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1. Introduction 

Reliability has been considered as an important design measure in industry. The design of a 
system involves in general numerous discrete choices among available component types 
based on reliability, cost, performance, weight, etc. If the design objective is to maximize 
reliability for a certain cost requirement, then a strategy is required to identify the optimal 
combination of components and/or design configuration. This leads to combinatorial 
optimization problems which are NP-hard. For large industrial problems, exact methods are 
lacking since they require a very large amount of computation time to obtain the solution of 
the problem. This chapter will focus on the use of ant colonies to solve three optimal design 
problems which are among the most important in practice: 
1. The reliability optimization  of series  systems  with multiple-choice  constraints 

incorporated at each subsystem, to maximize the system reliability subject to the system 
budget.  This  is  a nonlinear binary integer programming problem and characterized as 
an NP-hard problem. 

2. The redundancy allocation problem (RAP) of binary series-parallel systems. This is a 
well  known  NP-hard  problem  which  involves  the  selection  of elements   and 
redundancy  levels  to  maximize  system reliability  given  various   system-level 
constraints. As telecommunications and internet protocol networks, manufacturing and 
power systems are becoming more and more complex, while requiring short 
developments  schedules  and very high reliability,  it is becoming increasingly 
important to develop efficient solutions to the RAP. 

3. Buffers and machines selections in unreliable series-parallel production lines: we 
consider a series-parallel manufacturing production line, where redundant machines 
and in-process buffers are included to achieve a greater production rate. The objective is 
to maximize production rate subject to a total cost constraint. Machines and buffers are 
chosen from a list of products available in the market. The buffers are characterized by 
their cost and size. The machines are characterized by their cost, failure rate, repair rate 
and processing time. To estimate series-parallel production line performance, an 
analytical decomposition-type approximation is proposed. Simulation results show that 
this approximate technique is very accurate. The optimal design problem is formulated 
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Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 476

as a combinatorial optimization one where the decision variables are buffers and types 
of machines, as well as the number of redundant machines. 

For each problem, a literature review will be presented. This review will focus on meta-
heuristics in general, and on ant colonies in particular. Recent advances on efficient solution 
approaches based on Hybrid Ant Colony Optimization (HACO) will be detailed. 

2. Reliability optimization of a series system 

2.1. Literature review 

As it is often desired to consider the practical design issue of handling a variety of different 
component types, this paper considers a reliability optimization problem with multiple-
choice constraints incorporated. To deal with such reliability optimization problems with 
multiple-choice constraints incorporated, Sung and Cho [9] have used an efficient branch-
and-bound method. Nourelfath and Nahas [6] have solved the reliability optimization 
problem by using quantized neural networks. [11] deals with a reliability optimization 
problem for a series system with multiple choice constraints incorporated to maximize the 
system reliability subject to the system budget. The problem is formulated as a binary 
integer programming problem with a non linear objective function [1], which is equivalent 
to a knapsack problem with multiple-choice constraints, so that it is NP-hard [3]. Some 
branch-and-bound methods for such knapsack problems with multiple-choice constraints 
have been suggested in the literature [5,7,8]. However, for large industrial problems, these 
methods are lacking since they require a very large amount of computation time to obtain 
the solution of the problem. This section describes the use of an ant system to obtain optimal 
or nearly optimal solutions very quickly. 

2.2. Optimal design problem 

Let us consider a series system of n components. For each component, there are different 
technologies available with varying costs, reliabilities, weights and other characteristics. The 
design problem we propose to study is to select the best combination of technologies to 
maximize reliability given cost. Only one technology will be adopted for each component. In 
order to formulate the problem in mathematical expression, the following notations are 
introduced first: 
n the number of components 
Mi the number of technologies available for the component i

 the cost of a component i using the technology j (  is assumed to be known) 

 the reliability of the component i when the technology j is used 

B the available budget 
TC the total cost. 

We specify the decision variable  (with j = 1, 2, . . ., M; and i = 1, 2, . . ., n) as:  

Considering these notations, the proposed series-system reliability optimization problem is 
expressed in the following binary nonlinear integer programming problem: 
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Maximize 

Subject to  (1) 

(2)

(3)

Constraint (1) represents the budget constraint; without loss of generality, we consider that 
B is an integer. Constraint (2) represents the multiple-choice constraint, and constraint (3) 
defines the decision variables. 
When a solution satisfies all the constraints, it is called a feasible solution; otherwise, the 
solution is said to be infeasible. Our goal is to find an optimal solution or sometimes a 
nearly optimal solution. This is motivated by the fact that in real size industrial systems, the 
search space of the reliability optimization problem formulated in this paper is very large, 
taking the use on non heuristic approaches infeasible. Ant system is a recent kind of meta-
heuristic which has been shown to be suitable (especially when combined with local search) 
for combinatorial optimization problems with a good neighborhood structure (see e.g. 
[6,10]), as in the case of the reliability optimization problem formulated in this paper. 

2.3. Solution approach of the reliability optimization problem 

To apply the ant system (AS) algorithm to a combinatorial optimization problem, it is 
convenient to represent the problem by a graph , where are the nodes and  is 

the set of edges. To represent our problem as such a graph, the set of nodes g is given by 
components and technologies, and edges connect each component to its available 
technologies. Ants cooperate by using indirect form of communication mediated by 
pheromone they deposit on the edges of the graph  while building solutions. 
Informally, our algorithm works as follows: m ants are initially positioned on the node 
representing the first component. Each ant will construct one possible structure of the entire 
system. In fact, each ant builds a feasible solution (called a tour) by repeatedly applying a 
stochastic greedy rule, called, the state transition rule. Once all ants have terminated their 
tour, the following steps are performed: 
• An improvement procedure is applied. This procedure, which will be detailed later, is 

composed of a specific improvement algorithm (called algorithm 1) and a local search. 

• The amount of pheromone is modified by applying the global updating rule.
Ants are guided, in building their tours, by both heuristic information and by pheromone 
information. Naturally, an edge with a high amount of pheromone is a very desirable 
choice. The pheromone updating rules are designed so that they tend to give more 
pheromone to edges which should be visited by ants. 
The state transition rule used by the ant system is given in equation (4). This represents the 
probability with which ant k selects a technology j for component i:

(4)
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where  and  are respectively the pheromone intensity and the heuristic information 
between component i and technology j .  is the relative importance of the trail and  is the 
relative importance of the heuristic information . The problem specific heuristic j

information used is  where  and  represent the associated reliability and cost. 

That is, technologies with higher reliability and smaller cost have greater probability to be 
chosen.
During the construction process, no guarantee is given that an ant will construct a feasible 

solution  which  obeys the budget  constraint (i.e. ). The unfeasibility of 

solutions is treated in the pheromone update: the amount of pheromone deposited by an ant 
is set to a high value if the generated solution is feasible and to a low value if it is infeasible. 
These values are dependent of the solution quality. Infeasibilities can then be handled by 
assigning penalties proportional to the amount of budget violations. In the case of feasible 
solutions, an additional penalty proportional to the obtained solution is introduced to 
improve its quality. 
Following the above remarks, the trail intensity is updated as follows: 

(5)

 is a coefficient such that (1 - ) represents the evaporation of trail and  is : 

(6)

where m is the number of ants and  is given by: 

(7)

where Q is a positive number, and penaltyk is defined as follows: 

(8)

B is the available budget, TCk is the total cost obtained by ant k, Rk is the reliability obtained 
by ant k and R* is the best obtained solution. Parameters a and b represent the relative 
importance of penalties. It can be easily seen from the above equations that by introducing a 
penalty function, we aim at encouraging the AS algorithm to explore the feasible region and 
infeasible region that is near the border of feasible area and discouraging, but allowing, 
search further into infeasible region. 
It is well known that the performance of AS algorithms can be greatly enhanced when 
coupled to local improvement procedures [2]. Following this, two local improvement 
algorithms are included in our AS approach (called local search algorithm and algorithm 1). 
Algorithm 1 uses the remaining budget (the amount not used by the ant) to improve the 
solution. In fact, some generated feasible solutions do not use the entire available budget. 
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This algorithm improves the initial solution by using this remaining budget to exchange 
some actual technologies by more reliable other technologies. A similar idea can be found in 
[10] where a neural network is presented to solve the job-shop scheduling problem, and 
where a similar procedure is used to improve the obtained solutions by eliminating the time 
segments during which all machines are idle. 
The local search algorithm proceeds to change in turn each pair of chosen technologies by 
another pair. For each component, technologies are indexed in ascending order in 
accordance with their reliability. A solution S = {u, v, ...} indicates that component 1 uses 
technology with index u, component 2 uses technology with index v, etc. Let consider for 
example a series system with 3 components and 6 available technologies for each 
component. Suppose that the obtained solution at a given cycle is S = {3, 2, 5}. The local 
search will evaluate the following solutions: 

S={4, 1,5}, S = {4, 2, 4}, S = {2, 3, 5}, S = {2, 2, 6}, S = {3, 3, 4}, S = {3, 1,6}. 

Among all these evaluated solutions, whenever an improvement feasible solution is 
detected, the new solution replaces the old one. It has been shown in [11] that the 
experimental results showed that the optimal or nearly optimal solutions could be obtained 
quickly. In the next section, Hybrid Ant Colony Optimization (HACO) will be used to solve 
the redundancy allocation problem. This HACO uses rather the extended great deluge 
algorithm as a local search within the proposed ant colony algorithm. 

3. Redundancy allocation problem 

3.1. Problem description 

The redundancy allocation problem (RAP) is a well known combinatorial optimization 
problem where the design goal is achieved by discrete choices made from elements 
available on the market. The system consists of n components in series. For each component 
i (i = 1, 2, ..., n) there are various versions of elements, which are proposed by the suppliers 
on the market. Elements are characterized by their cost and weight according to their 
version. Each component i contains a number of elements connected in parallel. Different 
elements can be placed in parallel. A component i is functioning properly if at least ki of its pi

elements are operational (k-out-of-n: G). 
The series-parallel system is a logic-diagram representation for many design problems 
encountered in industrial systems. As it is pointed out in [18] and [31], electronics industry 
is an example where the RAP is very important. In fact, in this industry most systems 
require very high reliability and the products are usually assembled and designed using off-
the-shelf elements (capacitors, transistors, microcontrollers, etc.) with known characteristics. 
Other examples where the above type of structure is becoming increasingly important 
include telecommunications systems and power systems. In all these systems, redundancy is 
indeed a necessity to reach the required levels of reliability and the RAP studied in this 
paper is therefore one of the major problems inherent to optimal design of reliable systems. 
Assumptions 
1. Elements and the system may experience only two possible states: good and failed. 
2. The system weight and cost are linear combinations of element weight and cost. 
3. The element attributes (reliability, cost and weight) are known and deterministic. 
4. Failed elements do not damage the system, and are not repaired. 
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5. All redundancy is active: failure rates of elements when not in use are the same as when 
in use. 

6. The supply of elements is unlimited. 
7. Failures of individual elements are s-independent. 
Notation 
Rsys overall reliability of the series-parallel system 
R* optimal solution 
C cost constraint 
W weight constraint 
n number of components 
i index for components 
ai number of available elements choices (i.e., versions) for component i
rij reliability of element j available for component i
wij weight of element j available for component i
cij cost of element j available for component i
xij number of element j used in component i

xi

pi total number of elements used in component i
pmax maximum number of elements in parallel 
ki minimum number of elements in parallel required for component i
k (k1, k2, ..., kn)

 reliability of component i, given ki

Ci (xi) total cost of component i
Wi (xi) total cost of component i
The RAP is formulated to maximize system reliability given restrictions on system cost and 
weight. That is, 

Maximize  (9) 

Subject to   (10) 

(11)

Constraints (10) and (11) represent respectively the budget and the weight constraints. If 
there is a pre-selected maximum number of elements which are allowed in parallel, the 
following constraint (12) is added: 

(12)

3.2. Literature review 

The RAP is NP-hard [17] and has previously been solved using many different optimization 
approaches and for different formulations as summarized in [39], and more recently in [32]. 
Optimization approaches to determine optimal or very good solutions for the RAP include 
dynamic programming, e.g. [12,25,35,41], mixed-integer and nonlinear programming, e.g. 
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[32], and integer programming, e.g. [14,27,28,34]. Nevertheless, these methods are limited to 
series-parallel structures where the elements used in parallel are identical. This constitutes a 
drawback since in practice many systems designs use different elements performing the 
same function, to reach high reliability level [31]. For example, as explained in [18], 
(airplanes use a primary electronic gyroscope and a secondary mechanical gyroscope 
working in parallel, and most new automobiles have a redundant (spare) tire with different 
size and weight characteristics forming a 4-out-of-5: G standby redundant system). Because 
of the above-mentioned drawback and of the exponential increase in search space with 
problem size, heuristics have become a popular alternative to exact methods. Meta-
heuristics, in particular, offer flexibility and a practical way to solve large instances of the 
relaxed RAP where different elements can be placed in parallel. 
Genetic algorithm (GA) is a well-known meta-heuristic used to solve combinatorial 
reliability optimization problems [18,33,37,42,43]. In addition to genetic algorithms, other 
heuristic or meta-heuristic approaches have also been efficiently used to deal with system 
reliability problems. A tabu search (TS) meta-heuristic [30] has been developed in [31] to 
efficiently solving the RAP, while the ant colony optimization meta-heuristic [20] is used in 
[4] to solve the problem. 
In light of the aforementioned approaches, the method presented here gives a heuristic 
approach to solve the RAP. This method combines an ant colony optimization approach and 
a degraded ceiling local search technique. This approach is said to be hybrid and will be called 
ACO/DC (for Ant Colony Optimization and Degraded Ceiling). 
The idea of employing a colony of cooperating agents to solve combinatorial optimization 
problems was recently proposed in [21]. The ant colony approach has been successfully 
applied to the classical traveling salesman problem [22,23], to the quadratic assignment 
problem [26], and to scheduling [13]. Ant colony shows very good results in each applied 
area. The ant colony has also been adapted with success to other combinatorial optimization 
problems such as the vehicle routing problem [15], telecommunication networks 
management [24], graph coloring [19], constraint satisfaction [38] and Hamiltonian graphs 
[44]. In [11], the authors used ant system to solve the optimal design problem of series 
system under budget constraints. The ant colony approach has also been applied for the 
RAP of multi-state systems in [36]. For the RAP in the binary state case, which is the focus of 
the present paper, the only existing work is that of [4]. 

3. 3. Hybrid solution approach: ACO/DC 

As for the problem studied in section 2, to apply the AGO meta-heuristic to this problem, it 
is convenient to represent the problem by a graph , where are the nodes and  is 

the set of edges. To represent our problem as such a graph, we introduce the following sets 
of nodes and edges [55]:  

• Three sets of nodes:
1. The first set of nodes (N1) represents the components. 
2. The second set of nodes (N2) represents, for each component, the numbers of 

elements which can be used in parallel. For example, if the maximum number of 
elements in parallel is three (pmax = 3), the set N2 will be given by three nodes 
corresponding to one element, two parallel elements and three parallel elements. 

3. The third set (N3) represents the versions of elements available for each 
component. 
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• Two sets of edges:
1. The first set of edges is used to connect each component node in the set N1 to the 

corresponding nodes in N2.
2. The second set of edges is used to connect the nodes in N2 to the nodes in N3 of 

their available versions. 
Informally, our algorithm works as follows: m ants are initially positioned on a node 
representing a component. Each ant represents one possible structure of the entire system. 
This entire structure is defined by the vectors xi (i = 1, ..., n). Each ant builds a feasible 
solution (called a tour) to our problem by repeatedly applying stochastic greedy rules (i.e., 
the state transition rules). Once all ants have terminated their tour, the amount of pheromone 
on edges is modified by applying the global updating rule. Ants are guided, in building their 
tours, by both heuristic information (they prefer to choose "less expansive" edges), and by 
pheromone information. Once an ant has built a structure, the obtained solution is improved 
by using a local search algorithm. This step is performed only in the following cases: 
• the obtained solution by the ant is feasible and, 
• the quality of the solution is "good". The term "good" means here that the reliability Rsys

of the structure should be either better than the best solution R*, i.e., Rsys R*,or close to 

this best solution R*, i.e.,  where l represents the solution quality level. 

Ants can be guided, in building their tours, by pheromone information and heuristic 
information. Naturally, an edge with a high amount of pheromone is a very desirable 
choice. The pheromone updating rules are designed so that they tend to give more 
pheromone to edges which should be visited by ants. 
In the following we discuss the state transition rules and the global updating rules. 
State transition rules 
In the AGO algorithm, each ant builds a solution (called a tour) to our problem by 
repeatedly applying two different state transition rules. At each step of the construction 
process, ants use: (1) pheromone trails (denoted by ) to select the number of elements 
connected in parallel and the versions of elements; (2) and a problem- specific heuristic 
information (denoted by  ) related to the versions of elements. 
An ant positioned on node i (i.e. component i) chooses the total number pi of elements to be 
connected in parallel. This choice is done by applying the rule given by: 

(13)

where 1 is a parameter that controls the relative weight of the pheromone ( ). We favour 

the choice of edges which are weighted with greater amount of pheromone. 
When an ant is positioned on node pi representing the selected number of elements 
connected in parallel in component i, it has to choose these pi versions of elements. This 
choice is done by applying the rule given by: 
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(14)

where 2 and  are respectively parameters that control the relative weight of the 
pheromone ( ) and the local heuristic ( ).

We tested different heuristic information and the most efficient was  where rij

and ij represent respectively the associated reliability and weight of version j for 
component i. In equation (14) we multiply the pheromone on edges by the corresponding 
heuristic information. In this way we favour the choice of edges which are weighted with 
smaller weight and greater reliability and which have a greater amount of pheromone. 
Global updating rule 
During the construction process, no guarantee is given that an ant will construct a feasible 
solution which obeys the constraints (11) and (12). The unfeasibility of solutions is treated in 
the pheromone update: the amount of pheromone deposited by an ant is set to a high value 
if the generated solution is feasible and to a low value if it is infeasible. These values are 
dependent of the solution quality. Infeasibilities can then be handled by assigning penalties 
proportional to the amount of cost and weight violations. Thus, the trail intensity is updated 
as follows: 

(15)

 is a coefficient such that (1 - ) represents the evaporation of trail and  is : 

 (16) 

where m is the number of ants. Furthermore,  is given by: 

 (17) 

where Q is a positive number,  is the system reliability for ant k, and penaltyk is defined as 

follows: 

(18)
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and TWk are respectively the total cost and the total weight obtained by ant k. Parameters 
and  represent the relative importance of penalties. 
The degraded ceiling local search meta-heuristic 
The principle of the degraded ceiling meta-heuristic 
The performance of algorithms based on the AGO meta-heuristic can be greatly enhanced 
when coupled to local improvement procedures. A degraded ceiling (DC) based algorithm 
is included in our AGO approach to improve the solutions obtained by the ants. 
The degraded ceiling is a local search meta-heuristic recently introduced in [6a] and [6b]. 
Like other local search methods, the degraded ceiling iteratively repeats the replacement of 
a current solution s by a new one s*, until some stopping condition has been satisfied. The 
new solution is selected from a neighbourhood N(s). The mechanism of accepting or 
rejecting the candidate solution from the neighbourhood is different of other methods. In 
degraded ceiling approach, the algorithm accepts every solution whose objective function is 
more or equal (for the maximization problems) to the upper limit L, which is monotonically 
increased during the search by L.
The initial value of ceiling (L) is equal to the initial cost function f(s) and only one input 
parameter L has to be specified. In [16], the authors applied successfully the degraded 
ceiling on exam timetabling problem and demonstrated that it outperformed well-known 
best results found by others meta-heuristics, such as simulated annealing and tabu search. 
They showed two main properties of the degraded ceiling algorithm: 

• The search follows the degrading of the ceiling. Fluctuations are visible only at the 
beginning, but later, all intermediate solutions lie close to a linear line. 

• When  a  current  solution  reaches  the  value  where  any  further  improvement  is 
impossible, the search rapidly converges. The search procedure can then be terminated 
at this moment. 

The degraded ceiling algorithm is an extension of the "great deluge" method which was 
introduced as an alternative to simulated annealing. Degraded ceiling, simulated annealing 
and "great deluge" algorithms share the characteristic that they may both accept worse 
candidate solutions than the current one. The difference is in the acceptance criterion of 
worse solutions. The simulated annealing method accepts configurations which deteriorate 
the objective function only with a certain probability. The degraded ceiling algorithm 
incorporates both the worse solution acceptance (of the "great deluge" algorithm) if the 
solution fitness is less than or equal to some given upper limit L, i.e. (f(s*) L), and the well-
known hill climbing rule (f(s*) f(s)).
Like simulated annealing, the degraded ceiling algorithm may accept worse candidate 
solutions during its run. The introduction of the dynamic parameter has an important effect 
on the search. As explained in [16], the decreasing of L may be seen as a control process, 
which drives the search towards a desirable solution. Note finally that degraded ceiling 
algorithm has the advantage to require only one parameter ( L) to be tuned. 

3.4. Test problems and results 

The test problems, used to evaluate the performance of the ACO/DC methodology for the 
RAP, were originally proposed by Fyffe et al. in [25] and modified by Nakagawa and 
Miyazaki in [35]. Fyffe et al. [25] specified constraint limits of 130 units of system cost, 170 
units of system weight and ki = 1 (i.e., l-out-of-n:G). Nakagawa and Miyazaki [35] developed 
33 variations of the original problem, where the cost constraint C is set to 130 units and the 
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weight constraint W varies from 159 units to 191 units. The system is designed with 14 
components. For each component, there are three or four element choices [55]. 
Earlier optimization approaches to the problem (e.g., [25] and [35]), required that only 
identical elements be placed in redundancy. Such approaches determined optimal solutions 
through dynamic programming and IP models, but only a restricted set of solutions was 
considered due to computational or formulation limitations of exact solution methods. 
Nevertheless, for the ACO/DC approach, as in [81], [31] and [4], different types are allowed 
to reside in parallel. In [18], Coit and Smith first solved the RAP with a genetic algorithm 
without restricting the search space. More recently, Kulturel-Konak et al. solved this 
problem in [31] with a tabu search algorithm, while Liang and Smith [31] used an ant colony 
optimization approach improved by a local search. Because the heuristic benchmarks for the 
RAP where elements mixing is allowed are the methods in [18], [31] and [4], there are 
chosen for comparison. Our approach will be compared also with [35] and [29]. By 
comparing the proposed ACO/DC methodology to all the above-mentioned papers (e.g., 
[18], [31], [4], [35] and [29]), we compare it to the best-known solutions found in literature at 
the best of our knowledge.  
In meta-heuristics such as AGO, simulated annealing and degraded ceiling, it is necessary to 
tune a number of parameters to have good performance. The user-specified parameters of 
the ACO/DC algorithm were varied to establish the values most beneficial to the 
optimization process. Following the tuning procedure used in [21-23], we tested various 
values for each parameter, while keeping the others constant. Based on these initial 
experiments the values found to be most appropriate are: 

1 = 0.1, 2 = 0.5, =1, Q = 0.01,  = 0.9, a = 1, b = 10, 0 = 1, L = 0.0001 and l = 0.01. 

These parameters values are used for all test problems. 50 ants are used in each iteration. 
When combined to the degraded ceiling algorithm, AGO converges quickly to optimal or 
near optimal solutions. Note that the degraded ceiling is called only if the obtained solutions 
are very good. For the considered problem instances, the maximum number of iterations 
needed does not exceed 300 iterations. 
Comparing the results obtained by our approach with those of previous works 
[18,29,31,4,35], it has been shown in [55] that: 
1. The solutions found by our algorithm are all better than those of Hsieh [19]. 
2. In 31 of the 33 test cases, the solutions found by our algorithm are better than those of 

Nakagawa and Miyazaki [27] while the rest (i.e., 2 cases) are as good as those they 
found.

3. Cases 22 to 29 and 31 to 32 are as good as those found by the genetic algorithm of Coit 
and Smith [8] while the rest (i.e., 24 instances) are all better than those they found. 

4. In 6 of the 33 test cases, the ACO/DC outperformed the tabu search algorithm of 
Kulturel-Konak et al. [21] while it was very close but at a lower reliability in only 2 
instances.  

5. In 9 of the 33 test cases, the solutions found by our algorithm are better than those of 
Liang and Smith [24] while the rest are as good as those they found. 

Both the degraded ceiling and the ant colony algorithms are meta-heuristics. Our 
contribution is based on the ACO/DC hybridization and very good results are obtained. 
The RAP is one of the most difficult combinatorial optimization problems inherent to 
optimal design of reliable systems. We believe and we show that two efficient meta-
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heuristics have to cooperate in order to solve efficiently this problem, namely the AGO and 
the DC meta-heuristics. 
The study conducted in this section shows again that hybridization of meta-heuristics is a 
very promising methodology for NP-hard reliability design problems. 

4. Selecting machines and buffers in series-parallel production lines 

4.1. Optimal design problem 

Consider the series-parallel production line. Buffers are inserted to limit the propagation of 
disruptions, and this increases the average production rate of the line. This line consists of n
components and n-l buffers. Each component of type i (i = 1,2,..., n) can contain several 
identical machines connected in parallel. For each component i, there are a number of 
machine versions available in the market. 
In  order to  formulate  the  problem in  mathematical  expression,  the  following notations 
are introduced first:  
hi version number of machine i
Hi maximum hi available 
h { hi }, hi  {1,2,.., Hi } 
ri  number of elements connected in parallel in i
Ri  maximum ri allowed
C(hi) cost of each machine of version hi

P(hi) isolated production rate of machine with version hi

T(hi) processing time of machine with version hi

(hi) failure rate of each machine with version hi

(hi) repair rate of each machine with version hi

u(hi) speed of the machine's version hi

We assume that a buffer is also chosen from a list of available buffers. The buffers of 
different versions f differ by their size Nbf and cost Cbf. The total number of different buffer 
versions available for mth component is denoted by Fm. The vector f = {fm}, where 0 fm Fm,
defines versions of buffers chosen for each component. The entire production line structure 
is defined by the vectors h, r and f = {fm}.
For the given h, r and f, the total cost of the production line can be calculated as: 

 (19) 

The optimal design problem of production system can be formulated as follows: find the 
system configuration f, h and r that maximizes the total production rate PT such that the 
total cost CT is less or equal to a specified value C*. That is, 

Maximize PT (f, h, r) (20) 

Subject CT (f, h, r) C* (21) 

The input of this problem is C* and the outputs are the optimal production rate PTMax and 
the corresponding configuration determined by the vectors f, h, r. The resulting maximum 
value of PT is written PTMax (C*). 



Ant colonies for performance optimization 
of multi-components systems subject to random failures 487

4.2. Literature review 

There is a substantial literature on the analysis of production lines with buffers [45]. This 
literature is mainly concerned with the prediction of performance. Much of it is aimed at 
evaluating the average production rate (throughput) of a system with specified machines 
and buffers. In [46], the authors present a set of algorithms that select the minimal buffer 
space in a flow line to achieve a specified production rate. The algorithms are based on 
analytical approximations of the Buzacott model of a production line [47,48]. For a recent 
review of the literature on production line optimization, the reader is referred to [46]. The 
goal of the existing works is to choose buffers sizes for a production line. They all assume 
that the number of machines is specified, and the only parameters to find are buffers sizes. 
The proposed approach to optimal design aims at selecting both buffers and machines; it gives 
also the number of redundant machines used in parallel. 
To deal with the optimal design problem considered in this work, it is mandatory to 
develop a method for throughput evaluation of series-parallel manufacturing production 
lines. This method has to take into account two characteristics: 
(i)  Components may consist of banks of parallel machines. Concerning this first 

characteristic, we attempt to represent each stage by an equivalent single component.  
(ii) The processing rate may differ from component to component. To deal with this second 

characteristic, we use a continuous (or fluid) material model type which produces very 
good results. This consists of two main steps. First, the non homogeneous line is 
transformed into an approximately equivalent homogeneous one. In a second step, the 
resulting homogeneous line is analysed by using the well-known decomposition 
method for homogeneous lines [49]. 

The effect of the used simplifications for estimating throughput is examined by comparing 
the results provided by our approximate technique to simulation results on many examples. 
This comparison shows that the proposed approximate technique is very accurate. 
As the formulated problem is a complicated combinatorial optimization one, an exhaustive 
examination of all possible solutions is not realistic, considering reasonable time limitations. 
Because of this, we develop two heuristics to solve the problem. The first heuristic is inspired 
from the ant colony system meta-heuristic: a recent kind of biologically inspired algorithms 
[48,49]. The second proposed heuristic is based on the simulated annealing meta-heuristic [50]. 

4.3. Throughput evaluation of series-parallel production lines 

4.3.1. Summary of the method 

The proposed method approximates each component (i.e. each set of parallel machines) of 
the original production line as a single unreliable machine. The system is then reduced to a 
single machine per component production line of the type represented in figure 2. The 
equivalent machines may have different processing rates. To determine the steady state 
behaviour of this non-homogeneous production line, it is first transformed into an 
approximately equivalent homogeneous line. Then, the well-known Dallery-David-Xie 
algorithm (DDX) is used to solve the decomposition equations of the resulting 
(homogenous) line [51]. 

4.3.2. Replacing each component by an equivalent machine 

The decomposition techniques developed in the literature are efficient in estimating 
performance characteristics of series production lines. In these techniques it is necessary for 
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each component to be described by three parameters: failure rate, repair rate and processing 
rate. By limiting the description of the equivalent machine to these three parameters, our 
analysis of the new system is reduced in complexity to that of the existing decomposition 
techniques. Furthermore, the state space of a series-parallel line grows large with the 
number of parallel machines in the components. Replacing each set of parallel machines by 
one equivalent machine leads advantageously to a reduction of the state space. 
Let denote by ij, ij and Pij, respectively, the failure rate, the repair rate and the processing 

rate of a machine Mij, and by i, i and Pi, respectively, the failure rate, the repair rate and 

the processing rate of a machine Mi. To calculate the three unknown quantities i, i and Pi,

we have to formulate three equations. Assuming that machines within the set of parallel 
machines are fairly similar, the following approximation is proposed in [52] : 

(22)

(23)

(24)

It is shown in [52] that it is a good approximation. However, when buffers are small, this 
heuristic is inaccurate. In the present work, we assume that the available buffers are large 
enough. Thus, each set of parallel machines is approximated as an equivalent single 
machine by using equations (22), (23) and (24). This leads to a non-homogenous line. 
Therefore, a homogenisation technique is required, as explained in the next subsection. 

4.3.3. Homogenisation technique 

It is known that in the case of non-homogenous lines (i.e. production lines in which the 
machines do not have the same processing time), two approaches can be used. The first 
approach is based on an extension to the case of homogenous lines of the decomposition 
technique developed in [49]. The second approach relies on the modification of the non-
homogeneous line into an approximately equivalent homogeneous line by means of 
homogenisation techniques [53]. The analysis of the obtained homogeneous line is therefore 
based on the use of the decomposition method for homogeneous line. In this way, it is 
possible to rely on the DDX algorithm which has been proven to be very fast and reliable. In 
[53], the authors showed that the homogenization method of [54], referred to as the 
completion time approximation, provides fairly accurate results. In this method, each 
machine Mi of the original non-homogeneous line is replaced by an approximately 
equivalent machine , such that its completion time distribution is close to that of the 

original machine. The processing time of machine  is set to the processing time of the 

fastest machine in the original line: Te = min (T1, T2, ..., Tk). Since the processing time of  is 

given (equal to Te) there are two parameters per machine that must be determined, namely 
the failure and repair rates. Let  and  be the failure and repair rates of machine . The 

principle of the method developed in [53] is to determine  and  in such a way that the 
distribution of completion times of machine  has the same first and second moments as 
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those of the distribution of completion times of machine Mi. The values of  and  are 
given in [53] by: 

4.3.4. Decomposition equations and DDX algorithm 

As said before, we denote by ,  and  respectively, the failure rate, the repair rate and 
the processing time of the machine  in the equivalent homogenous line. In [51], the 

authors developed decomposition equations for homogenous lines and propose an efficient 
algorithm (DDX) to solve these equations. 
Production line decomposition methods typically work as follows. An original line is 
divided into k-1 lines with only two machines. The method requires the derivation of a set of 
equations that link the decomposed systems together. Such methods are efficient because 
systems with two machines can be rapidly analyzed. In general, systems may be represented 
by discrete or continuous flow models. In both, the processing time is deterministic. The 
discrete material model has the advantage of better representing the discrete nature of 
typical factories, but it is limited to systems with equal processing times. The continuous (or 
fluid) model is better suited in our case because it can be used for systems where the 
machines have different processing rates. The fluid modelling approach is an approximation 
which consists in using continuous variables to characterize the flow of parts. Therefore, the 
quantity of material in each buffer Bi at any time t is a real number taking its value in the 
interval [0, Ni].
The DDX algorithm [51] is the quickest and most reliably convergent algorithm for solving 
decomposition-type equations. In our optimal design problem, the DDX algorithm can be 
used to solve the decomposition equations for each configuration. Let recall that in our 
analytical method the DDX algorithm is applied after approximating each set of parallel 
machines as a single machine and transforming the resulting non-homogenous production 
line into an approximate equivalent homogenous line. For more details about DDX 
algorithm, the reader is referred to [51]. 

4.4. The hybrid ant colony optimization (HACO) and the simulated annealing 

4.4.1. Applying ACS to select machines and buffers: the general algorithm 

Following [21], with respect to the problem of selecting machines and buffers in a series-
parallel line, each ant is an agent that leaves a pheromone trail, called a trace, on the edges 
of a graph representing the problem. To represent our problem as such a graph, we 
introduce the following sets of nodes and edges [56] :  
• Three sets of nodes:
1. The first set of nodes (N1) represents the components and the buffers. 
2. The second set (N2) represents the versions of elements available for each component 

and buffer. 
3. The third set of nodes (N3) represents, for each component, the numbers of elements 

which can be used in parallel. For example, if the maximum number of elements in 
parallel is two, the set N3 will be given by two nodes corresponding to one element and 
two parallel elements. 
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• Two sets of edges:
1. The first set of edges is used to connect each node in the set N1 to the corresponding 

nodes in N2.
2. The second set of edges is used to connect some nodes in N2 to the nodes in N3.
Informally, our algorithm works as follows: m ants are initially positioned on a node 
representing a component. Each ant represents one possible structure of the entire system. 
This entire production line structure is defined by the vectors f, h and r. Each ant builds a 
feasible solution (called a tour) to our problem by repeatedly applying three different 
stochastic greedy rules (i.e., the state transition rules). While constructing its solution, an ant 
also modifies the amount of pheromone on the visited edges by applying the local updating 
rule. Once all ants have terminated their tour, the amount of pheromone on edges is 
modified again (by applying the global updating rule). Ants are guided, in building their 
tours, by both heuristic information (they prefer to choose "less expensive and more efficient 
edges"), and by pheromone information. 
Note that when an ant builds a solution, it can be feasible or unfeasible. When the obtained 
solution is unfeasible, it is automatically rejected and it is not taken into account in the 
comparison with the other feasible solutions obtained by the other ants. It should be noted 
also that the global update of the pheromone is done only for the best obtained feasible 
solution. 
In the following we discuss the state transition rules, the global updating rule, and the local 
updating rule. 
State transition rules 
In the above algorithm, at each step of the construction process, ants use: (1) pheromone 
trails (denoted by ) to select the versions of machines and buffers and the number of 
machines connected in parallel; (2) a problem-specific heuristic information (denoted by ).

The value of depends of the nature of the node (i.e. machine's version or buffer's version). 

Note that the choice of the number of machines to be connected in parallel is not function of 
the heuristic information .

An ant positioned on node i (representing a machine or a buffer) chooses the version j (j= hi

if i is a machine and j =fi if i is a buffer) according to following: 

(25)

where  is the set of nodes representing the available versions for node i ( ={ 1,...,Hi} if i is a 
machine or ={1,... ,Fi} if i is a buffer). 
And J is a random variable selected according to the probability distribution given by: 

(26)

In the above equations (25) and (26),  and  are parameters that control the relative weight 
of the pheromone ( ) and the local heuristic ( ), respectively. The value of depends on 
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the type of a given node. The variable q is a random number uniformly distributed in [0, 1]; 
and q0 is a parameter (0 q0  1) which determines the relative importance of exploitation 

versus exploration    if i represents a machine and  represents a buffer.

Similarly, when an ant is positioned on node i representing a version of a machine, it has to 
select a number j of machines to be connected in parallel. In this case, the used rule is similar 
to (7) and (8) except for the heuristic information which is set to 1 and  = {1,..., Ri}. 
Global updating rule 
Once all ants have built a complete solution, pheromone trails are updated. Only the 
globally best ant (i.e., the ant which constructed the best design solution from the beginning 
of the trial) is allowed to deposit pheromone. A quantity of pheromone  is deposited on 
each edge that the best ant has used, where the indices i and j refer to the edges visited by 
the best ant. The quantity  is given by the total production rate PTbest of the design 
feasible solution constructed by the best ant. Therefore, the global updating rule is: 

(27)

where 0 < < 1 is the pheromone decay parameter representing the evaporation of trail. 
Global updating is intended to allocate a greater amount of pheromone to greater design 
solution. Equation (27) dictates that only those edges belonging to the globally best solution 
will receive reinforcement. 
Local updating rule 
While building a solution of the problem, ants visit edges on the graph G, and change their 
pheromone level by applying the following local updating rule: 

(28)

where  is the initial value of trail intensities. 
The application of the local updating rule, while edges are visited by ants, has the effect of 
lowering the pheromone on visited edges. This favours the exploration of edges not yet 
visited, since the visited edges will be chosen with a lower probability by the other ants in 
the remaining steps of an iteration of the algorithm. 
Improving constructed solutions 
As said before, it is well known that the performance of ACS algorithms can be greatly 
improved when coupled to local search algorithms [2]. Following this idea again, an 
improvement procedure is included in our ACS  algorithm, once all ants have terminated 
their tour and before applying the global updating rule.  
This procedure consists of two steps: 
1. The remaining budget (the amount not used by the ant) of the obtained structure is first 

used to improve the solution. In fact, some generated feasible solutions do not use the 
entire available budget. The procedure improves the initial solution by using this 
remaining budget to increase the number of machines connected in parallel. 

2. In this step, two types of evaluation are performed depending of the nature of the 
component (i.e. machine or buffer). For each pair of components representing the 
machines, the number of machines is changed by adding one for the first component 
and subtracting one for the second component. In the case of buffers, the algorithm 
proceeds to change in turn each pair of chosen versions by another pair. 
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The above steps are illustrated in the following example. Let us consider a series-parallel 
line with 3 machines (5 available versions for each machine) and 2 buffers (6 available 
versions for each buffer). Suppose that the solution at a given cycle is f = {3, 2}, h = {2, 1, 1} 
and r = {2, 3, 3}. The improvement procedure will evaluate the structures with the following 
numbers of parallel machines: 

r ={1,4,3}, r ={1,3,4}, r ={2,2,4}, r ={3,2,3}, r ={3,3,2} and r ={2,4,2}, 
and the following versions of buffers: 

f = {2,3} and f = {4,1}. 
Note finally that when this improvement procedure is used, only the neighbouring feasible 
solutions are evaluated and compared with the current solution. 

4.4.2. Simulated annealing for the optimal design of series-parallel lines 

The simulated annealing (SA) exploits the analogy between the way in which a metal cools 
and freezes into a minimum crystalline energy and the search for a minimum in a more 
general energy. The connection between this algorithm and mathematical minimization was 
first noted by [57], but it was Kirckpatrick et al. in 1983 [50] who proposed that it forms the 
basis of optimization technique for combinatorial problems. 
The simulated annealing technique is an optimization method suitable for combinatorial 
minimization problems. A new solution is generated and compared against the current 
solution. The new solution is accepted as the current solution if the difference in quality 
does not exceed a dynamically selected threshold. The solutions corresponding to larger 
increases in cost have a small probability of being accepted. A parameter that regulates the 
threshold is called the temperature and the function that determines the values for the 
temperature over time is called the cooling scheduling. The temperature decreases over time 
to decrease the probability of non improving moves. 
Initial feasible solution 
The initial feasible solution can be generated in many ways. We tried two generation 
methods. The first one generates a feasible initial solution by taking the least expensive 
solution (i.e. only one machine in each component and version 1 for all buffers and 
machines). The second way starts with the least expensive solution and tries to improve it 
by an iterative improvement procedure. The experimental tests show that the first method is 
better.
Neighbouring solution 
There are many ways to define neighbourhood for this problem. On the one hand, two types 
of neighbourhood structures have been tested. Regarding the number of machines in 
parallel for example, the first type was adding or subtracting one machine. The second one 
consisted in choosing a random number of machines in parallel. This kind of 
neighbourhood move has been proposed also in [58] when solving the buffer allocation 
problem. The carried out experiments showed that the second way is slightly more effective. 
On the other hand, the versions of the machines are indexed in ascending order of the 
production rate P(hi). 
Our adopted neighbouring structure can be summarized by the following steps:  
Step 1.
Randomly select a component COMP representing either a machine or a buffer.  
Step 2.
If COMP = Machine, randomly select one of these two actions: 
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Action 1: Change the number of machines in parallel by choosing a random number 
less than kmax (kmax is the maximum number of machines allowed to be 
connected in parallel). 

Action 2: Change      the      version      of      machine      VERSION(Machine)      by 
VERSION(Machine)+l or VERSION(Machine)-1. 

If COMP = Buffer, change its version VERSION(Buffer) by VERSION(Buffer)+l or 
VERSION(Buffer)-1. 
When a neighbour solution is randomly selected, it can be either feasible or unfeasible. If the 
solution is unfeasible, it is automatically rejected without using the criterion of acceptance 
and the algorithm passes to the next iteration. 
Before introducing the numerical results, it should be noted that it would be straightforward 
to iterate the improvement procedure until no further improvements are found, i.e. to turn it 
into a local hill-climber. The coupling of a local search procedure such as the hill-climbing 
with the ACES may give a good idea on the quality of the obtained solutions. However, this 
will increase considerably the total computation time. Because the calculation of the 
objective function depends greatly on the convergence of the DDX algorithm whose time is 
not negligible, we proposed a local search procedure which does not require much 
evaluations of the objective function as the hill-climbing. 
Numerical results 
To prove the efficiency of our algorithm when combined with the local search, we proposed 
four examples of production line with respectively 4, 10, 15 and 20 components. Tables A.1-
A.7 (in Appendix) show the corresponding data. The versions are indexed in ascending 
order of the production rate P(hi). The available budgets are respectively 160$, 300$, 450$ 
and 750$ and the maximum number of machines allowed to be connected in parallel is 3 for 
the first example and 4 for the other examples. The search space size is respectively larger 
than 5.5xl05, 2.684xl018, 8.796xl027 and 2.88 x 1037. All the algorithms were implemented 
using MATLAB on a PC with 1.8 GHz processor. 

Table 1. Parameters data for three typical examples taken from [52] 
(*) = 1 when the node i of equations (25) and (26) is a machine and (*) = 2 otherwise

We implemented the simulated annealing and ACS algorithm, and we ran simulations to set 
the parameters. For the ACS algorithm, the parameters considered are those that effect 
directly or indirectly the computation of the probability in formulas (25) and (26) (i.e. , ,

,  and q0). We tested several values for each parameter, while all the others were held 
constant (over ten simulations for each setting in order to achieve some statistical 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 494

information about the average evolution). Based on these initial experiments the values 
found to be most appropriate are determined. Furthermore, in all our experiments, the 
number of ants is set to 5. Note that the ACS is not very sensitive to changes in these values, 
and tested well for quite a range of them. The parameters considered for the simulated 
annealing are the initial temperature T, length of the inner loop, the final temperature Tmin,
the maximum of success solution Vmax and the cooling rate c. Initially, the temperature T is 
set to a sufficiently high value to accept all solutions during the initial phase of the 
simulated annealing. The cooling rate c should be generally greater than 0.7. Table 1 shows 
the values of all the parameters considered in the three algorithms. 
Each algorithm was tested by performing ten trials. Figures 2 to 5 show the highest 
throughput versus the number of evaluations. By 6000, 200.000, 250.000 and 400.000 
evaluations of throughput, respectively, for example 1, 2, 3 and 4, the highest throughput 
has been leveled out. These numbers of evaluations are used to assess the performance of 
the algorithms. 

Figure 2. Convergence results for example 1 

Figure 3. Convergence results for example 2 
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Figure 4. Convergence results for example 3 

Figure 5. Convergence results for example 4 

The convergence curves in figures 2 to 5 show that the ACS algorithm performs better when 
coupled with the improvement procedure. Generally, the convergence is faster and the 
quality is better than the other algorithms. The ACS algorithm when coupled with the local 
improvement procedure starts with a good solution, because the initial solutions built by the 
ants are improved by the procedure at the first iteration and before being reported in the 
graph. It is important to note that all the evaluated solutions are taken into account 
including those generated by the local improvement procedure. The results obtained by 
simulated annealing and ACS without the improvement procedure are fairly similar in the 4 
examples.
The results obtained after 10 trials are given in tables 2 and 3. The solutions obtained by the 
ACS when coupled with the improvement procedure are the best obtained solutions. The 
application of the improvement procedure with the ACS improves the quality of solutions 
and the time required to produce near optimal solutions. Table 6 shows that the best results 
obtained by the simulated annealing and ACS (without the improvement procedure) are 
almost similar. However, we remark that: 
(i)  The mean values of the results obtained by the simulated annealing are clearly better 

than those obtained by the ACS algorithm. 
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(ii)  The execution times of simulated annealing and ACS when coupled with the 
improvement procedure are lower than the execution time of ACS alone. For instance, 
in example 4 the mean execution time is 3960 seconds for ACS alone and it is about 1172 
and 2030 seconds for SA and ACS coupled with the improvement procedure, 
respectively.

PTmax CT($) H r f

Example 1 4.7074 160 (1,3,1,1) (3,3,3,3) (2,1,2)

Example 2 3.2467 250 (1,1,1,1,5,5,1,2,1,2) (2,2,2,3,1,1,2,1,1,1) (1,1,1,1,3,1,1,1,1)

Example 3 4.4406 450 (1,1,1,1,1,1,1,1,1,1,1,1,2,1,1) (3,2,2,4,2,2,2,2,2,2,2,2,4,2,2) (1,1,2,1,1,1,1,1,1,1,1,2,1,1)

Example 4 3.8991 750 (2,4,3,1,5,4,2,4,1,2,1,2,1,2,1,1,2,3,4,2) (3,2,2,4,2,2,2,2,4,2,3,2,3,2,4,3,2,2,2,2) (1,2,2,1,1,3,1,2,2,1,1,1,1,1,1,2,1,1,1)

Table 2. Results for examples 1, 2, 3 and 4 

Simulated annealing ACS ACS with improving procedure 

Min Mean STD Max tmea Min Mean STD Max tmea Min Mean STD Max tmea

Example 1 4.7074 4.7074 0 4.7074 <1 4.7074 4.7074 0 4.7074 <1 4.7074 4.7074 0 4.7074 <1

Example 2 3.1162 3.1694 0.0478 3.2467 352s 3.1162 3.1291 0.0522 3.2282 1130s 3.2452 3.2463 0.0005 3.2467 186s 

Example 3 3.5855 3.7107 0.1243 3.8282 933s 3.5855 3.6649 0.1411 3.9738 1644s 3.8282 4.0746 0.1274 4.4406 788 s 

Example 4 2.9096 3.0663 0.1252 3.2206 1172s 2.4375 2.9607 0.3082 3.2325 3960s 3.2169 3.4577 0.2154 3.8991 2030s 

Table 3. Results for examples 1, 2, 3 and 4 

In order to compare the performance of the three algorithms, the stopping criterion is the 
number of evaluated solutions. The computation time of the ACS algorithm, for the same 
number of evaluated solutions, is higher than that of the other algorithms. This is because 
the ACS algorithm constructs an entire solution (i.e., selects versions and number of machines 
for each sub-system), at each iteration and for each ant. It implies that a complete loop is 
used. Thus, each solution construction requires considerable computation time. On the other 
hand, when the ACS is coupled with the improvement procedure, each generated solution 
by an ant can be improved by evaluating the neighbour solutions while carrying out minor
changes in the current solution. Consequently, since it does not require a complete construction of 
the solution, the computation time is decreased. On the other hand, the simulated annealing 
algorithm constructs the solutions by making minor changes in the current solutions, 
requiring less computation time than the ACS algorithm when coupled or not with the 
improvement procedure. 
Additional tests 
A set of 10 test instances are also randomly generated for n = 20 and used to evaluate the 
performance of the proposed algorithms. Note that the parameters used for these 10 test 
instances are those set by using example 4 as a typical problem (see Table 3, for n = 20). By 
running the algorithms without further tuning on the 10 test instances, we avoid any 
parameters over-fitting. 
The proposed algorithms are evaluated in terms of solutions quality. For each instance, five 
trials are performed. It has been observed again for these randomly generated instances that 
the ACS coupled with the Improvement procedure (ACS-I) out-performs ACS and SA 
algorithms. 
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5. Conclusion 

Three optimal design problems were studied in this chapter. The first problem is related to 
the reliability optimization of series systems with multiple-choice and budget constraints. 
The second problem concerns the redundancy allocation problem of series-parallel systems, 
while the third deals with the selection of machines and buffers in unreliable series-parallel 
production lines. As the formulated problems are complicated combinatorial optimization 
ones, an exhaustive examination of all possible solutions is not realistic, considering 
reasonable time limitations. Because of this, we developed efficient heuristics to solve the 
formulated problems. This heuristic was inspired by the ant system meta-heuristic. The 
experimental results showed that the optimal or nearly optimal solutions are obtained very 
quickly. Through several numerical examples, the effectiveness of HACO with respect to the 
quality of solutions and the computing time will be discussed by performing comparisons 
with others approaches based on mate-heuristics. 

6. References 

Ait-Kadi D, Nourelfath M. Availability optimization of fault-tolerant systems. Int Conf Ind 
Engng Prod Manage (IEPM'2001) Quebec 2001; August. [1] 

Dorigo M, Stutzle T. The  ant  colony  optimization  metaheuristic:  Algorithms, applications 
and advances. Handbook of Metaheuristics 2001: F. Glover and G. Kochenberger. [2]      

Garey MR, Johnson DS. Computers and Intractability. San Francisco:Freeman, 1979. [3]      
Liang YC, Smith AE. An ant system approach to redundancy allocation.  Proceedings of the 

1999 Congress on Evolutionary Computation, 1999 (CEC 99);2: 1999 -1484. [4]      
Nauss RM. The 0-1 knapsack problem with multiple choice constraints. European Journal of 

Operational Research 1978. p 121-131. [5]      
Nourelfath M, Nahas N. Quantized Hopfield networks for reliability optimization. Reliab 

Engng Sys Safety, Volume 81, Issue 2, pages 191-196. [6]      
Sinha P, Zoltners AA. The multiple choice knapsack problem. Operations Research 1979. p 

503-515. [7]     
Sung CS, Lee HK. A branch-and-bound approach for spare unit allocation in a series system. 

European Journal of Operational Research 1994. p 217-232. [8]      
Sung CS, Cho YK. Reliability optimization of a series system with multiple-choice and 

budget constraints. European Journal of Operational Research 2000. p 159-171. [9]      
Yang S, Dingwei W. Constraint satisfaction adaptive neural network and heuristics 

combined approaches for generalized job-shop scheduling. IEEE Transactions on 
Neural Networks 2000; ll(2):474-486. [10]    

Nahas N, Nourelfath M. Ant system for reliability optimization of a series system with 
multiple-choice and budget constraints. Reliab Eng Syst Saf 2005;87(1):1-12. [11] 

Bellman RE, Dreyfus E. Dynamic programming and reliability of multi-component devices. 
Operations Research 1958;6: 200-206. [12]    

Besteo MD, Stutzle T, Dorigo M. Ant colony optimization for the total weighted tardiness 
problem. Proc. 6th Int. Conf. Parallel Problem Solving From Nature (PPSN VI), Berlin, 
2000; pp. 611-620. [13]    

Bulfin RL, Liu CY. Optimal allocation of redundant components for large systems. IEEE 
Transactions on Reliability 1985;34: 241-247. [14]    



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 498

Bullnheimer B, Hartl RF, Strauss C. Applying the Ant System to the vehicle Routing 
problem. 2nd Metaheuristics International Conference (MIC-97), Sophia-Antipolis, 
France, 1997; pp. 21-24. [15]    

Burke EK, Bykov Y, Newall JP, Petrovic S. A New Local Search Approach with Execution 
Time as an Input Parameter. Computer Science Technical Report No. NOTTCS-TR-
2002-3. School of Computer Science and Information Technology. University of 
Nottingham. [16]    

Chern MS. On the computational complexity of reliability redundancy allocation in a series 
system. Operations Research Letter 1992; 11:309-15. [17]    

Coit DW, Smith AE. Reliability Optimization of Series-Parallel Systems Using a Genetic 
Algorithm. IEEE Transactions on Reliability 1996;45(2): 254-260. [18]    

Costa D, Hertz A. Ants can color graphs. J. Oper. Res. Soc. 1997; 48: 295-305. [19]    
Dorigo M. Optimization, Learning and Natural Algorithms. Ph.D Thesis, Politecnico di 

Milano, Italy, 1992. [20]    
Dorigo M, Maniezzo V, Colorni A. The Ant System: Optimization by a colony of 

cooperating agents. IEEE Transactions on Systems, Man and Cybernetics- Part B 
1996; [21]    

Dorigo M, Gambardella LM. Ant colonies for the traveling salesman problem. BioSystems
1997;43: 73-81. [22]    

Dorigo M, Gambardella LM. Ant colony system: a cooperative learning approach to the 
traveling salesman problem. IEEE Transactions on Evolutionary Computation 1997; 
1(1): 53-66. [23]    

Di Caro G, Dorigo M. Mobile Agents for Adaptive Routing. Proceedings for the 31st Hawaii 
International Conference on System Sciences, Big Island of Hawaii, January 6-9, 1998, 
pp. 74-83. [24]    

Fyffe DE, Hines WW, Lee NK. System Reliability Allocation And a Computational 
Algorithm. IEEE Transactions on Reliability 1968; vol. R-17(2):64-69. [25]    

Gambardella LM, Taillard E, Dorigo M. Ant Colonies for the Quadratic Assignment 
Problem. Journal of the Operational Research Society 1999; 50:167-176. [26]    

Gen M, Ida K, Tsujimura Y, Kim CE. Large scale 0-1 fuzzy goal programming and its 
application to reliability optimization problem. Computers & Industrial Engineering
1993; 24: 539-549. [27]    

Ghare M, Taylor RE. Optimal redundancy for reliability in series system. Operations research
1969;17:838-847. [28]    

Hsieh YC. A linear approximation for redundant reliability problems with multiple 
components choices. Computers and Industrial Engineering 2002; 44:91-103. [29]    

Glover F. Future paths for integer programming and links to artificial intelligence. 
Computers & Operations Research 1986;13:533-549. [30]    

Kulturel-Konak S, Smith AE, Coit D.W. Efficiently solving the redundancy allocation 
problem using tabu search. HE transactions 2003;35: 515-526. [31]    

Kuo W, Prasad VR. An annotatedoverview of system-reliability optimization. IEEE 
Transactions on Reliability 2000;49(2): 176-87. [32]    

Levitin G, Lisnianski A, Ben-Haim H, Elmakis D. Redundancy optimization for series- 
parallel multi-state systems. IEEE Transactions on Reliability 1998;47(2): 165-172. [33]    



Ant colonies for performance optimization 
of multi-components systems subject to random failures 499

Misra KB, Sharma U. An Efficient Algorithm to Solve Integer-Programming Problems 
Arising in System-Reliability Design. IEEE Transactions on Reliability 1991;40(1): 81-
91. [34]    

Nakagawa Y, Miyazaki S. Surrogate Constraints Algorithm for Reliability Optimization 
Problems  with Two Constraints.  IEEE Transactions  on Reliability 1981;R-30(2): 175-
180. [35]    

Nourelfath M, Nahas N, Ait-Kadi D. Optimal design of series production lines with 
unreliable machines and finite buffers. Journal of Quality in Maintenance Engineering
2005;11(2): 121-138. [36]    

Painton L, Campbell J. Genetic Algorithms in Optimization of System Reliability. IEEE 
Transactions on Reliability 1995;44(2): 172-178. [37]    

Schoofs L, Naudts B. Ant colonies are good at solving constraint satisfaction problems. Proc.
2000 Congress on Evolutionary Computation, San Diego, CA, July 2000, pp. 1190-1195. 
[38]

Tillman FA, Hwang CL, Kuo W. Optimization techniques for system reliability with 
redundancy- a review. IEEE Transaction on Reliability 1977;R-26(3): 147-155. [39]    

Tillman FA, Hwang C-L,  Kuo W. Determining  Component Reliability and Redundancy for 
Optimum System Reliability.  IEEE Transactions  on Reliability 1977;R-26(3): 162-165. 
[40]

Yalaoui A, Chatelet E, Chu C. A New Dynamic Programming Method for Reliability and  
Redundancy  Allocation  in  a  Parallel-Series   System.  IEEE  transactions  on 
Reliability 2005; 54 (2):254-261. [41]  

Yokota T, Gen M, Ida K. System reliability of optimization problems with several failure 
modes by genetic algorithm. Japanese Journal of Fuzzy Theory and Systems 1995; 
7(l):117-35. [42]    

Yokota T, Gen M, Li YX. Genetic algorithm for nonlinear mixed-integer programming and 
its applications. Computers and Industrial Engineering 1996;30(4):905-17. [43]    

Wagner IA, Bruckstein AM. Hamiltonian(t)—an ant inspired heuristic for recognizing 
Hamiltonian graphs. Proc. 1999 Congress on Evolutionary Computation, Washington, 
D.C., July 1999, pp. 1465-1469. [44]    

Dallery, Y. and Gershwin, S.B., 1992, Manufacturing Flow Line Systems: A Review of 
Models and Analytical Results, Queueing Systems theory and Applications, Special 
Issue on Queueing Models of Manufacturing Systems, 12(1-2), 3-94. [45]    

Gershwin,  S.B. and Schor, J.E., 2000, Efficient Algorithms for Buffer  Space Allocation, 
Annals of Operations Research, 93, 117-144. [46]    

Buzacott, J.A.  1967, Automatic Transfer Lines with Buffer Stocks, International Journal of 
Production Research, 5(3), 182-200. [47]    

Buzacott, J.A., 1968, Prediction of Efficiency of Production Systems without Internal Storage, 
International Journal of production Research, 6(3), 173-188. [48]     

Gershwin, S.B., 1987, An Efficient Decomposition Algorithm for The Approximate 
Evaluation of Tandem Queues with Finite Storage Space and Blocking, Operations 
Research, 35, 291-305. [49]    

Kirckpatrick, S., GERLATT C.D. Jr and VECCHI M.P.,  1983, Optimization by Simulated 
Annealing, Science, 220, 671-680. [50]    



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 500

DALLERY, Y., DAVID, R. and Xffi, X.L., 1988, An Efficient Algorithm for Analysis of 
Transfer Lines with Unreliable machines and Finite Buffers, HE transactions, 20(3), 
280-283. [51]    

Burman, M.H., 1995, New Results in Flow Line Analysis, Ph. D. Thesis, MIT, Cambridge MA. 
[52]    

Le Bihan, H. and Dallery, Y., 1997, Homogenisation Techniques for the Analysis of 
Production Lines  with Unreliable Machines Having Different Speeds, European
Journal of Control, 3, 200-215. [53]    

Liu X-G and Buzacott, J.A., 1990, Approximate models of assembly systems with finite 
banks, European Journal of Operational Research, 45, 145-154. [54]   

N. Nahas, D., M. Nourelfath et Ait-Kadi (2007). Coupling ant colony and the degraded 
ceiling algorithm for the redundancy allocation problem of series-parallel systems. 
Reliability Engineering and System Safety. Volume 92, Issue 2, Pages 211-222. [55]  

N. Nahas, M. Nourelfath et D. Ait-Kadi (2006). Selecting machines and buffers in unreliable 
series-parallel production lines. International Journal of Production Research.
(Submitted). [56]    

PENCUS, M., 1970, A monte carlo method for the approximate solution of certain types of 
constrained optimization problems, Oper. Rese., 18, 1225-1228. [57]    

SPINELLIS, D. and PAPADOPOULOS, C.T., 2000, A simulated annealing approach for 
buffer allocation in reliable production lines. Annals of Operations Research, 93, 373-
384. [58] 

7. Appendix 

Table A. 1. Data for example 1 

Table A.2. Data for example 1 
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Table A.3. Data for example 2 

Table A.4. Data for example 2 
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Table A.5. Data for example 3 

Table A.6. Data for example 3 
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Table A.7. Data for example 4 
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Table A. 8. Data for example 4 
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