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Abstract

Understanding  the  patterns  of  land  degradation  and  desertification  to  develop
mitigation  strategies  requires  identification  of  methods  for  accurate  and  spatially
explicit assessment and monitoring. Remote sensing data offer the possibility to develop
strategies that outline degradation and desertification. The free access policy on satellite
imagery enables a new pathway to measure, assess, and monitor land degradation using
indicators derived from multispectral satellite data. This chapter seeks to explore a
methodology for  land degradation and desertification assessment  and monitoring,
based on freely available multispectral satellite data. The method identifies net primary
productivity (NPP) and canopy cover (CC) as indicators of degradation. The trajectories
of these indicators show patterns and trends over time. The methodological develop‐
ment presented here is intended to be a tool for regional landscape monitoring and
assessment, enabling the formulation of corrective action plans. This methodology was
tested in a semi‐deciduous ecosystem in the southeast of Mexico.

Keywords: land degradation, desertification, satellite data, assessment, monitoring

1. Introduction

Land degradation and desertification not only contribute to the effects of climate change but
also to the loss of productivity, biodiversity, and functionality of forest landscapes. Land use
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change and associated processes are responsible for around 10% of net global carbon emis‐
sions1. Land degradation and desertification understood as the loss of productive capacity of
the land [1] affect ecosystem productivity, socioeconomic problems, and food security. The
UnitedNations through the United Nations Convention to Combat Desertification (UNCCD)
seeks to identify and define strategies that support sustainable regional development to reverse
and prevent desertification and land degradation. The UNCCD works to help countries to
improve living conditions of people in drylands and to maintain and restore land and soil
productivity.

One of the main issues in the land degradation and desertification programs is the requirement
of robust methods to quantify degradation [2]. The fundamental challenge is providing a
reliable account of it, and remote sensor techniques should be reliable and continuous to be a
source of information [3–5]. To develop a regional and local mechanism to reverse and prevent
degradation, it is imperative then to define monitoring and assessing strategies. The constant
and exponential increase of remote sensing technologies offers different options to evaluate
phenomena such as land degradation. Organizations dedicated to the production of new
remote sensing technologies have implemented new satellite sensors with higher spatial
resolution (e.g. IKONOS‐2, QuickBird‐2,SPOT‐5) which indicates a new age of terrestrial
observation and digital mapping [2, 6–9].

Satellite imagery has been taking information from the Earth’s surface for last 40 years in a
continuous and reliable way (i.e. Landsat program). Multispectral satellite imagery such as
Landsat has opened new avenues for understanding ecological and land cover dynamics [10].
Landsat mission has been collecting imagery since 1972, providing a record of the status and
dynamics of the Earth [11, 12]. Changes to policy data in 2008 make free and available the
Landsat archive to any user [13]. The free distribution policy increased the supply of imagery
dramatically; thus, the use and analysis of the Landsat archive have increased the opportunities
to research in a variety of disciplines [10].

Optical remote sensing has been improved by spatial resolution (pixel size), spectral resolution
(number of wavebands), radiometric resolution (sensibility to detect radiation changes), and
temporal resolution (data acquisition frequency), which means getting capabilities of meas‐
urement in quasi‐real‐time [14–17]. This scenario opens up the possibility to implement
powerful monitoring strategies by taking advantage of the free database policies that many
entities have today. Mexico is the perfect example; almost all spatial information is freely
available through different government websites. Therefore, some indicators related to
degradation are available to be estimated by using remote sensing and ground data. The
symbols used are capable, through trajectory or time series analysis, of detecting and mapping
out changes over time.

The chapter examines the capabilities of freely available remote sensing, combined with field
data, in deriving some degradation indicators. The main idea is the construction of a platform
for regional land degradation monitoring and assessment. One of the main assumptions of

1 IPCC (2013) Intergovernmental Panel on Climate Change. The Physical Science Basis. Contribution of Working Group I
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
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this approach is that it can be replicated in different regions of the developing world. Addi‐
tionally, the cost of applications is minimal if remote sensing and field data are available.

2. Assessment of land degradation and desertification approaches

Land degradation, as has been pointed out by the UNCDD, is a global development and
environment issue that affects mostly developing countries regarding the economic impact
and food security [18]. The assessment and monitoring frameworks developed to provide
information about land degradation have been very valuable; however, there are some
opportunities to improve and test methodologies according to regional and country needs.

Land degradation and desertification are concepts that are strongly related. Land degradation
can be defined as the loss or reduction of the biological production of farmlands, grasslands,
forests, and wooded areas and is the result of intense land use or a process (or a combination
of the process), including those coming from human actions. It is the outcome of the mismatch
between land quality and the intensity of activity part of the actual land use.

According to the UNCCD, land degradation is a complex set of processes of the impoverish‐
ment of terrestrial ecosystem, either natural or human‐induced, that causes the land to be no
longer able to sustain its economic functions or the original ecological functions correctly [18].
The consequences of land degradation are land productivity reduction, socio‐economic
problems, including uncertainty in food security, migration, and damage to ecosystems.

Desertification, on the other hand, is defined as land degradation occurring in arid‐semiarid
and dry sub‐humid areas caused by a combination of climatic factors and human activities.
Therefore, only land degradation occurring in drylands is considered as part of a desertifica‐
tion process [19]. As many climatic scenarios have to point out, many areas across the world
are vulnerable to climate change because it is going to accelerate the degradation process.

2.1. The global assessment of human-induced soil degradation (GLASOD)

This project was one of the first attempts to assess the state of degradation of soil from a global
perspective [20]. The world map produced by GLASOD showed the status of human‐induced
soil degradation and was based mainly on expert judgment and reported degrees of land
degradation that also included the notion of resilience, which was deemed essential for land
management decisions. Although the GLASOD project had some criticism about the methods
used, it was the only global assessment available to scientists, decision‐makers, and land
managers to date [18].

2.2. Land degradation assessment in drylands (LADA)

The LADA approach was developed based on the assumption that human activities on the
land are the main drivers causing land degradation [21]. Therefore, defining and mapping of
different land use systems are very crucial activities for underpinning the assessment and its
implementation. The entire LADA approach gives consideration to the relationships between
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the causes and effects that lead to degradation. The LADA project operates by using a variety
of technologies, from satellite images to digital databases, to soil and vegetation sampling, and
the examination of the linkages between both biophysical and socio‐economic issues. Global
assessment efforts list net primary productivity (NPP), rainfall use efficiency (RUE), aridity
index (AI), rainfall variability (RV), and erosion risk (ER) as the leading indicators of land
degradation [20].

The global land degradation assessment (GLADA) was the global component of LADA.
GLADA aims at providing a baseline for the assessment of global trends in land degradation
using a range of scale‐appropriate indicators, many of which are collected through satellite
sensors and processing satellite data and existing global databases.

2.3. Remote sensing as a tool for land degradation and desertification assessments

Methods for monitoring current state and changes of landscapes use the advantages and po‐
tential of satellite‐borne or airborne remote sensing imagery. Most work has focused on
identifying the change in detection of decreases in land cover rather than identifying the in‐
versed process [22]. Considerable amount of studies explore the capabilities of remote sens‐
ing on different monitoring applications and different remote sensing approaches and data
[17, 23–26].

Remote sensing applications can be summarized mainly in four categories that include: cover
classification, estimation of structures, change detection, and modeling [27]. Remote sensing
has the potential to be decidedly instrumental in the assessment of degradation processes at a
much lower cost than any other method [28, 29]. Assessment (i.e. measurement) and moni‐
toring through remote sensing offer a series of advantages such as consistency of data, fairly
near real‐time reporting, and a source for having spatially explicit data [30].

Although there are several approaches to describe land cover changes using remote sensing
technology, forest inventory and limited sampling of degradation on the ground are funda‐
mental to its quantification [31–36]. The methods used are unique to each location and strongly
dependent on how its components are clearly identified and responsive to accurate measure‐
ment, and how country requirements apply to these methods.

Remote sensing is a suitable tool for the estimation of biomass for large areas, usually at
regional or national scales, where field data are scarce [34]. There is an abundance of liter‐
ature that describes the virtues and capabilities of remote sensing‐based methods for for‐
est monitoring assessments [17, 22, 23, 37]. The continuing advances in remote sensing
science and technology and the enormous amount of data these platforms and sensors
produce daily provide a promising foundation to underpin any degradation monitoring
program.

The possibility of integration of optical and multispectral remote sensing data to active sensors
such as LiDAR (light detection and ranging) and RADAR (radio detection and ranging),
combined with ground data, has gained a significant relevance and a high potential for
contributing to the design of degradation assessment and monitoring methodologies.

Land Degradation and Desertification - a Global Crisis6



Direct detection of degradation processes, for example in forest landscapes, relates area
changes to, and focuses on, forest canopy damage. These changes in forest attributes occurring
during a period of time can be detected using information from natural forest resources
inventories (FRI) and some from remote sensing [23, 30, 38]. Medium spatial resolution satellite
remote sensing data such as Landsat Thematic Mapper (TM) and SPOT have proven capable
of obtaining regional‐scale forest variables [39]. Indirect approaches focus on the spatial
distribution and the effects that the evolution of human infrastructure has had on the degra‐
dation of nearby areas. Often, these “indirect” factors are used as “proxies” for newly degraded
areas.

3. Methodology

3.1. Mapping regional trend indicators with satellite data

Any operational monitoring assessment needs to establish as starting a clear understanding
of what are the relevant and regionally significant indicators that are used as components of
the analysis. This is followed by what will be the practical impact of the utilization of these
parameters in the actual implementation of measuring and monitoring methods. Part of the
methodological approach presented here was developed by the first author during his doctoral
program and was focused on forest degradation. However, the main components were
translated to the land degradation and desertification monitoring requirements as both
phenomena are intimately linked.

Within the UNCCD, it is necessary to understand what are the drivers and activities causing
degradation [30]. According to project needs and based on the literature reviewed, canopy
cover and net primary productivity are considered as the leading indicators within this
methodological framework. These variables are thus proposed as indicators of degradation
(mainly forest landscapes) in practice. Although it is acknowledged that other indicators
(biodiversity, disturbances, and fragmentation) are also variables that may merit to be
considered, together with those above, as indicators of degradation, are not regarded as part
of this chapter. However, the limitations of time and the scope of a rapid assessment do not
stretch to encompass them in this study.

3.1.1. Proposed indicators

3.1.1.1. Canopy cover

Canopy cover is recognized as a significant biophysical and structural attribute of the forest
[40]. It affects terrestrial energy and water exchanges, photosynthesis and transpiration, net
primary production, and carbon and nutrient fluxes, and is the key element for defining forests
in international and national accords [41]. Canopy cover provides an attribute that is measur‐
able and can be used to monitor and retrieve site‐specific histories of different stages within
the forest landscape dynamics [41].
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Canopy cover has already been used as an indicator to monitor and map forest degradation
in various contexts [32, 35]. Some studies [42] evaluated forest degradation based on canopy
closure classes, namely non‐degraded (>70%), moderately degraded (40–70%), degraded (10–
40%), and severely degraded (<10%). Another study [43] assessed forest degradation using
canopy disturbance as a result of gaps produced by logging, road construction, and skid trails
as an indication of forest degradation. Another approach suggested for mapping forest
degradation and deforestation was the use of canopy cover combined with spectral mixture
analysis, normalized difference fraction index, and a decision tree classification [44].

3.1.1.2. Net primary productivity

NPP determines the rate of atmospheric carbon sequestration and storage by vegetation [45,
46]. NPP has been used previously as an indicator of ecosystems’ decline [47–49]. These
approaches open the door to the possibility of using NPP as both a baseline and indicator of
forest degradation [50], based on the assumptions that losses of canopy cover will affect the
capacity of the forest to fix carbon and reduce NPP rates.

NPP estimations are regularly based on the light use efficiency (LUE) theory [51]. The LUE
theory is estimated on two broad assumptions. First, NPP is related to the absorbed photo‐
synthetically active radiation, APAR, where LUE determines the amount of dry matter
produced per unit of APAR. Second, environmental stresses such as low temperature or water
shortage have an adverse impact over LUE [52, 53]. Production efficiency models (PEM) are
developed from the LUE theory. They require inputs of meteorological data and take advant‐
age of available satellite data to derive the fraction of absorbed photosynthetically active
radiation, fPAR [53]. Examples of production efficiency models include the CASA model
(Carnegie‐Ames‐Stanford approach) [54], C‐Fix [55–57], and MOD17 [48] used for monitoring
NPP at regional and global scale from satellite remote sensing data.

Net primary productivity is employed by the global land degradation assessment in Drylands
(LADA) project [21], where NPP is highly relevant to the assessment of degradation. NPP can
be readily used as a direct indicator of the condition and trend of changes in the state of
ecosystems over time, whereby the decrease in NPP over time would signal the degradation
of ecosystems. Through the LADA project conducted by the FAO [18] and within the UNCCD
framework [58], mapped out land degradation at national, regional, and local scales in Ethiopia
using NPP as one of the major indicators in their studies.

3.1.2. Trajectory analysis and change detection

One of the most frequent uses of remote sensing is change detection [59]. The stock pile of
optical satellite imagery freely available (e.g. Landsat program) [13] offers opportunities for
the reconstruction and understanding of landscape dynamics. Direct comparison of pairs of
images (bi‐temporal analysis) is perhaps the most common approach to change detection
[60].

Although many change detection methods have been developed [61–63], the question of how
to reliably map land‐use change remains a central challenge. Land‐use change (LUC) can result
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in both land cover conversions and land cover modifications, but remote sensing mainly
focuses on mapping the former. However, land cover changes may be more prevalent,
meaningful, and significant to forest degradation than conversions. Forest degradation is more
likely to be the reflection of a land cover change with its particular degree of intensity and
duration.

Temporal trajectory analysis is understood in this context as the analysis of the sequence of
changes in detection in every pixel of the image part of a stock pile of imagery over a continuous
timescale. This type of analysis has been shown particularly useful in characterizing land
ecosystem dynamics since it exploits the multi‐temporal sequence of images to reveal temporal
patterns over several temporal scales [62, 64, 65].

Trajectory analysis from multispectral and optical remote sensing is commonly employed for
detecting changes of a set of forest degradation indicator variables over time that can be readily
computed from satellite images and that are associated with the state and condition of forests
[66, 67].

Examples from the literature have proved the value of the trajectory analysis in forest assess‐
ments, especially those that take advantage of the stock pile of Landsat imagery [61, 68, 69].
This methodology incorporates this type of analysis as a part of the degradation assessment.

3.1.2.1. Bi-temporal analysis

The bi‐temporal analysis is perhaps the most used method to perform change detection on
remote sensing satellite imagery [70]. The bi‐temporal change detection methods range from
simple image differencing methods to statistically based methods [71]. Change detection
methods have been widely used to identify changes in classes (e.g. land cover classification)
or the difference between a pair of images (image differencing) [70].

3.2. Land degradation and desertification in Mexico

Mexico has the compromise to present a national report about land degradation and deserti‐
fication before the UNCDD. According to official reports, 90.7% of land in the country suffers
some degree of degradation [72]. On the other hand, desertification affects almost 60% of the
land in the country. Degradation and desertification processes in Mexico are complex issues
related to poverty and sustainability, and they are affecting all the ecosystems within the
country.

3.2.1. Study area: Yucatan Peninsula, Mexico

Mexico, within its ecological and climatic conditions, offers an excellent site for experimenta‐
tion and application of this methodology. Although the method can be implemented in any
part of the country, it has been decided to use a region from the southeast of Mexico, in the
Yucatan Peninsula as the experimental site.

The methodological framework for land degradation assessment in drylands [21] is used to
support methods to evaluate degradation within a tropical dry forest area located in the

The Assessment of Land Degradation and Desertification in Mexico: Mapping Regional Trend Indicators with...
http://dx.doi.org/10.5772/64241

9



Yucatan peninsula, Mexico. Landsat imagery was used as the main source to estimate indica‐
tors such as canopy cover (CC) and net primary productivity (NPP). Use of Landsat imagery
enables to see changes over time [68] within a pixel 30 m resolution over 28 years (1986–2014).
The methods enabled selection of priority areas and spatial patterns. The MENDA‐1 water‐
shed [73] in the Yucatan Peninsula, Mexico, was selected as experimental area (Figure 1).

Figure 1. Study area.

The integration of the methodology is described as follows:

Selection of the indicators to monitor and assess degradation was the first step. Each one of
the indicators selected was estimated using remote sensing as the primary source of data input.
Because of the characteristics and free availability of Landsat archive [13], Landsat imagery is
suggested as the major contribution. The indicators were estimated for the period of time
required according to particular needs. Although in many tropical regions cloud cover is a
significant issue, the probability of acquiring at least one cloud‐free or reasonably cloud‐free
Landsat image per season is relatively high [74]. At least one Landsat image per season ensures
continuity in historical estimations of the forest landscape dynamics based on Landsat archive.

Very high‐resolution satellite imagery or LiDAR data is recommended as auxiliary data to
validate calculations. Another data set crucial for the implementation of this framework was
forest inventory databases. Many developing countries (e.g. Mexico) carried out periodical

Land Degradation and Desertification - a Global Crisis10



forest inventories on a regional scale. Forest inventory data were the base for knowing the
actual state of the forest and natural resources.

Once each one of the indicators has been calculated, the selection of a strategy for monitoring
changes has to be made. As described before, the methods for change detection can be a time
series approach (in the case of high frequency of data) or a bi‐temporal change detection
approach (in the case of low frequency of data). The implementation of this step allows
identifying spatial and temporal patterns of the indicators used.

The establishment of a baseline and the definition of the threshold for comparisons was the
next step toward the final integration. This was done using field data or high‐resolution
auxiliary imagery available (e.g. Google Earth™). The comparison of the spatial and temporal
trends in the baseline scenario allowed identification of degraded areas regarding the indica‐
tors used.

3.2.2. Data preparation

3.2.2.1. Landsat ecosystem disturbance adaptive processing system

Landsat enhanced thematic mapper and thematic sensors imagery was used as the primary
source of information. The images were obtained from the USGS website (http://
glovis.usgs.gov). In the study area, like other tropical regions, cloud cover limited the choice
of imagery available per year. In total, 155 Landsat scenes were downloaded. The images were
in L1T geometrically corrected format and atmospherically corrected using the 6S radiative
transfer approach [75].

Figure 2. Satellite data preparation flow.

Landsat 7 ETM+ images acquired with the SLC‐off (i.e., SLC failure in 2003) were adjusted
using the algorithm Geostatistical Neighbor Spatial Pixel Interpolator, GNSPI [76]. The GNSPI
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can recover efficiently the pixels missing due to SLC failure, and its outputs are suitable for
forest monitoring applications [77]. Landsat imagery was separated according to the date taken
(i.e. wet or dry season), and an initial cloud filter was applied. Imagery with more than 10%
of cloud cover was avoided for the analysis to focus on high‐quality imagery (cloud free).
Figure 2 shows in a very generic way the pre‐processing process.

3.2.3. Forest degradation indicators estimation

3.2.3.1. Canopy cover

The CLASlite™ image processing system [78] was used to develop the fractional cover and
forest cover maps for the Landsat dates. CLASlite™ produces photosynthetic vegetation,
non‐photosynthetic vegetation and, bare soil layers from the core process within CLAS‐
Lite™ called Automated Monte Carlo Unmixed Process (AutoMCU). These outputs provide
a quantitative analysis of the fractional or percentage cover (0–100%) of live and dead vege‐
tation, and bare substrate within each Landsat pixel [78]. The Auto MCU submodel is based
on a probabilistic algorithm designed for savanna, woodland, and shrubland ecosystems,
and later modified for the tropical forest [79, 80].

Photosynthetic vegetation layers (0–100%) were used as an equivalent of field forest cover (0–
100%) for subsequent analysis. To validate this assumption, the direct relationship between
the PV and CC was measured. Canopy cover derived from LiDAR data was used to support
the PV layers. CC LiDAR was estimated using the ratio of the pulse returned from the upper
layer of tree crown (sum of all pulses > pre‐defined threshold) to total returns. Hence

nhCC
n

= (1)

where

CC: canopy cover

nh: ∑all returns > predefined height

n: total returns.

The predefined height was set to 1.5 m. Range between 1.0 and 2.0 m is appropriate and has
no substantial variation in the correlation between canopy cover measured in the field and the
one estimated from Lidar data [81, 82].

Validation of the estimated Landsat CC was achieved by computing a residual mean of squares
(RMS) of differences between Landsat CC and the Lidar CC product. This comparison was
made possible by aggregating Lidar CC to 30 m to correspond to Landsat products spatially.

NPP in this study was calculated according to the theory of light use efficiency (LUE) as
follows [46, 83]:
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NPP fPAR PARe= × × (2)

where

PAR is photosynthetically active radiation (MJ/(m2 month))

fPAR is the fraction of PAR absorbed by vegetation canopy,

ε is the light use efficiency coefficient (g of C/MJ) and includes the plant respiration costs [84].

The light use efficient coefficient ε was derived following the MODIS‐GPP approach [85] where
ε is calculated using two factors: the biome‐specific maximum conversion efficiency εmax, and
the effect of temperature f(T) and water on plant photosynthesis f(W) [83]. The εmax used in this
study was 1.044 g of C/MJ according to the lookup tables [84].

f(T) was estimated on a monthly basis using the equation developed for the terrestrial ecosys‐
tem model (TEM) [86], as:

( ) 2

( )( )
( )( ) ( )

T Tmin T Tmaxf T
T Tmin T Tmax T Topt

- -
=

- - - - (3)

where T is the atmospheric temperature (°C); and Tmin, Tmax, and Topt are the minimum,
maximum, and optimal temperatures for photosynthetic activities, respectively. Values of 2°C,
39°C, and 26°C were used for Tmin, Tmax, and Topt, respectively [47, 87].

Figure 3. Daily solar radiation from the meteorological network (www.inifap.gob.mx).
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The effect of water on plant photosynthesis f(W) was derived according to the algorithm
suggested by Xiao et al. [88].

max

1( )
1

LSWIf W
LSWI
+

=
+ (4)

nir swir

nir swir

LSWI r r
r r

-
=

+ (5)

where LSWI is the land surface water index, and LSWImax is the maximum LSWI within the
plant growing season. ρnir and ρswir are the surface reflectance of the NIR and MIR bands in
Landsat ETM+ images.

Meteorological data from the national meteorological network from the National Institute of
Forestry, Agriculture, and Livestock Research (INIFAP) were used as inputs for the NPP
calculations (Figure 3).

3.2.4. Trajectory analysis

Trajectory analysis and change detection on degradation indicators were performed using two
different approaches: a time series and a bi‐temporal approach. The BFAST [63] model was
selected as the time series analysis approach. Canopy cover was the only indicator that went
into the BFAST time series analysis because of the high frequency of data available. Change
detection on above‐ground biomass and NPP were performed using a bi‐temporal approach
as a result of the low frequency in data available. Next, the implementation of both methods
is described.

3.2.4.1. BFAST

The BFAST and BFAST monitor algorithms were applied as a trajectory analysis strategy.
Canopy cover derived from Landsat from the period 1988 to 2014 was used to implement the
time series analysis. The algorithms were implemented using the BfastSpatial package for R
software available at http://github.com/dutri001/bfastSpatial [64, 89]. The steps followed to
implement BfastSpatial were (a) pre‐processing of surface reflectance data, (b) inventorying
and preparing data for analysis, and (c) analysis and formatting of change detection results.

3.2.4.2. Bi-temporal change detection

Change detection on a bi‐temporal basis was implemented in NPP layers. The imaging
differencing method allowed direct comparison between images and was used for two reasons:
it is straightforward and allows an easy interpretation of the results [70]. The image differenc‐
ing method consisted of precisely co‐registered multi‐temporal images used to produce a
residual image to represent changes. Although the USGS service provides Landsat imagery as

Land Degradation and Desertification - a Global Crisis14



LT1 (geometrically corrected), an automatic image registration was performed for every
change detection process.

The difference between layers was measured directly from values of the pixel image. The
expression of image differencing is as follows:

1 2( , ) ( , ) ( , )dI x y I x y I x y= - (6)

where I1 and I2 are images from time t1 and t2, (x, y) are coordinates, and Id is the difference
image. Pixels with no change were distributed around the mean while pixels with change were
circulated in the tails of the distribution curve. Since change can occur in both directions, it is
therefore up to the analyst to decide which image to subtract from which [90].

The image differencing method was carried out by the ENVI™ 5.2 interface. Possible incon‐
stancies between indicators used in this process due to errors associated with estimations were
minimized using a normalization process between Time 1 and Time 2 layers. This normaliza‐
tion process applies a gain and an offset to the Time 2 layer so that it has same mean and
standard deviation as the time layer.

The next step was to select a threshold value that allows the method to identify areas that have
a significant change. Otsu’s auto‐thresholding method [91] was used to set the threshold for
identifying important changes. Otsu’s is a histogram shape‐based method. It is based on
discriminate analysis and uses the zeroth‐ and the cumulative first‐order moments of the
histogram for calculating the value of the thresholding level.

A clean‐up process was carried out where a kernel size of 3 × 3 pixels was applied to remove
speckling noise, and a minimum aggregate size set to 25 was configured to remove minus‐
cule regions.

The outputs produced by the changed detection method were (a) an image change and (b) an
image difference. The latest was kept to identify “degraded” areas by applying a classification
tree based on field observations and very high‐resolution imagery as training sites. This
approach followed the same logic described earlier to detect break points in the time series.
The image change was used to determine deforestation in the study area.

3.3. Results and discussion

The procedures in this integrated methodology allowed for the identification of areas that
have been degraded. The results allowed to highlight areas that have been degraded due to
loss of net primary productivity and forest cover. Integration of the different elements in this
methodology enabled the identification of areas that maintain a “stable” condition and areas
that change over the period evaluated.

According to the results obtained here, Landsat‐derived indicators (forest canopy cover and
net primary productivity) showed effectiveness in the identification and mapping of degraded
forest landscapes. The results of this study also suggest that it is possible to produce explicit
and high‐resolution canopy cover maps over relatively large areas.
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The net primary productivity also showed its value in identifying and mapping forest
degradation. NPP is a forest parameter that is difficult to estimate and can be subject to high
levels of uncertainty [92–94]. NPP was estimated for the period 2007–2013 showing mean
values in the range of 480–512 and maximum values of 742–936 gC/m2/year. Although NPP
estimations are difficult to perform and validate due to lack of field data, programs such the
INIFAP meteorological network that register climatic variables every 15 minutes, and Eddy
covariance tower networks along with remote sensing data, are promissory elements to
support NPP modeling.

Finally, the results of the trajectory analysis of degradation indicators (NPP and CC) showed
(overall timescale 28 years) a slight tendency toward forest degradation and decline, punctu‐
ated by cyclic oscillations of decline and recovery that indicate the cyclic nature of disturbances
of the study area. These trends are shown in Figure 4.

Figure 4. Trajectories of means of net primary productivity, central Yucatan, Mexico.

4. Conclusions

This chapter has shown how free remote sensing data (i.e. Landsat archive) can outline
degradation by computing some indicators such as net primary productivity (NPP) and
canopy cover (CC).

The key features and benefits of this methodology are (a) it is easy to implement, (b) it can be
adaptable to specific site conditions, and (c) it allows an opportunity to identify regional trends
by analyzing the indicators of degradation over time.

The main feature of this methodology is its suitability for use in many regions of the developing
world where more sophisticated and, therefore, data‐rich and demanding procedures are not
possible. The trajectories of these degradation indicators can be used as a tool for regional
monitoring of ecosystem condition and trends, enabling the formulation of remedial action
plans.

The methodology described here also allows for the identification of the temporal and spatial
distributions of forest degradation based on the indicators used.

The next steps for this methodology are:
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a. To test and validate the method across the country and other regions. Partnership with
the National Forestry Commission and the National Institute of Forestry, Agriculture and
Livestock Research has been established.

b. To add the Eddy covariance tower network along with remote sensing data that are
promissory elements to support NPP modeling in a reliable way in the country.
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