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Abstract

In this chapter, we consider a problem which describes the motion of a viscoelastic body
and investigate the effect of the dissipation induced by the viscoelastic (integral) term
on the solution. Precisely, we show that, under reasonable conditions on the relaxa‐
tion function, the system stabilizes to a stationary state. We also obtain a general decay
estimate from which the usual exponential and polynomial decay rates are only special
cases.

Keywords: general decay, memory, relaxation function, stability, viscoelasticity

1. Introduction

Elastic materials, when subjected to a suddenly applied loading state held constant there‐
after, respond instantaneously with a state of deformation which remains constant. On the
other hand, Newtonian viscous fluids respond to a suddenly applied state of uniform shear
stress by a steady flow process. However, there exist materials for which any suddenly applied
and maintained state of uniform stress produces an instantaneous deformation followed by a
flow process which might or might not be limited in magnitude as time grows. Such materi‐
als exhibit both instantaneous elasticity effects and creep characteristics. Obviously, such a
behavior cannot be described by either an elasticity theory or a viscosity theory only but it
combines features of each. The most interesting examples of such materials are polymers,
which can display all the intermediate range of properties (glassy, brittle solid or an elastic
rubber or a viscous liquid) depending on temperature and the experimentally chosen time
scale. Such materials are said to possess memories.

Many scientists, such as Maxwell, Kelvin, Voigt, and Boltzmann, have contributed in modeling
these phenomena. Boltzmann, in 1874, supplied the first formulation of a three-dimensional

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



theory of isotropic viscoelasticity. He elaborated the model of a “linear” viscoelastic solid on
a basic assumption which states that at any (fixed) point x of the body, the stress at any time t
depends on the strain at all the proceeding times. In addition, if the strain at all preceding times
is in the same direction, then the effect is to decrease the corresponding stress. The influence
of a previous strain on the stress depends on the time elapsed since that strain occurred and
is weaker than those strains that occurred long ago. Such properties make the model of solid,
elaborated by Boltzmann, a material with (fading) memory. These memory effects are
expressed by the dependence on the deformation gradient. Therefore, for these “viscoelastic”
materials, the stress at each point and at each instant does not depend only on the present value
of the deformation gradient but on the entire temporal prehistory of the motion. In addition,
Boltzmann made the assumption that a superposition of the influence of previous strains holds,
which means that the stress-strain relation is linear. Mathematically, this is interpreted by the
time convolution of a “relaxation” function with the Laplacian of the solution. As a conse‐
quence, a subtle damping effect is produced. The types of equations we intend to discuss in
this chapter are of the form:

where Ω is a bounded domain with regular boundary, g is a nonincreasing positive function,
referred to as the relaxation function which describes the viscoelastic material in consideration,
f is an external force, and u(x, t) is the position of a point x “in the reference configuration” at
a time t.

In early 1970s, Dafermos [1, 2] discussed a one-dimensional viscoelastic model, where he
proved, for smooth monotonically decreasing relaxation functions, various existence and
asymptotic stability results. However, no rate of decay has been given. After that, viscoelastic
problems have attracted the attention of many researchers and many results of existence and
long-time behavior have been established. To the best of our knowledge, the first work that
studied the uniform decay of solutions was presented by Dassios and Zafirapoulos [3]. In their
work, Dassios and Zafirapoulos presented a viscoelastic problem in ℝ3 and proved a polyno‐
mial decay for exponentially decaying kernels. In 1994, Muñoz Rivera [4] considered, in 
and in bounded domains, equations for linear isotropic homogeneous viscoelastic solids, with
exponentially decaying memory kernels and showed that, in the absence of body forces,
solutions decay exponentially for the bounded-domain case, whereas, for the whole space case,
the decay is of a polynomial rate. After that, Cabanillas and Muñoz Rivera [5] studied
problems, where the kernels are of algebraic (but not exponential) decay rates and showed
that the decay of solutions is algebraic at a rate which can be determined by the rate of the
decay of the relaxation function and the regularity of solutions. This result was later improved
by Barreto et al. [6], where equations related to linear viscoelastic plates were treated. For
viscoelastic systems with localized frictional dampings, Cavalcanti et al. [7] considered the
following problem:
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where Ω is a bounded domain of ℝn (n ≥ 1) with a smooth boundary ∂Ω, g is a positive
nonincreasing function satisfying, for two positive constants, the conditions:

( ) ( ) ( )1 2 ,  0,x x- £ £ -¢ ³g t g t g t t

and a(x) ≥ a0 > 0 in a subdomain ω ⊂ Ω, with meas(ω) > 0 and satisfying some geometry
restrictions. They established an exponential rate of decay. Berrimi and Messaoudi [8]
improved Cavalcanti’s result by weakening the conditions on both a and g. In particular, the
function a can vanish on the whole domain Ω and consequently the geometry condition is no
longer needed. This result has been later extended to a situation, where a source is competing
with the viscoelastic dissipation, by Berrimi and Messaoudi [9]. Also, Cavalcanti et al. [10] have
studied a quasilinear equation, in a bounded domain, of the form:

( )
0

( ) d 0,
t

t tt tt tu u u u g t u ur t t t g- D - D + - D - D =ò

with ρ > 0, and a global existence result for γ ≥ 0, as well as an exponential decay for γ > 0, have
been established. Messaoudi and Tatar [11,12] discussed the situation when γ = 0 and estab‐
lished polynomial and exponential decay results in the presence, as well as in the absence, of
a nonlinear source term. Fabrizio and Polidoro [13] studied a homogeneous viscoelastic
equation in the presence of a linear frictional damping (aut, a > 0) and showed that the expo‐
nential decay of the relaxation function g is a necessary condition for the exponential decay of
the solution energy of the solution. In other words, the presence of the memory term, with a
non-exponentially decaying relaxation function, may prevent the exponential decay even if
the frictional damping is linear. He also obtained a similar result for the polynomial decay
case.

For more general decaying kernels, Messaoudi [14,15] considered

(1.1)
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with b = 0 and b = 1 and for relaxation functions satisfying

( ) ( ) ( )’       ,     0,  g t t g t tx£- " ³ (1.2)

where ξ: ℝ+→ℝ+ is a nonincreasing differentiable function. He showed that the rate of the decay
of the energy is exactly the rate of decay of g, which is not necessarily of exponential or
polynomial decay type. After that, a series of papers using Eq. (1.2) have appeared. See for
instance, Han and Wang [16], Liu [17,18], Park and Park [19], and Xiaosen and Mingxing [20].

In this work, we intend to study the following problem:

(1.3)

where Ω is a bounded and regular domain of ℝn, a > 0 is a constant, and g is a positive
nonincreasing function satisfying Eq. (1.2). We will establish some general decay results
depending on the behavior of g and m.

2. Preliminary

In this section, we present some material needed in the proof of our result and state a global
existence result which can be proved using the well-known Galerkin method. See, for example,
[2,3]. In order to prove our main result, we make the following assumptions:

(A1) g: ℝ+ → ℝ+ is a bounded differentiable function such that

( ) ( ) ( ) ( ) ( )
0

0 0,  , 1 d 0, g g t t g t g s s lg
¥

> £ - = >¢ - ò

where γ(t) is a differentiable function satisfying

( ) ( ) ( )
0

0,  0, and d .t t t tg g g
+¥

¢> £ = +¥ò

(A2) Concerning the nonlinearity in the damping, we assume that
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nm n m n

n
< £ > > =

-

Remark 2.1. Examples of functions satisfying (A1) are

( )
( )

( ) ( )1
1 2,  1,   0 1

1
,- += > = < £

+
b t p

v
ag t v g t ae p
t

( )
( ) ( )

3 ,  1,
1 ln 1

v
ag t v

t t
= >

+ é + ùë û

for a and b constants to be chosen properly.

Proposition 2.1. Let (u0, u1)∈H0
1(Ω)×L2(Ω) be given. Assume that (A1), (A2) hold. Then problem

(1.3) has a unique global solution:

[ ) ( )( )1
00, ;   Î ¥ Wu C H

[ ) ( )( ) ( )( )20, ; 0, .Î ¥ W Ç W´ ¥m
tu C L L (2.1)

Proposition 2.2. [21] Let E: ℝ+ → ℝ+ be a non-increasing function and φ: ℝ+ → ℝ+ be an increasing
C2-function such that

( ) ( )0 0  and  as    .j j= ® +¥ ® +¥t t

Assume that there exist q ≥ 0 and A > 0 such that

( ) ( ) ( )1 d , 0 ,q

s

E t t t AE S Sj
+¥

+ £ £¢ < +¥ò

then we have

( ) ( ) ( )( )
1

0 1   0,  if   0,,qE t cE t t qj
-

£ + " ³ >
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( ) ( ) ( ) ,0   0, if   0,tE t cE e t qwj-£ " ³ =

where c and ω are positive constants independent of the initial energy E(0).

Next, we introduce the “modified energy”:

( ) ( ) ( ) ( )( )2 2

22
0

1 1 1: 1   ,  
2 2 2

t

tt g s ds u t u go u t
æ ö
- Ñ + + Ñç ÷ç ÷

è ø
òE (2.2)

where

( )( ) ( ) ( ) ( ) 2

2
0

d .t t t= - -ò
t

gov t g t v t v

Remark 2.2. By multiplying Eq. (1.3) by ut and integrating over Ω, using integration by parts
and hypotheses (A1), (A2), we get, after some manipulations, as in [3,20],

( ) ( )( ) ( ) ( )

( )( )

2

2

1 1d    
2 2

1d     0.
2

W

W

æ ö
¢ £ - - Ñ + Ñç ÷

è ø

-

¢

Ñ¢£ + £

ò

ò

m
t

m
t

t a u x g o u t g t u t

a u x g o u t

E
(2.3)

3. Decay of solutions

In order to state and prove our main result, we set

( ) ( ) ( ) ( )1 2:F t t t te e e= + Y + X (3.1)

where ε1 and ε2 are positive constants to be specified later and

( ) ( ) ( ) ( ) ( )( )
0

Ψ : d ,  : d  d .
t

t tt uu x t u g t u t u xc t t t
W W

= = - - -ò ò ò

Lemma 3.1. For ε1 and ε2 so small, we have
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( ) ( ) ( )1 2F t E t F ta a£ £ (3.2)

holds for two positive constants α1 and α2.

Proof. It is straightforward to see that

( ) ( )

( ) ( ) ( )( )

( )

( )( )( ) ( )

2 21 1

2
22 2

0

2 21 1

22 2
2 2

d d
2 2

d d d
2 2

d d
2 2

d 1     ,
2 2

t

t

t

t p

p

F t E t u x u x
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e e

e e t t t

e e

e e a

W W

W W

W W

W

£ + +

æ ö
+ + - -ç ÷ç ÷

è ø

£ + + Ñ
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ò ò

ò ò ò

ò ò

ò E

where Cp is the Poincaré constant. In the other hand,

( ) ( )

( )( )( ) ( ) ( )( )

( )( )( )
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2 2 21 1 2 2

2 2 2

2 22

2 21 2 1 2

1

d d d
2 2 2 2

1 1 1 11
2 2 2 2

d   d 1
2 2 2

,

t t p

t

t p p

F t E t u x u x u x C

l go u t l u t u go u t u

u x C u x C l go u t

t

g

g

e e e e

g
e e e e

a

W W W

+

+

W W

³ - - - -

- Ñ ³ Ñ + + Ñ +
+

+é ù- - Ñ - - Ñê úë û
³

ò ò ò

ò ò
E

for ε1 and ε2 small enough. Thus, Eq. (3.2) is established.

Lemma 3.2. Assume that m ≥ 2 and assumptions (A1), (A2) hold. Then, the functional Ψ(t)
satisfies, along the solution of Eq. (1.3), the estimate:

( ) ( )( )2' 2 1 1  d d d ,
4 2

m
t t

lt u x u x go u t C u x
lW W W

-
Y £ - Ñ + Ñ +ò ò ò (3.3)

where C is a “generic” positive constant independent of t.

Proof. By using Eq. (1.3), we easily see that
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( ) ( ) ( ) ( )2 2' 2

0

  d d d  d d .-

W W W W

Y = - Ñ - + Ñ - Ñò ò ò ò òg
t

m
t t tt u x u x a u u u x u t g t u xt t t

(3.4)

We now estimate the third term of the right-hand side of Eq. (3.4), using Young’s inequality
and (A2). Thus, we get

( )

2 2 2

2 2

2
22
2

d   d d

d 0 d

- -

W W W

-

W W

£ + £ Ñ Ñ +

£ Ñ +

ò ò ò

ò òE

m m m m
t t t

m
m m

t t

u u u x u x c u x C u u

c u x C u c u x

d

d d

d d

d
(3.5)

where cδ is a constant depending on δ. For the fourth term of the right-hand side of Eq. (3.4),
we get

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )

2

0

2
2

0

2

Ω 0

1d d d
2

1 1  d d   d
2 2

1 d d .
2

t

t

t

u t g t u x u t x

g t u x u t x

g t u u t u t x

t t t

t t t

t t t

W W

W W

Ñ - Ñ £ Ñ +

æ ö
- Ñ £ Ñç ÷ç ÷

è ø

æ ö
+ - Ñ -Ñ + Ñç ÷ç ÷

è ø

ò ò ò
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ò ò

g

(3.6)

We then use Cauchy-Schwarz inequality, Young’s inequality, and the fact that

( ) ( )
0 0

d d 1 ,
t

g g lt t t t
+¥

£ = -ò ò

to obtain, for any η > 0,
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(3.7)

By combining Eqs. (3.4)–(3.7), we arrive at
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d
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d

h h t t t

h d

h

By choosing η = l/(1 − l) and  (0), estimate (3.3) is established.

Lemma 3.3. Assume that m ≥ 2 and assumptions (A1), (A3) hold. Then, the functional (t)
satisfies, along the solution of Eq. (1.3) and for any δ > 0, the estimate
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Proof: By using Eq. (1.3), we easily see that
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(3.9)

Similarly to Eq. (3.4), we estimate the right-hand side terms of Eq. (3.9). So for any δ > 0, we
have
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(3.10)
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A combination of Eqs. (3.9)–(3.13), then, yields Eq. (3.8).

Theorem 3.4. Let (u0, u1)∈H0
1(Ω)×  L2 (Ω) be given. Assume that (A1), (A2) hold. Then, for any

t0 > 0, there exist positive constants K and λ such that the solution of Eq. (1.3) satisfies
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Proof: We start with the case m ≥ 2. Since g(0) > 0, then there exists t0 > 0 such that
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p
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lg u x l u

g
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l c g u t
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d

d

e e

ee d e e d
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e e o

W

W
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é ù- é - - ù - - + - Ñë û ê úë û

é ù
+ - Ñ +ê ú
ë û

-é ù+ Ñê úë û

¢

¢

ò

ò

At this point, we choose δ so small that

( )( )20 0 0
1 4 1,  1 2 1 .
2 4

g g l g
l

d d- > + - <
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Whence δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying

0 2 1 0 2
1 1
4 2
g ge e e< < (3.16)

makes

( ) ( )( )21
1 2 0 1 2 20,  1 2 1 0.

4
lk g k lee d e e d= - - > = - + - >

We then pick ε1 and ε2 so small that Eqs. (3.2) and (3.16) remain valid and, further,

( ) ( )
1 2 2

011 0,  0.
2 4 p

g
c Cde e e

d
- + > - >

Therefore, we arrive at

( ) ( ) ( )( ),  0,F t t c g u t t tbe oÑ "¢ £ - + ³ (3.17)

for two constants c, β > 0. We multiply (3.17) by γ(t) and use Eqs. (1.2) and (2.3), to get

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) 0,  .

t F t t t c g u t

t t c t t t

g bg o

bg

£ - - Ñ

£ -

¢

-

¢

"¢ ³

E

E E

This implies that

( ) ( ) ( ) ( ) ( ) 0,  .t F t c t t t t tg bg+ £ - "¢ ³¢E E

Hence,

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 0,  .t F t c t t F t t t t tg g bg¢+ - £ "¢ - ³E E

Again, by using the fact that γ′(t) ≤ 0, letting

( ) ( ) ( ) ( ) ,t t F t c tg= +L E
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and noting that ~  , we arrive at

( ) ( ) ( ) ( ) ( ) 0,  .t t t t t t tbg lg£ - £ - "¢ ³L E L (3.18)

A simple integration of Eq. (3.18) over (t0, t) leads to

( ) ( )
( )

0

d

0 0,   .

t

t

s s

t L t e t t
l g- ò

£ " ³L

We obtain, then, Eq. (3.14) by virtue of equivalence of  and .

To establish Eq. (3.15), we re-estimate Eqs. (3.5) and (3.12), for m < 2, as follows

2 2 2 2

2 2
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m m
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d

d
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- -

W W W

-
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æ ö
£ Ñ + ç ÷

è ø

ò ò ò

ò
(3.19)

Similarly, we have

( ) ( ) ( ) ( )( )

( )( )

2

0

2 2

d d

d .

t
m

t t

m
mm

p t

u u t g t u t u x

C g u t c u xd

t t t

d o

-

W

-

W
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æ ö
£ Ñ + ç ÷

è ø

ò ò

ò
(3.20)

By repeating all above steps and using Eqs. (3.19), (3.20) instead of Eqs. (3.5), (3.12), we arrive at

( ) ( ) ( )( )
2 2

1 0d  ,  ;

m
mm

tF t t c g u t c u x t tb o

-

W

æ ö
£ - + Ñ + " ³ç ÷

è ø
¢ òE

which gives
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( ) ( ) ( )( )
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1 1 0 , 

m
mm

tt F t c g u t c u dx t tb o

-
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æ ö
£ - + Ñ + " ³ç¢ ÷

è ø
òE (3.21)

By multiplying Eq. (3.21) by γ(t) q(t), for q > 0 to be specified later, and using (A1), Eq. (2.3),
and Young’s inequality, we get

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )
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E
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(3.22)

By choosing q = (2 − m)/(2m − 2) (hence, qm/(2 − m) = q + 1] and taking μ small enough, Eq.
(3.22) yields
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+
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(3.23)

By recalling that γ ′ (t) ≤ 0 and integrating (3.23) over (S, T), S ≥ t0, we get

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 12d 2 ,
1 1

T
q q q

S

ct t t S F S S S A S
q q
bg g+ + +£ + + £
+ +ò E E E E (3.24)

for some positive constant A. Therefore, Proposition 2.2 gives (3.15). This completes the proof.

Remark 3.1. Estimates (3.14) and (3.15) also hold for t ∈ [0, t0] by virtue of continuity and
boundedness of ℰ and γ.

Remark 3.2. This result generalizes and improves many results in the literature. In particular,
it allows some relaxation functions which satisfy

( ) ( ) ,  1 2,g t ag tr r¢ £ - £ <

instead of the usual assumption 1 ≤ ρ < 3/2.
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Remark 3.3. Note that the exponential and the polynomial decay estimates, given in early
works, are only particular cases of Eq. (3.14). More precisely, we obtain exponential decay for
γ(t)≡a and polynomial decay for γ(t) = a(1 + t)− 1, where a > 0 is a constant.
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