neglected at GPR frequencies (1–2 GHz). The aggregates, which are included
within the material, are supposed to be small enough compared to the dominant GPR
wavelength. For example, the GPR pulse at 1.5 GHz has a dominant wavelength of 20 cm in
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air and about 9 cm within the pavement material, whereas the maximum aggregate size is
about 2 cm. Thus, each layer can therefore be considered as a homogeneous medium, which
is characterized by an effective dielectric constant and thickness.

According to Adous [20], the dielectric constant of pavement layer is generally between 4 and
8. The dispersivity of the medium is usually neglected because the conductivity is low (between
10-3 and 10-2 S/m [21]). Roadway thicknesses typically range from 1 to 40 cm. For the pavements,
the thickness varies from 1 to 10 cm. For ultrathin asphalt surfacing (UTAS) pavement [8], the
thickness decreases to 1–3 cm. In the latter case, the backscattered echoes from adjacent
interfaces overlap with each other, and it becomes very difficult even impossible to correctly
estimate the thickness by conventional FFT‐based methods. We also assume that the GPR
measurements are performed in far field (i.e., the antennas are located beyond the Fraunhoffer
limit), so that the received signal model simplifies to a one‐dimensional model [13], and an
analytical expression of the signal can be deduced from the solutions of Maxwell's equations.
In standard radar configuration, i.e., monostatic radar in far field at nadir, the received signal
is composed of d backscattered echoes, which are reflected from the medium interfaces.

Providing the latter assumptions on the medium and the antenna configuration, the echoes
are simply the time‐shifted and attenuated copies of the transmitted pulse e(t). The echo
amplitudes ck are given by the Fresnel coefficients; they are reinforced by a large dielectric
contrast between the layers. There are two kinds of echoes: the so‐called “primary” echoes and
the “multiple” echoes. The first ones (primary echoes) encounter only one reflection from the
interface, whereas the multiple echoes result from several reflections. The multiple echoes
show negligible amplitude if the layered medium shows small dielectric contrasts, as previ‐
ously assumed. Thus, the received signal s(t) is the sum of d echoes e(t −Tk ), whose amplitudes
are proportional to the Fresnel coefficients of each medium interface. The received signal, also
called signal model, can then be written as follows:

1
( ) ( ) ( )

d
k kk

s t c e t T b t
=

= - +å (1)

where e(t) is the transmitted signal; d  is the number of backscattered echoes, which are mostly
composed of K primary echoes; ck is the amplitude of the kth echo; Tk  is the time delay of the
kth echo; and b(t) is an additive noise, which is assumed to represent the measurement
uncertainties.

The dispersivity of the medium is supposed negligible. In frequency domain, the echo
amplitudes ck are therefore constant over the frequency bandwidth, so the received signal is a
linear combination of complex exponentials that are modulated by the radar pulse e( f ) plus
an additive noise. The received signal in frequency domain can then be written as follows:

2
1

( ) ( ) ( )k
d j fT

kk
s f e f c e b fp-

=
= +å %% % (2)
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where the .̃ symbol represents the corresponding Fourier transform of the time function
(Equation 1), and f  stands for the frequency. Suppose that N  frequency samples are chosen
within the frequency bandwidth B of the GPR. Thus, the received signal can be written in
matrix form as follows:

A %% Ws= c+b (3)

where:

• s̃=[s̃( f 1) .... s̃( f N ) T  is the (N ×1) data vector, which may represent either the Fourier
transform of the pulse GPR signal or the measurements from a stepped frequency radar.
The superscript T indicates the transpose operator;

• Ω=diag(ẽ( f 1) ... ẽ( f N )) is the (N × N ) diagonal matrix whose diagonal elements are the
amplitudes of the Fourier transform of the radar pulse. The radar pulse is supposed known;
it can be measured by the signal backscattered from a metallic plane;

• A= a(t1) ... a(td ) T  is the (N ×d ) mode matrix;

• a(tk )= e −2 jπ f 1T k ... e −2 jπ f N T k T  is the (N ×1) mode vector or steering vector;

• c = c1 … cd
T  is the (d ×1) vector of echoes amplitudes;

• b̃= b̃( f 1) ... b̃( f N ) T  is the (N ×1) zero mean noise vector;

• f n = f 1 + (n −1)Δf ,  where f 1 is the beginning of the band, and Δf  is the frequency difference
between two adjacent samples.

The covariance matrix is defined as Γ= s̃s̃H , where the ⋅  operator denotes the ensemble
average, and the superscript H indicates the complex conjugate transpose. In practice, the
covariance matrix Γ  is estimated from M independent snapshots of the data vector s̃ as follows:

1

1ˆ M H
m mmM =

= åΓ s s% % (4)

According to signal model (3) and assuming the noise to be independent of the echoes, the
covariance matrix Γ  of s̃ can be written as follows:

2 2
0 0

H H
sig cs s= + = +Γ Γ ΩAΓ A Ωå å (5)

where Γsig  and Σ0  are the covariance matrices of the signal and noise, respectively. The matrix
Γc  is the (d ×d ) dimensional covariance matrix of the vector of echo amplitudes. The noise
covariance has been normalized such that tr(Σ0)= N 22  and tr(.) is the trace operators.
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2.2. High‐resolution method ESPRIT applied to TDE

When enhanced time resolution is required for separating overlapping echoes (e.g., probing
thin layered media), conventional FFT‐based methods are not efficient. Advanced signal
processing methods, such as subspace‐based methods, have emerged in the 1980s to elegantly
solve this problem. These methods are called subspace‐based methods because they exploit
the properties of the eigenstructure of the covariance matrix Γ  [22]. Among the existing
methods, ESPRIT has been selected because it affords direct parameter estimation with a lower
computational load.

The ESPRIT algorithm was firstly proposed for array signal processing by Roy et al. [23].
Several extensions of the ESPRIT algorithm have been proposed for TDE in the literature. N‐
ESPRIT by Saarnisaari [24] can handle the colored noise but assumes an ideal radar pulse,
whereas P‐ESPRIT by Swindlehurst [25] takes into account the radar pulse but supposes a
temporally white Gaussian noise. Compared to the latter extensions, the M‐ESPRIT algorithm,
which is presented in this section, is matched to the general data model in Equation (3) by
taking both the radar pulse shape and any noise into account [16].

The principle of the ESPRIT method is to exploit some properties of rotation invariance [23].
The first step of the algorithm consists in dividing the data vector s̃ into two overlapping
subvectors. Each subvector has N −1 elements and overlaps with each other by N −2 ele‐
ments. Thus, the ((N −1)×d ) dimensional mode matrices of each sub‐band, A1 and A2, are re‐
lated to each other by the (d ×d ) diagonal matrix Ψ, whose elements depend on the time‐
delay parameter to be estimated as follows:

Y2 1A = A (6)

such that:

1

2

-æ ö æ ö
= =ç ÷ ç ÷-è ø è ø

A
A

A (7)

and

1 22=diag( ... )dj fTj fTe e pp - D- DY (8)

The matrix Ψ defined in Equation (8) cannot be estimated from data. On the basis of the
generalized singular value decomposition (GSVD) of the covariance matrix Γ , the diagonal
elements of Ψ can be retrieved from the similar matrix Φ defined thereafter in Equation (17c).
From the GSVD of the covariance matrix Γ , we have the following equation:
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0sig sig sig=Γ V Σ V ¡ (9)

with

2 2
1( , ... , )ddiag l s l s= - -¡ (10)

where the generalized eigenvectors vk  associated with the signal subspace are arranged in the

matrix Vsig  as columns; λi is the ith generalized eigenvalue of covariance matrix Γsig ; and σ 2 is
the smallest generalized eigenvalue of the noise subspace. ESPRIT exploits the linear relation
in Equation (6) within the GSVD of Γ . Thus, the GSVD of Equation (9) can be written in each
data sub‐band as follows:

,1 0,1sig sig sig=Γ V VS ¡ (11)

,2 0,2sig sig sig=Γ V VS ¡ (12)

where Γsig ,1  and Γsig ,2  are the two (N −1× N ) dimensional matrices defined as follows:

,1
H H

sig s= 1 1Γ Ω A Γ A Ω (13)

,2 2 2
H H

sig s=Γ Ω A Γ A Ω (14)

where Ω1 =diag(ẽ( f 1) ... ẽ( f N −1)) and Ω2 =diag(ẽ( f 2) ... ẽ( f N )) are the two ((N −1)× (N −1))

diagonal matrices. Σ0,1 and Σ0,2 are the two overlapping band matrices of size ((N ×1)× N ),  and
defined as the N −1 upper lines and the N −1 lower lines of the noise covariance matrix as
follows:

0,1
0

0,2

-æ öæ ö
= = ç ÷ç ÷ ç ÷-è ø è ø

Σ
Σ

Σ (15)

Equations (6), (12), and (14) are used to obtain the following expression:

0,2 sig = 2 1Σ V Ω A ΨT (16)
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where T=ΓcA
H ΩH VsigΥ−1 a (K×K) invertible matrix. Then, Equations. (11), (13), and (16) are

used, and after some mathematical manipulations, we obtain the following equation:

0,2 0,1sig sig=Σ V ΘΣ V Φ (17a)

with

= -1
2 1Θ Ω Ω (17b)

1-=Φ T ΨT (17c)

Equation (17c) means that the matrices Φ and Ψ are similar, and thus they have the same
eigenvalues, which are expressed as e −2 jπΔf T k . As opposed to Ψ, Φ can be retrieved from data.
Thus, the d  time delays of the echoes can be retrieved from the argument of the d  eigenvalues
of the matrixΦ In practice, the covariance matrix is estimated, and only the matrices
Σ̂0,1,  Σ̂0,2, and V̂sig  are estimated. The matrices Ω1 and Ω2 are obtained by the measurements of
the radar pulse over a metallic plane. From Equation (17a), there exists two ways to calculate
the matrix Φ. The first one uses the least square (LS) solution as follows:

( ) ( )
1

0,1 0,1 0,1 0,2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆH H

sig sig sig sig

-
é ù= ê ú
ë û

-1Φ Σ V Σ V Σ V Θ Σ V
(18)

The second way is the total least square (TLS) solution, which is known to improve the
robustness of the solution especially at low signal‐to‐noise ratio (SNR) [26]. The TLS solution
is computationally more demanding and requires performing the GSVD of the couple of
matrices Σ̂0,2V̂sig , ΘΣ̂0,1V̂sig .

2.3. M‐ESPRIT applied to specific data models

M‐ESPRIT is a general algorithm, which can handle different data configurations encountered
in the literature and in GPR experiments. This section reviews the simplifications in Equa‐
tion (17a), which corresponds to the six specific data models in Table 1. The assumptions on
the data model imply the modifications of both the noise metric and the signal subspace. The
corresponding equations to be solved for matrix Φ are also derived in Table 1, column 6. The
LS and the TLS solutions for matrix Φ can then be readily established.
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Case  Assumptions  Data model (s̃)

and Covariance matrix (Γ)

Signal
subspace 

Noise
metric 

Equation (17c)
to solve for K

  1
Conventional
ESPRIT

Dirac pulse and  
white noise

 s̃=Ac + b̃

Γ=AΓ cA
H + σ 2I

A I Vsig ,2 =Vsig ,1Φ

Vsig = (Vsig ,1

−
)= ( −

Vsig ,2
)

  2
M‐ESPRIT

Radar pulse and
any noise

s̃= ΩAc + b̃

Γ= ΩAΓ cA
H ΩH + σ 2Σ0

ΩA Σ0 Σ0,2Vsig =ΘΣ0,1VsigΦ

Σ0 = (Σ0,1

−
)= ( −Σ0,2

)
Θ=diag( ẽ( f 2)

ẽ( f 1)
⋯ ẽ( f N )

ẽ( f N −1) )
  3
P‐ESPRIT

Radar pulse
and white
noise

s̃= ΩAc + b̃

Γ= ΩAΓ cA
H ΩH + σ 2I

ΩA I Vsig ,2 =ΘVsig ,1Φ

  4
N‐ESPRIT

Dirac pulse
and any noise

 s̃= ΩAc + b̃

Γ=AΓ cA
H + σ 2Σ0

 A  Σ0  Σ0,2Vsig =Σ0,1VsigΦ

  5
Variant of
case 4

Whitened data
and any
noise

 s̃=Ac + Ω−1 b̃

Γ=AΓ cA
H + σ 2Σw

With  Σw =Ω−1 Σ0Ω
−H

A Σw Σ0,2
w Vsig =Σ0,1

w VsigΦ

Σw = (Σ0,1
w

−
)= ( −Σ0,2

w )
  6
Variant of
case 5
to deal with
specific pre‐
processing

In case of
sub‐band
averaging
techniques
(correlated
echoes)

s̃m
w =A1Ψ

m−1c + Ωm
−1 b̃m

ΓM =A1Γc
M A1H + σ 2ΣM

A1 ΣM Σ0,2
M Vsig =Σ0,1

M VsigΦ

ΣM = (Σ0,1
M

−
)= ( −Σ0,2

M )

Table 1. Expressions of 6 data models, the corresponding covariance matrices and signal subspaces, and the associated
solutions to Equation (17a).

Case 1 refers to the conventional ESPRIT algorithm [23] with the ideal data model. In com‐
parison with the data model in Equation (3), both the radar pulse matrix Ω and the cova‐
riance matrix of noise Σ0 reduce to the (N × N ) identity matrix. In this case, Vsig ,1 and Vsig ,2

are the two overlapping sub‐band matrices of size ((N ×1)× N ),  and they are defined as the
N −1 upper lines and the N −1 lower lines of the matrix Vsig . Case 2 in Table 1 describes the
general data model, which is supported by M‐ESPRIT presented in Section 2.2.

In comparison, Cases 3 and 4 describe intermediate solutions for data modeling. For Case 3,
the radar pulse is taken into account in the data model by matrix Ω. The data model in Case 4
is composed of time‐shifted Dirac pulses with any noise (Σ0).
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The two last data models, Cases 5 and 6, have a practical use when further preprocessing is
performed. The whitening of the data by the radar pulse in Case 5 makes it possible to recover
the situation of ideal Dirac pulses like for conventional ESPRIT, but in this case, the noise is
modified. In this case, the Case 4 can be used.

In Table 1, the sixth data model provides a way to deal with the situation of totally correlated
backscattered echoes. When the echoes are totally correlated, the full rank property of the
covariance matrix of the sources Γc  does not hold anymore, and the ESPRIT algorithm fails to
work. This situation is likely to be encountered within a multipath environment because the
source vector c in Equation (3) represents the different paths from the same original source.
To resolve this problem, the covariance matrix may be estimated by using an averaging
preprocessing technique [27]. This technique first whitens the data by the radar pulse and then
organizes the frequency bandwidth (N  samples) into M  sub‐bands of L  data each, overlap‐
ping with each another by L  −  1 samples. Consequently, the covariance matrix to be processed
by the subspace algorithm is reduced to the size L  ×  L . L  will be referred to below as the
effective frequency bandwidth; obviously, it must remain larger than the number of echoes d .
In Table 1, matrix A1 is defined as the L  first lines of the mode matrix in Equation (3). The
matrices Γc

M  and ΣM are the covariance matrices of sources and noise, respectively, after using
a preprocessing method.

Furthermore, to decrease the computational burden of the ESPRIT method, linear versions
have also been introduced by Zha [28] and Le Bastard et al. [29]. These methods use linear
operations on the data and do not require the costly eigendecomposition of the covariance
matrix. Further details are available in Refs. [28–31].

2.4. Simulations, experiments, and discussion

2.4.1. Simulation

This section illustrates with simulated data the performance of the M‐ESPRIT method, in
comparison with N‐ESPRIT, P‐ESPRIT, and the conventional ESPRIT. The performance of the
algorithms has been evaluated with respect to both the time resolution capability and the
relative root mean square error (RRMSE) on the estimated thickness. RRMSE on the estimated
thickness is defined as follows:

2
1

1 ˆ( )
(%) 100

I
ii

H H
IRRMSE

H
=

-
= ´

å (19)

where H is the true value of a parameter, and Ĥ i is the corresponding estimated value in the
ith simulation. I  is the number of Monte Carlo trials. The simulations have been carried out
for the thickness measurement of a two‐layered stratified medium. The time resolution
describes the processing capability to separate two echoes within a limited band. It is thereafter
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defined as the BΔτ product, where B is the frequency bandwidth of the radar device, and Δτ
is the smallest time shift between two echoes that the processing technique is able to distin‐
guish. In this section, different data sets have been generated by varying the thickness from 1
to 41.2 mm, such that the corresponding BΔτ product spans the interval [0.027; 1], as shown
in Figure 4.

Figure 3. RRMSE variation of the estimated thickness vs. SNR after 100 Monte Carlo simulations with two uncorrelat‐
ed echoes; BΔτ = 0.5.

The performance is established by a Monte Carlo process, which consists of I  = 100 independ‐
ent runs of algorithms. For each run, the covariance matrix was estimated from 100 independ‐
ent snapshots. To analyze the influence of the noise, the simulations were carried out with a
noise whose covariance matrix is non‐diagonal. The radar pulse e(t) was estimated in practice
by the signal backscattered from a metallic plane. For the simulations, it is modeled as a Ricker
pulse defined as the second derivative of a Gaussian pulse [31]. The parameters of the pulse
have been chosen according to the characteristics of conventional GPR: central frequency of
1.5 GHz with frequency bandwidth of 2 GHz. The data set is composed of N  =  41 equi‐spaced
frequency samples within a 2 GHz bandwidth. According to Adous [20], the dielectric
constants of the first and second layers were set to 4 and 7, respectively, and the conductivity
of the two layers was neglected. The SNR was fixed with respect to the second echo and defined
as the ratio between the power of the second echo and the noise variance.

Figure 3 shows the RRMSE variations of the estimated thickness versus SNR in the context of
overlapping uncorrelated echoes. It can be seen that the RRMSE continuously decreases with
increasing SNR for all algorithms (except for N‐ESPRIT). M‐ESPRIT allows obtaining the best
performance for all SNRs. In contrast, the algorithms N‐ESPRIT and conventional ESPRIT
provide a large and constant RRMSE meaning unrealistic biased TDE; both algorithms are not
adapted to the application because they do not take into account the radar pulse or/and the
noise metric. In this simulation, P‐ESPRIT performs better than the two latter algorithms but
is expected to reach a constant RRMSE at higher SNR, meaning an asymptotically biased TDE.
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To further analyze the performance, N‐ESPRIT was used after data whitening by the radar
pulse, referred to in Figures 3 and 4 as N‐ESPRIT with whitening. This modification of the
original algorithm proposed by Saarnisaari [24] strongly improves the performance, which
comes closer to that of M‐ESPRIT. The latter result means that it is more important to take into
account the radar pulse in the mode vector than in the noise metric.

Figure 4. RRMSE variation of the estimated thickness vs. BΔτ product after 100 Monte Carlo simulations with two
uncorrelated echoes; SNR=15dB

Figure 4 shows the RRMSE variations of the estimated thickness versus BΔτ product at
medium SNR for overlapping uncorrelated echoes. It can be seen that the RRMSE increases
continuously with decreasing BΔτ product. Like in Figure 3, M‐ESPRIT shows the best
performance followed by N‐ESPRIT with whitening. In contrast, the other algorithms (con‐
ventional ESPRIT, N‐ESPRIT, and P‐ESPRIT) show poorer performance.

2.4.2. Experiments

The performance of the algorithms was also tested in laboratory on smooth materials. A
wideband exponential tapered slot antenna (ETSA) [32] is combined with a broadband vector
network analyzer (VNA) to provide the experimental ultra‐wide band (UWB) stepped‐
frequency radar (SFR).

2.4.2.1. Experiment 1

First, the algorithms presented in the previous sections were tested on a virtual two‐layered
medium filled in with air. This virtual medium was created with the backscattered data
recorded by the SFR from the metallic plates at two different heights. The data from the virtual
two‐layered medium is then considered as the sum of the two backscattered data as follows:
s̃( f )= s̃hi( f ) + s̃hj( f ),  where s̃hi( f ) and s̃hj( f ) are the backscattered data from the metallic plate
at the heights h iand h j, respectively, as shown in Figure 5.
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First, the null correlation case is considered to provide the best performance of the algorithms.
The full correlation case will be presented in the following subsection. Thus, the null correlation
matrix Γnull was formed as the sum of the covariance matrices of each individual echo as follows:
Γnull = s̃his̃hi H + s̃hjs̃hj H . The following four heights are considered to form three two‐layered
virtual media: h 1,  h 2 =  h 1 + 2.25 cm,  h 3 =  h 1 + 4.5 cm,  h 4 =  h 1 + 6.75 cm. They span three
BΔτ products: BΔτ =0.3, BΔτ =0.6, and BΔτ =0.9,  respectively. The frequency band (2–4) GHz
is spanned with N = 201 samples. The measurements are carried out at high SNR (about 40
dB). The transient signal in the antennas is filtered with a time window, as shown in Fig‐
ure 5 (grey curves).

Figure 5. Backscattered raw data from the metallic plate at different heights, h1, h2, h3, and h4.

BΔτ = 0.3 BΔτ = 0.6 BΔτ = 0.9

ESPRIT 76.5 16.41 2.46

M‐ESPRIT 1.92 0.34 0.04

N‐ESPRIT with whitening 3.24 0.11 0.06

Table 2. Relative bias (in %) on the thickness for 3 BΔτ products with conventional ESPRIT, M‐ESPRIT, and N‐ESPRIT
with whitening.

Table 2 shows that the relative bias decreases with increasing BΔτ product. The conventional
ESPRIT algorithm provides the largest error on the thickness estimation, followed by N‐
ESPRIT and M‐ESPRIT. At high SNR, M‐ESPRIT performs better than N‐ESPRIT at small BΔτ
product; both algorithms give similar results for BΔτ beyond 0.6.
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2.4.2.2. Experiment 2

Second, SFR comprising two ETSA antennas (whose transmitter and receiver are very close to
each other, about 20 cm) is tested on a smooth PVC slab. The PVC slab has a dielectric constant
of εr = 2.97+0.015j and a thickness of 4 cm. The height of the antenna is about 70 cm (far‐field
condition). The frequency band is (1-2.6) GHz with N  = 81 samples. Thus, BΔτ product is 0.728.
In this case, the echoes are totally correlated, thus the Case 6 of the Table 1 is applied. We used
the MSSP preprocessing [8, 20] with a sub‐band size of about 90% of the whole frequency
bandwidth (L=73). The bias on the estimated thickness is 3.11%, which highlights the good
performance of the M‐ESPRIT algorithm.

3. Dispersive media

3.1. Constant‐Q data model for dispersive media

In Ref. [33], Bano modeled the frequency dependence of permittivity for radar wave propa‐
gation in constant‐Q media using Kjartansson's formulation for seismic wave propagation in
viscoelastic media [34]. This formulation is based on a complex power law of frequency for
the effective dielectric permittivity and results in a frequency‐independent quality factor Q of

the form: 1
Q = ε″

e

ε′
e

=tan π
2 (1−n) , where ε′

e and ε″
e are the real and imaginary parts of the effective

dielectric permittivity, respectively, and the index n (0<n <1) is related to Q as follows:
n = 2

π arctan(Q). The case n =1 corresponds to lossless propagation (Q =∞, i.e., no attenuation)
presented in Section 2.

A backscattered complex signal, represented as a linear combination of d  echoes, results from
probing a horizontally stratified medium, under normal incidence of plane waves. An echo
originates from the interface between two horizontally superposed layers. Each layer is
assumed to be homogeneous and having a thickness e, a constant quality factor Q (or,
equivalently, a dispersion index n), and a dielectric constant ε0. The stratified structure is said
to be DI (Depth Invariant) if Q does not vary from one layer to another; otherwise, it is called
a DV (Depth-variant) structure [35]. Considering Kjartansson's absorption–dispersion model
and substituting for each layer of a DV structure the expression of the corresponding wave‐
number k  in the equation of a plane wave exp{-2jke} the following backscattered signal is
obtained:

(1 ) / 2

1 1

( ) exp 2 tan (1 ) ( )
4
pp t

+

= =

ì üæ öæ öï ïé ù= - + - +í ýç ÷ç ÷ê úë ûè øè øï ïî þ
å Õ

lnd

m r l
r

m

l
m i

fs f c f j n b f
f

(20)

where cm =amexp{ jθm} is the frequency‐independent complex amplitude of the mth primary
echo, τl =2el / V rl  is the traveling time of the wave in the lth layer, V rl is the reference phase
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velocity at an arbitrary reference angular frequency, and b( f ) is a complex white Gaussian
noise with zero mean and variance 2σ 2. After sampling, the frequency variable f  is replaced
by f k =k f s,  where f s is the sampling period or frequency shift. The backscattered signal
becomes:

(1 )/2

11
( ) ( )    1,2,...,

nld m k
m l lm

s k c z b k k N
+

==
= P + =å (21)

where the pole of the lth layer is given by the following equation:
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f
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+ì üæ öæ öé ùï ï= - + - ç ÷í ýç ÷ê ú ç ÷ë ûè øè øï ïî þ

(22)

The product in the signal model represents the cumulative effect of the (m−1) traversed layers
of the stratified medium on the mth echo.

The assumption of a DI structure allows rewriting Equation (21) in the following compact form:

( ) ( ) ( )
1 /2
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nd k
m mm

s k c z b k
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=
= +å ( (23)

where the pole of the mth primary echo is:
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(24)

with

1

meq
m ll
T t

=
=å (25)

is the equivalent time delay of the mth echo. Note that, compared with Equation (21), the
subscript of n disappears in Equation (23). From Equations (21) and (23), it can be seen that the
DI case is a special case of the more general DV one. Under matrix form, the signal model of
both structures is expressed by the following equation:
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s = Ac + b

(26)

with the following notational definitions:
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Note that because of the DV structure, the product of the poles cannot be put in the form of

z
⌣

m as shown in Equation (24) and, consequently, mode vectors of different echoes have
different forms.

3.2. Nonlinearity compensation through predistortion linearization

Using the first and second extension theorems in [36, Section 4] yields, the following geometric
progression of data samples for a single echo is obtained [36]:

( ){ } ( ) ( ) ( ) ( ) ( ){ }1 /21 /22 1 / 2 1 2 22 2 1
1

, ,  ,  ,  
nnN n N N

k
s k cz cz cz cz

+++ - ´ - -´ -

=
= ( ( ( (% K (27)

Evidently, any Hankel data matrix constructed from the above data sequence admits Vander‐
monde decomposition. Moreover, we note that the geometric progression arises from probing
the medium with non‐uniform frequencies given by the following equation:

( ) ( ) ( ) ( )
( )2/ 11 / 21 2 2 ,  1,2,  ,  N.

nn
sv k k k f k

++é ù= - - - =ë û K (28)

Hence, v(k ) can be considered as the transfer function or the nonlinearity of a predistorter. For
a non‐dispersive medium (n =1), we point out that v(k ) becomes equal to k f s. Probing a
dispersive medium with v in lieu of f results in a linear frequency dependency of the phase.
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3.3. Depth‐invariant method

In this section, we develop interpolation‐based MPM for the problem of parameter estimation
of a DI structure characterized by the data model in Equation (23). For the DI structure, the
parameter estimation problem can now be stated as follows: Given the data sequence {s(k )}k =1

N

estimate the time delays {Tm
eq}m=1

d  and the index n (or, equivalently, the quality factor Q) of the stratified
medium.

The required data sequence is obtained by spline interpolation. This is achieved by first
determining the spline interpolant from the uniform data sequence provided by the measure‐
ment device and then evaluating the spline interpolant at non‐uniform frequencies {v(k )}k =1

N

obtained for a given value of n. Assuming a priori knowledge of n and neglecting the inter‐
polation errors, the discrete backscattered signal becomes as follows:
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Then s̃= Ãc + b with the following definitions:
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It is readily verified that the transformed mode vector ãm admits a Vandermonde structure (its

samples follow a geometric progression with  as the common ratio). As a conse‐
quence, the matrices S̃1 and S̃2, obtained from the Hankel matrix of s̃ by deleting its last and
first columns, respectively, admit the following decomposition:

1 1 2 2 1 0 2   = =S Z CZ S Z CZ Z% %% % % % % (30)

where
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As in conventional MPM, each value of  is a rank reducing number of the pencil
S̃2−λS̃1. The estimates of the index n and the time delays {Tm

eq}m=1
d  are then:

1
2

1
2

2 1

2 1

log
41 arctan

log

n

n

m

m

z
n

z
p

+

+

-

-

é ùæ ö
Âê úç ÷
è øê ú= - ê úæ ö

Áê úç ÷
ê úè øë û

(

(
(31)

( )( )
( )( )

( )

1 /22 1

1 / 2
1 / 2

log

2 2 1

n

meq
m n

n s
r

r

z
T

ff
f

p

+ -

+
+

é ù
ê úÁê ú

= -ê ú
æ öê ú- ç ÷ê úè øë û

(
(32)

Microwave Non‐Destructive Testing of Non‐Dispersive and Dispersive Media Using High‐Resolution Methods
http://dx.doi.org/10.5772/62410

233



These estimates allow determining the complex amplitudes using a LS fit whose solution is
given by the following equation:

( ) 1
.H H-

=c A A A s% % % % (33)

In practice, however, the value of n is unknown and needs to be estimated. To solve this
problem, we propose a recursive approach summarized in the following steps [37]:

1. Step 1. Use the data sequence s̃ provided by the spline interpolant at frequencies selected
according to Equation (28) to construct a Hankel matrix S̃. Start with n =1 as initial value,
which corresponds to the initial uniform data sequence provided by real measurements.

2. Step 2. Run MPM and determine n and {Tm
eq}m=1

d  by using Equations (31) and (32).

3. Step 3. Compare the estimated value of n with the value used in Step 1. If they are different,
i.e., Δn ≠0, substitute the new estimate of n in Equation (28) to obtain a new set of non‐
uniform frequencies at which the spline interpolant is to be evaluated. Repeat Steps 1–3
until convergence, i.e., Δn =0. This termination condition might never be satisfied for noisy
data, and so it will be replaced by a predefined practical threshold, e.g., 10−6.

4. Step 4. Use the estimates of n and {Tm
eq}m=1

d  obtained in the last iteration to estimate the
complex amplitudes using Equation (33).

3.4. Depth‐variant method

This section is concerned with the problem of parameter estimation of a DV structure charac‐
terized by the data model in Equation (21). The proposed algorithm can be seen as an extension
or a generalization of the interpolation‐based MPM described in the above section to a DV data
model. It first unifies the form of the mode vectors through an equivalent‐medium approxi‐
mation. Indeed, the forward Q filtering effect experienced by each of the dechoes of a DV Q
structure in a horizontally stratified earth can be approximated by the effect of a one‐layered
medium characterized by its equivalent parameters  (Tm

eq,  nm
eq) Tm

eq is given by Equation (25),

and  nm
eq is given by the following equation [31]:
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The equivalent‐medium approximation then allows writing:
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The above approximation becomes exact for a DI structure, i.e., ẑm = z
⌣

m. Note also that upon
setting  {nl =1}l=1

d , the above model reduces to the undamped exponential model. Second, it
uses a projection scheme to strip the mode vectors alternately. The DV parameter estimation
problem can be stated as follows: Given the data sequence {s(k )}k =1

N  estimate the time delays {τl}l=1
d

and the dispersion indices {nl}l=1
d  of the stratified medium.

The proposed algorithm, called recursive and alternately projected MPM (RAP‐MPM), is
developed for the case of two echoes [38]. The extension for d >2 is straightforward; however,
it requires more effort and notations and is not considered in this work. Suppose, for now, that
n1

eq and n2
eq are known (n1

eq is practically equal to n1) and consider the application of the

nonlinear transformation in Equation (28) to the uniform frequencies. Setting n =n1
eq in ν(k)  

and probing the medium with {νk }1
N  give rise to the following discrete backscattered signal:
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Nevertheless, from a practical point of view, as it is impossible to probe the medium with non‐
uniform frequencies, the data sequence in Equation (38) is obtained, as for interpolation‐based
MPM, by cubic spline interpolation. Neglecting the interpolation errors, the data model in
matrix form becomes:

= +s Ac b% %% (39)

with the following notational definitions:
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It is readily verified from the equation of ã1 that the transformed mode vector of the first echo
admits a Vandermonde structure, and so its data matrix S̃1 becomes of rank one. Consequently,
the matrices S̃11 and S̃12 admit the following decomposition:
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The corresponding matrix pencil can then be written as follows:

( )1 212 1
12 11 1 11 1 21ˆλ λ
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c
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As in conventional MPM, the value of λ = ẑ1
2

(1+n1
eq)/2 − 1  reduces the rank of the pencil in Equa‐

tion (41) to zero and ought to be a GEV of the total matrix pair containing both echoes.
However, due to the DV structure of the dispersive medium, the Vandermonde structure can
be restored for one mode vector at a time. In such a case, estimating λ as the GEV of the total
matrix pair is valid provided that the contribution of other echoes is filtered out after each
restoration. Therefore, λ will be first estimated coarsely as a GEV of the total matrix pair. The
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estimation will be refined in later steps of the algorithm. The estimates of n1
eq and T1

eq can then
be deduced from λ as follows:
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Note that we know a rough estimate of the pole, we can filter out the contribution of the
associated mode vector to the Hankel data matrix S̃= S̃1+S̃2 through an orthogonal projection
as in the work of Chen et al. [39]. However, contrary to Chen et al. [39] that used a QR
decomposition of the known mode vector to determine the orthogonal subspace, we carry out
a singular value decomposition of the Hankel data matrix constructed from ã1 as
S̃1 =U1Σ1V1

H . Using MATLAB notation, the orthogonal complement is then given by
U1

orth =U1( : , rank(Σ1) + 1 :end) The definition of U1
orth  reflects the fact that the rank of S̃1 or,

equivalently, Σ1 would be overestimated, unless ã1 admits a Vandermonde structure guaran‐
teed by setting n =n1

eq in Equation (28). More importantly, such a definition of U1
orth  enables,

once n1
eq and T1

eq are estimated, to filter out the contribution of ã1 even if the rank is overesti‐
mated or, equivalently, n ≠n1

eq. To summarize, the Vandermonde structure of the mode vector
is essential only to parameter estimation as seen in Equations (42) and (43) but not to filtering
as shown by the definition of the orthogonal complement. Left multiplying S̃ by the conjugate
transpose of U1

orth  gives S̃pr:

( ) ( ) ( ) ( )H H
1 2 2

Hpr ort ort ort
1 1 1
h h h= = =+SS U US S SU% % % % % (44)

As pointed out in Ref. [40], the multiplication from the left destroys the shift‐invariance
property in the column space but maintains it in the row space. This means that S̃pr can still
be used to estimate the parameters of the second echo. When the processed data sequence is
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noisy, the orthogonal projection is only an approximation due to the perturbation introduced
by noise in the signal subspace, and thus only the principal left singular vectors are to be
considered when determining the orthogonal complement. The number of these vectors must
be chosen in a way that ensures the best orthogonal projection on the one hand and maximum
filtering of the first mode vector on the other hand. Obviously, these requirements are
contradictory; orthogonal projection improves with decreasing number of singular vectors
because the largest singular values are less affected by noise, while the filtering effect improves
with increasing number of vectors. The optimum number of principal singular vectors as to
minimizing estimation errors is hence found heuristically to be two, i.e.,
U1

orth =U1( : , 2 + 1 :end). Similar to Equation (38), setting n =n2
eq in Equation (28) restores the

Vandermonde structure, only this time for the second mode vector. The estimates of n2
eq and

T2
eq are then determined from the GEV of the matrix pair S̃2

pr, S̃1
pr  using Equations (42) and

(43). The following steps of this alternately projected approach are to filter out the contribution
of the second mode vector and re‐estimate the parameters of the first and so on until practical
convergence is achieved. The estimated values of {nm

eq}m=1
d  and {Tm}m=1

d  then allow determining
the complex amplitudes by means of a LS fit having the following solution:

H 1 H( ) .-=c A A A s% % % % (45)

Note that the development of the algorithm has till now been based on the a priori knowledge
of n1

eq and  n2
eq. In practice, however, the values of the indices are unknown and need to be

estimated. To solve this problem, we propose a recursive scheme of the previously described
approach. The RAP-MPM (Recursive and Alternately Projected Matrix Pencil Method) can
now be summarized in the following steps for the case of d =2 [38]:

Step 1. Form a Hankel data matrix S̃ from a data sequence corresponding to frequencies given
in Equation (28). If the model order M <d  (d is known), left multiply S̃ by the conjugate
transpose of  Um

orth . Start with M =d   and n =1 as initial values, which correspond to the exact
uniform data sequence provided by real measurements.

Step 2. Run MPM and determine {nm
eq}m=1

d  and {Tm
eq}m=1

d  by using Equations (42) and (43).

Step 3. Compare the estimated value of nm
eq with the value used in step 1. If they are different,

i.e., Δn ≠0 substitute the new estimate of nm
eq in Equation (28) to obtain a new set of non‐uniform

frequencies at which the spline interpolant is to be evaluated. Repeat steps 1, 2 and 3 until
convergence, i.e., Δn =0. This termination condition might never be satisfied for noisy data,
and so it will be replaced by a predefined practical threshold, e.g., 10−6
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Step 4. Retain the estimates of nm
eq and Tm

eq of the last iteration and use them each time Um
orth  is

to be determined from the mode vector ãm for a given value of n.

Step 5. Set the model order M  to d −1 and repeat steps 1 to 4 until the relative change of the
estimates between two consecutive alternated projections is smaller than a predefined value.
Two to three projections were found to be sufficient.

Step 6. Use the estimates of {nm
eq}m=1

d  and {Tm}m=1
d  to determine the complex amplitudes using

Equation (45).

Figure 6. MSE of n1 and n2 versus bandwidth.

Figure 7. MSE of τ1 and τ2 versus bandwidth.
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3.5. Performance evaluation

This section first examines the performance of both algorithms for two simulated backscattered
echoes of a DI structure under scenarios of varying bandwidth, SNR, andBτ2. Then, it examines
the performance of RAP‐MPM in the case of a DV structure. We consider a reference frequency
f r =1.5 GHz and a frequency shift f s =10 MHz. The frequency‐independent complex ampli‐

tudes are  c1 =0.5exp( j0.7) and  c2 =1−c1
2. Unless otherwise defined, SNR represents the average

SNR over the data interval. The convergence threshold for both algorithms is fixed at 10−6, and
the number of alternate projections for RAP‐MPM is set to three. For all simulations, the
estimates of n and τ are computed for 500 independent trials. The mean squared errors (MSEs)
are compared with the Cramer‐Rao lower bounds (CRLBs).

3.5.1. MSE versus bandwidth

This simulation is concerned with the ability of the developed algorithms to handle wideband
signals. The bandwidth is varied symmetrically about f r. Figures 6 and 7 show the MSEs of
the parameters for two (n1 =n2 =0.83, τ1 = 3.2 ns,  τ2 = 1.2 ns and SNR = 30 dB) backscattered
echoes along with the corresponding CRLBs as a function of bandwidth. It can be seen that
the MSEs of both algorithms are comparable and mirror the CRLB as the bandwidth varies.
This is in contrast with the behavior of conventional algorithms where their MSEs deviate from
the CRLB beyond a certain bandwidth. Hence, the obtained results prove that the developed
algorithms do not suffer from the bandwidth limitation of conventional estimation methods.
A similar conclusion can be drawn for the DV structure
(n1 =0.87, n2 =0.83,  τ1 = 3.2 ns,  τ2 = 1.2 ns and SNR = 30 dB), as Figures 8 and 9 show that the
estimates of RAP‐MPM have MSEs that decrease as bandwidth increases.

Figure 8. RAP‐MPM MSEs of n1 and n2 versus bandwidth.
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Figure 9. RAP‐MPM MSEs of τ1 and τ2 versus bandwidth.

3.5.2. MSE versus SNR

This simulation investigates the robustness of the algorithms with respect to noise. Fig‐
ures 10 and 11 depict the MSEs of the parameters for two backscattered echoes
(n1 =n2 =0.83, τ1 = 3.2 ns,  τ2 = 1.2 ns, and BW = 2 GHz) along with the corresponding CRLBs
as a function of SNR. It can be seen that both algorithms are unbiased and robust to noise, as
their MSEs approach the CRLBs even for low SNRs.

For the DV structure (  n1 =0.87,  n2 =0.83, τ1 =3.2 ns, τ2 =1.2 ns , and BW = 2 GHz), the MSEs of
the indices and the time delays approach their CRLBs starting, respectively, from
SNR = 5 and 10 dB as shown in Figures 12 and 13.

Figure 10. MSE of n1 and n2 versus SNR.

Microwave Non‐Destructive Testing of Non‐Dispersive and Dispersive Media Using High‐Resolution Methods
http://dx.doi.org/10.5772/62410

241



Figure 11. MSE of τ1 and τ2 versus SNR.

Figure 12. RAP‐MPM MSEs of n1 and n2 versus SNR.

Figure 13. RAP‐MPM MSEs of τ1 and τ2 versus SNR.
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3.6. RRMSE versus Bτ2

This simulation examines the resolution capability of the algorithms by varying τ2  at
BW = 2 GHz so that 0.2≤Bτ2≤2. Figure 14 shows the RRMSE of the estimates of τ2  as a function
of Bτ2   along with the CRLB and a 5% error threshold for n1 =n2 =0.83, τ1 = 3.2 ns, and
SNR = 30 dB. We note here that defining SNR with respect to both echoes leads to a drastic
decrease in the SNR of the second echo as Bτ2   increases. SNR is hence fixed with respect to
the second echo. The obtained results illustrate that the algorithms afford less than 5% error
for  Bτ2 <1, which indicates their high‐resolution capability.

Figure 14. The RRMSE versus Bτ2.

4. Conclusion

This chapter deals with model‐based high‐resolution signal processing algorithms applied to
non‐dispersive and dispersive GPR data. For non‐dispersive data, a modified version of the
conventional ESPRIT algorithm, called M‐ESPRIT, is presented for estimating the time delays.
M‐ESPRIT allows taking the radar pulse and any noise signature into account and improves
the time resolution of the GPR for thin pavement thickness estimation with conventional GPR
of 2 GHz bandwidth. Contrary to the other versions of ESPRIT, M‐ESPRIT enables processing
raw data directly without any preprocessing. Simulation and experimental results showed that
M‐ESPRIT provides better performance. For dispersive data, a wideband extension of the
matrix pencil method to the joint parameter estimation of dispersive media obeying the
constant‐Q model is presented. The first and second extension theorems were used to derive
a data sequence that enables the singular extension of the Hankel data matrix and, as a
consequence, restores its effective rank. The desired data sequence, however, was found to
correspond to a set of non‐uniform frequencies which are impossible to acquire from real
measurements. To solve this problem, two MPM‐based algorithms were then developed. IB‐
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MPM and RAP‐MPM are based on interpolating the data sequence to reach the desired
Vandermonde structure of the mode matrix. To handle the DV structure, RAP‐MPM makes
use of the equivalent medium approximation to unify the form of the mode vectors and then
uses a projection scheme to strip them alternately. The algorithms were subjected to simulation
scenarios of varying bandwidth, SNR, and Bτ2. The results confirmed the wideband attribute
of the algorithms, their unbiasedness over the considered SNR range, robustness to noise, rapid
convergence, and high‐resolution capability.
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