We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter 3

Generalized Regression Neural Networks with

Application in Neutron Spectrometry

Ma. del Rosario Martinez-Blanco,

Victor Hugo Castafeda-Miranda,

Gerardo Ornelas-Vargas,

Héctor Alonso Guerrero-Osuna,

Luis Octavio Solis-Sanchez,

Rodrigo Castafieda-Miranda,

José Maria Celaya-Padilla, Carlos Eric Galvan-Tejada,
Jorge Isaac Galvan-Tejada,

Héctor René Vega-Carrillo,

Margarita Martinez-Fierro, Idalia Garza-Veloz and
Jose Manuel Ortiz-Rodriguez

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64047

Abstract

The aim of this research was to apply a generalized regression neural network (GRNN)
to predict neutron spectrum using the rates count coming from a Bonner spheres system
as the only piece of information. In the training and testing stages, a data set of 251
different types of neutron spectra, taken from the International Atomic Energy Agency
compilation, were used. Fifty-one predicted spectra were analyzed at testing stage.
Training and testing of GRNN were carried out in the MATLAB environment by means
of a scientific and technological tool designed based on GRNN technology, which is
capable of solving the neutron spectrometry problem with high performance and
generalization capability. This computational tool automates the pre-processing of
information, the training and testing stages, the statistical analysis, and the post-
processing of the information. In this work, the performance of feed-forward backpro-
pagation neural networks (FFBPNN) and GRNN was compared in the solution of the
neutron spectrometry problem. From the results obtained, it can be observed that

I NT E C H © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.

50 Artificial Neural Networks - Models and Applications

despite very similar results, GRNN performs better than FFBPNN because the former
could be used as an alternative procedure in neutron spectrum unfolding methodolo-
gies with high performance and accuracy.

Keywords: artificial intelligence, statistical artificial neural networks, neutron spec-
trometry, unfolding codes, spectra unfolding

1. Introduction

Artificial Intelligence or Al is one of the newest fields of intellectual research that attempts to
understand the intelligent entities [1]. Intelligence could be defined by the properties it exhibits:
an ability to deal with new situations, to solve problems, to answer questions, to devise plans,
and so on [2]. The phrase Al was coined by John McCarthy in the 1940s and to date evades a
concise and formal definition [3]. A simple definition might be: Al is the study of systems that
act in a way, that to any observer would appear to be intelligent, and involves using methods
based on the intelligent behavior of humans and other animals to solve complex problems.

Al has been classified into three periods: the classical, the romantic, and the modern periods
[1-4]. The major area of research covered under the classical period, in the 1950s, was intelligent
search problems involved in game-playing and theorem proving. In the romantic period, from
the mid-1960s until the mid-1970s, people were interested in making machines “understand,”
by which they usually meant the understanding of natural languages. The modern period
started from the latter half of 1970s to the present day and includes research on both, theories
and practical aspects of Al This period is devoted to solving relatively simple or complex
problems that are integral to more complex systems of practical interest.

The aim of the study of Al is to use algorithms, heuristics, and methodologies based on the
ways in which the human brain solves problems. In the most recent decades, Al areas of
particular importance include multi-agent systems; artificial life; computer vision; planning;
playing games, chess in particular; and machine learning [5-6].

1.1. Machine learning and connectionism

Learning and intelligence are intimately related to each other. Learning is an inherent charac-
teristic of human beings [3]. By virtue of this, people, while executing similar tasks, acquire
the ability to improve their performance with the self-improvement of future behavior based
on past experience. In most learning problems, the task is to learn to classify inputs according
to a finite, or sometimes infinite, set of classifications [2]. Typically, a learning system is
provided with a set of training data, which have been classified by hand. The system then
attempts to learn from these training data how to classify the same data, usually a relative easy
task, and also how to classify new data that are not seen [7].

The principles of learning can be applied to machines to improve their performance [8]. A
system capable of learning is intelligent and is usually expected to be able to learn based on

Generalized Regression Neural Networks with Application in Neutron Spectrometry
http://dx.doi.org/10.5772/64047

past experience. Such learning is usually referred to as “machine learning” (ML) which is an
important part of Al and can be broadly classified into three categories: supervised, unsuper-
vised, and reinforcement learning.

Supervised learning requires a trainer who supplies the input-output training instances. The
learning system adapts its parameters using some algorithms to generate the desired output
patterns from a given input pattern. In absence of trainers, the desired output of a given input
instance is not known; consequently, the learner has to adapt its parameters autonomously.
Such type of learning is termed unsupervised learning.

Reinforcement learning bridges the gap between the supervised and unsupervised categories.
In reinforcement learning, the learner does not explicitly know the input-output instances, but
it receives some form of feedback from its environment. The feedback signals help the learner
to decide whether its action on the environment is rewarding or punishable. The learner thus
adapts its parameters based on the states (rewarding/punishable) of its actions.

Recently, the connectionist approach for building intelligent machines with structured models
like artificial neural networks (ANN) is receiving more attention [9]. Connectionist models are
based on how computation occurs in biological neural networks. Connections play an essential
role in connectionist models, hence the name connectionism [10]. The term connectionism was
introduced by Donald Hebb in the 1940s, and it is a set of approaches in the fields of Al that
models mental or behavioral phenomena as the emergent processes of interconnected
networks of simple units [11]. The central connectionist principle is that mental phenomena
can be described by interconnected networks of simple and uniform units.

O } Unit

Figure 1. The unit: the basic information processing structure of a connectionist model.

Units are to a connectionist model what neurons are to a biological neural network: the basic
information processing structures. Since the flow of information in a network occurs through
its connections, the link through which information flows from one member of the network to
the next is known as synapses. Synapses are to neural networks what an Ethernet cable or
telephone wire is to a computer network. Without synapses from other neurons, it would be
impossible for a neuron to receive input and to send output from and to other neurons,
respectively. Given the crucial role that connections play in a network of neurons, synapses in
a biological neural network matter as much as the neurons themselves [12].

Most connectionist models are computer simulations executed on digital computers. In a
connectionist computer model, units are usually represented by circles as shown in Figure 1.
Because no unit by itself constitutes a network, connectionist models typically are composed
of many units as illustrated in Figure 2. However, neural networks are organized in layers of
neurons. For this reason, connectionist models are organized in layers of units as shown in
Figure 3. Figure 3 is still not a network because no group of objects qualifies as a network

51

52 Artificial Neural Networks - Models and Applications

unless each member is connected to other members; it is the existence of connections that make
a network, as illustrated in Figure 4 [13].

> Unit

Figure 2. Connectionist model with 11 units.

00 Ve
000000}
0000 ju--

Figure 3. Connectionist model organized in layers.

Outputs

Units

Hidden
Units

Input
Units

Figure 4. Network connectionist model.

In Figure 4, it can be seen that network connections are conduits through which information
flows between the members of a network. In the absence of such connections, no group of

Generalized Regression Neural Networks with Application in Neutron Spectrometry
http://dx.doi.org/10.5772/64047

objects qualifies as a network. There are two kinds of network connections: input and output.
An input connection is a conduit through which a member of a network receives information.
An output connection is a conduit through which a member of a network sends information.
Although it is possible for a network connection to be both an input connection and an output
connection, a unit does not qualify as a member of a network if it can neither receive informa-
tion from other units nor send information to other units.

There are many forms of connectionism, but the most common forms use neural network
models [14]. The form of the connections and the units can vary from model to model as shown
in Figures 5-9, where it can be seen that any number of units may exist within each layer, and
each unit of each layer is typically linked via a weighted connection to each node of the next
layer. Data are supplied to the network through the input layer.

F---J a [--- Fa

Figure 5. Single-layered recurrent net with lateral feedback structure.

Depending on the nature of the problems, neural network models are organized in different
structural arrangements (architectures or topologies) [10]. The neural network architecture
defines its structure including the number of hidden layers, number of hidden nodes, and
number of nodes at the input and output layers. There are several types of ANN architectures.
As illustrated in Figures 5-9, most of the widely used neural network models can be divided
into two main categories: feed forward neural networks (FFNN) and feedback neural networks
(FBNN) [10-14].

Figure 6. Two-layered feed-forward structure.

53

54

Artificial Neural Networks - Models and Applications

As shown in Figures 6 and 8, FFNNs allow signals to travel one way only; data enters the
inputs and passes through the network, layer by layer, until it arrives at the output. There is
no feedback or loops between layers. These networks are extensively used in pattern recogni-
tion and classification. FBNN can have signals traveling in both directions by introducing loops
in the network as shown in Figures 5, 7, and 9. FBNNs are dynamic; their state changes
continuously until they reach an equilibrium point. They remain at the equilibrium point until
the input changes and a new equilibrium needs to be found.

Figure 7. Two-layered feedback structure.

Figure 8. Three-layered feed-forward structure.

Generalized Regression Neural Networks with Application in Neutron Spectrometry
http://dx.doi.org/10.5772/64047

Figure 9. Single-layered recurrent structure.

In most connectionist models, units are organized into three layers: an input layer, one or more
“hidden” layers, and an output layer [10-14]. Figures 4 and 8 show a 3-layered FFNN
consisting of 3 layers of units, where each unit is connected to each unit above it, and where
information flows “forward” from the network’s input units, through its “hidden” units, to its
output units. The nodes of the hidden layer process input data they receive as the sum of the
weighted outputs of the input layer. Nodes of the output layer process input data they receive
as the sum of the weighted output of the units within the hidden layers, and supply the system
output.

C START)
Reset back to first

F training pattern to try .
again

Any more
training patterns?

Store weights as
best set

Adjust weights
based on Increase epoch
backpropagation couter by | +
rule or similar,
calculate error l

Epochs <100?

D

Figure 10. Supervised learning of ANN.

As mentioned earlier, the principles of learning can be applied to machines to improve their
performance [15]. In FFNN, network learning is a very important process. The learning
situation can be divided into two major categories: supervised and unsupervised. With
supervised learning, the ANN must be trained before it becomes useful. Training consists of

55

56 Artificial Neural Networks - Models and Applications

presenting input and output data to the network. Figure 10 shows the distinguishing nature
of supervised neural network, which incorporates an external trainer in which input and
output are known, and its objective is to discover a relationship between the two. In this mode,
the actual output of ANN is compared to the desired output.

An important issue concerning supervised learning is the problem of error convergence: the
minimization of error between the desired and computed values. The performance of the
network is evaluated based on the comparison between the computed (predicted) output and
actual (desired) output value [10-15]. There are several types of measurements of prediction
accuracy; the most common measurements used are as follows:

1. Coefficient of determination (R?)

n oS _)7 2
R2 — Z;:l(i _) (1)
Zi:l(i Y)Z
2. Mean Square Error (MSE)
MSE =3 (7~) @
i=0
3. Root Mean Square Error (RMSE)
R
RMSE = {— >, - K)Z} 3)
nico
4. Mean Absolute Percentage Error (MAPE)
1 &Y -7,
MAPE% =—") |—*{x100
Y o 4)

where Y; is the actual value of output, 171. is the predicted value, and (n) is the number of

observations.

Unlike supervised learning, unsupervised neural network uses no external feedback and it is
based upon only local information. As can be seen from Figure 11, in unsupervised learning
only the input is known and the goal is to uncover patterns in the features of the input data.
It is also referred to as self-organization, in the sense that it self-organizes data presented to
the network and detects their emergent collective properties. Unsupervised learning’s goal is
to have the computer learn how to do something that we do not tell it how to do. The common
applications of unsupervised learning are classification, data mining, and self-organizing maps
(SOM), also called Kohonen Neural Network (KNN).

Generalized Regression Neural Networks with Application in Neutron Spectrometry

http://dx.doi.org/10.5772/64047
(START >

Reset back to first
training pattern to try

A 4
A

again
v
Any more No Increase epoch
o —_————— >
training patterns? couter by 1

e [

Adjust weights
based on Hebb’s roole or similar

Epochs <1007

lNo
o

Figure 11. Unsupervised learning of ANN.

In FENN with supervised training, two very different types of neural networks exist: FFNN
trained with Backpropagation (BP) algorithm (FFBPNN) and Statistical Neural Networks
(SNN) [10, 11, 14]. FFBPNNSs use equations that are connected using weighting factors [11].
The selection of the weighting factors makes these neural nets very powerful. The multilayer
perceptron (MLP) is the most common and successful neural network architecture with FFNN
topologies, while the most common supervised learning technique used for training artificial
neural networks is the multilayer backpropagation (BP) algorithm [10-15].

BP is a systematic method for training multilayer FFNN as shown in Figure 8. Since it is a
supervised training algorithm, both the input and the target patterns are given (Figure 10). For
a given input pattern, the output vector is estimated though a forward pass on the network.
After the forward pass is over, the error vector at the output layer is estimated by taking the
component-wise difference of the target pattern and the generated output vector. A function
of errors of the output layered nodes is then propagated back through the network to each
layer for adjustment of weights in that layer. The weight adaptation policy in BP algorithm is
derived following the principle of steepest descent approach of finding minima of a multi-
valued function.

BPFFNNSs consist of neurons organized into one input layer and one output layer and several
hidden layers of neurons as shown in Figure 8. Neurons perform some kind of calculation
using inputs to compute an output that represents the system. The outputs are given on to the
next neuron. An edge indicates to which neurons the outputis given. These arcs carry weights.

Generally, BP learning consists of two passes: a forward pass and a backward pass. In the
forward pass, an activity pattern is applied to the sensory nodes of the network. It is at last

57

58 Artificial Neural Networks - Models and Applications

that a set of outputs is produced as the actual responses of the network. During this path, the
synaptic weights are fixed. During backward pass, the synaptic weights are adjusted in
accordance with an error correction rule.

BPFFNNSs have the desirable characteristic of being very flexible. They can be used for pattern
recognition as well as for decision-making problems. Another advantage is that like for every
other neural network, the process is highly parallel and therefore the use of parallel processors
is possible and cuts down the necessary time for calculations. However, BPNNs have negative
characteristics. The training of the network can need a substantial amount of time [16]. The
size of the training data for BPFFNN has to be very large. In some instances, it is almost
impossible to provide enough training.

On the other hand, SNN5s use statistical methods to select the equations within the structure
and do not weigh these functions differently [17].

1.2. Statistical neural networks

SNNs are an important and very popular type of neural networks that mainly depend on
statistical methods and probability theory [18]. Three of the most important types of these
networks are Radial Basis Function Neural Network (RBFNNSs), Probabilistic Neural Network
(PNNs), and General Regression Neural Network (GRNNs) [19].

1.2.1. Radial basis function neural network

RBFNN was introduced by Broomhead and Lowe in 1988 and is a popular alternative to
FFBPNN [20]. The behavior of the network depends on the weights and the activation of a
transfer function F, specified for the units [21]. Activation functions are mathematical formulas
that determine the output of a processing node [22]. The activation function maps the sum of
weighted values passed to them by applying F into the output value, which is then “fired” on
to the next layer.

There are several kinds of transfer or activation functions, typically falling into four common
categories: Linear function (LF), Threshold function (TF), Sigmoid Function (SF), and Radial
Basis Function (RBF) [23]. RBFs are a special class of activation functions which form a set of
basis functions, one for each data set. The general form of RBF is:

G (X - 4) (5)

where G(.) is a positive nonlinear symmetric radial function (kernel); X is the input pattern and
u is the center of the function. Another important property of RBF is that its outputis symmetric
around the associated center p1. Thus, f(X;) can be taken to be a linear combination of the outputs
of all the basis functions:

Generalized Regression Neural Networks with Application in Neutron Spectrometry
http://dx.doi.org/10.5772/64047

f(x)=2 wG(X - u) (6)

There are several common types of radial basis functions represented in Table 1 [19-23]:

Function name Mathematical form
Thin plate spline G(x) = (x — u)*log(x — u)
Multi-quadratic

1 G(x) =\/(x—u)2 + o?

Inverse multi-quadratic 1

Vi —w? + o

2
G(x) = exp(— %)

g

G(x) =

Gaussian

Table 1. Types of radial basis functions.

where these function parameters are the center (u) and the radius (¢?). A Gaussian function,
also called “bell shaped curve” or normal distribution, is the most common applicable type of
RBEF. It is suitable not only in generalizing a global mapping but also in refining local features.
The Gaussian function tends to be local in its response and is biologically more acceptable than
other functions. RBF is unique, because unlike the others, it monotonically decreases with
distance from the center, and forms the classic bell shaped curve which maps high values into
low ones, and maps mid-range values into high ones. A plot of a Gaussian function is repre-
sented in Figure 12.

Jix)

(x=p)’

1 T

f(l':' = —FT—=F e
V2ro”

Figure 12. Plot representing a Gaussian function.

59

60 Artificial Neural Networks - Models and Applications

The mathematical form of this function for the case of a single variable is given by:

f(x)=—=e 7)
where

,qu(X)zj_w;(.f(x)dx @)

0'2=E(X—,u)2=J:(;(—y)2.f(x)dx ©)

u: is the mean (center) of the distribution.

0% is the variance (width or radius) of distribution.

Extending the formula (7) to multiple dimensions, we can get the general Gaussian probability
density:

fx)= —%(z - XN (x - /_1)] (10)

1
—_—€X]
Qo (

where p is the number of dimensions, u is the mean p-dimensional vector and X is the
covariance p X p matrix.

RBFNNSs are useful in solving problems where the input data are corrupted with additive noise
and can be used for approximating functions and recognizing patterns [24]. As shown in
Figure 13, the RBFNN has a feed forward architecture, and it is composed of many intercon-
nected processing units or neurons organized in three successive layers. The first layer is the
input layer. There is one neuron in the input layer for each predictor variable. The second layer
is the hidden layer. This layer has a variable number of neurons. Each neuron consists of a RBF
centered on a point with as many dimensions as there are predictor variables.

The standard euclidean distance is used to measure how far an input vector is located from
the center. The value coming out from the neuron in the hidden layer is multiplied by a weight
(W) associated with the neuron, also a bias value that is multiplied by a weight (W,), is passed
to the summation layer which adds up the weighted values and presents this sum as the
network outputs.

The training of RBFNNSs is radically different from the training of FFNNs [19-24]. RBFNN
training may be done in two stages: First, calculating the RBF parameters, including centers

Generalized Regression Neural Networks with Application in Neutron Spectrometry 61
http://dx.doi.org/10.5772/64047

and the scaling parameter. Various parameters, such as the number of neurons in the hidden
layer, the coordinates of the center of each hidden layer function, the radius (width) of each
function in each hidden unit, and the weights between the hidden and output units, are
determined by the training process; second, estimating the weights between the hidden and
output layers. Opposed to BPFFNN, in RBFNN training, there is no changing of the weights
with the use of the gradient method for function minimization. In RBFNNSs, training resolves
itself into selecting the centers and calculating the weights of the output neuron.

i = = —
g = = =

-l
20;

Bias (by)

Figure 13. Network architecture of RBFNN.

The center (1) and width radius (o) of the radial function and final weights are the parameters
of the model. Many algorithms have been designed to determine these parameters by mini-
mizing the error between the target and actual output. Determination of centers is important
for the success of the RBFNN and there are several methods to choose suitable centers for
network, such as random selection from data set, randomly fixed, and clustering approach.

Determination of the width is very important for the success of the RBENN. If the width values
are large, the model will not be able to closely fit the function; on the other hand, a large width
parameter would give better generalization but poorer output. A small width parameter gives
good recall of the training patterns but poor generalization, and the model will over fit the data
because each training point will have too much influence. There are several methods to

62 Artificial Neural Networks - Models and Applications

determine the width. Two of the common methods for width selection are fixed method and
distance averaging.

The number of hidden units is very important and plays a major role in RBFNN performance.
It is very difficult to find a suitable number of hidden units. If the number of hidden units is
too low, the network cannot reach a desired level of performance because of an insufficient
number of hidden neurons. Many researchers assumed that the number of hidden units is
fixed and is chose a priori.

There are several types of learning that can be used in RBFNNSs, such as General Regression
Neural Network (GRNN), Orthogonal Least Squares, K-Means Clustering, and P-Nearest
Neighbour.

1.2.2. Probabilistic neural network

Specht first introduced the probabilistic neural network (PNN) in the 1990s. It closely related
to “the Bayes Strategy for Pattern Classification” rule and Parzen nonparametric probability
density function estimation theory. It performs classification where the target variable is
categorical [19-24].

Input

Layer

Pattern

Layer

fulx) S failx) Summation
Layer

Output Output

unit
J Layer
Y(x)

Figure 14. Block diagram of a probabilistic neural network (PNN).

Generalized Regression Neural Networks with Application in Neutron Spectrometry 63
http://dx.doi.org/10.5772/64047

PNNs are often more accurate than FFNNs and it is usually much faster to train PNNs than
FFNNs. The greatest advantages of PNNs are the fact that the output is probabilistic which
makes interpretation of output easy, and the training speed. Training a PNN is very fast because
it requires that each pattern be presented to the network only once during training, unlike
BPFFNNSs, which require feedback of errors and adjusting weights and many presentations of
training patterns. These PNNs, with variation can be used for mapping, classification, and
associative memory. The greatest disadvantage is the network size since PNNs require more
memory space to store the model.

The general structure of PNN, which is presented in Figure 14, consists of four layers. The first
layer is the input layer. The input unit nodes do not perform any computation and simply
distribute the input to the neurons in the first hidden layer (pattern layer). There is one neuron
in the input layer for each predictor variable.

The second layer is the pattern layer. Each pattern unit represents information on one training
sample. Each pattern unit calculates the probability of how well the input vector fits into the
pattern unit. The neurons of the pattern layer are divided into K groups, one for each catego-
ry. The i-th pattern neuron in the k-th group computes its output using a Gaussian kernel with
the form:

1 (X_XAi)T_(X_XAi)

2no*)""? P 20°

Lau(X)= (11)

where:

i: is the pattern number.

p: denotes the dimension of the pattern vector x.

o: is the smoothing parameter of the Gaussian Kernel.
X, 1s the center of the kernel.

The third layer is the summation layer. In the summation layer, there is one pattern neuron for
each category of the target variable. The neurons of this layer compute the approximation of
the conditional class probability function through a combination of the previously computed
densities as the following equation:

T

3 1 1 o _(X_XAi) —(X—XA,.)
fi(X)= (270?)"" szzlexl’ 252 (12)

64 Artificial Neural Networks - Models and Applications

The fourth layer is the output layer (also called decision layer). At the output layer, we have a
hard-limiting threshold: (+1) whenever an input pattern X belongs to category (A), and (-1) if
it is from category (B).

The use of PNN is especially advantageous due to its ability to converge to the underlying
function of the data with only few training samples available. The additional knowledge
needed to get the fit in a satisfying way is relatively small and can be done without additional
input by the user. GRNN falls into the category of PNN. This neural network, like other SNNs,
needs only a fraction of the training samples a BPFFNN would need, mainly because the data
available from measurements of an instance is generally never enough for a BPFFNN. This
makes GRNN a very useful tool to perform predictions and comparisons of system perform-
ance in practice.

The invention of GRNN was a great turn in the history of neural networks. Researchers from
many fields including medicine, engineering, commerce, physics, chemistry, geology, statis-
tics, etc., benefited from this technique for their research.

1.2.3. Generalized regression neural network

GRNN is a type of supervised FFNN and is one of the most popular neural networks. Donald
F. Specht first introduced it in 1991. Specht’s GRNN is related to his probabilistic neural
network (PNN) classifier. Like PNN networks, GRNNs are known for their ability to train
quickly on sparse data sets. Rather than categorizing data like PNN, GRNN applications are
able to produce continuous valued outputs. An important by-product of the GRNN network
is Bayesian posterior probabilities. The training of GRNN networks is very fast because the
data only needs to propagate forward once, unlike most other BPNNs, where data may be
propagated forward and backward many times until an acceptable error is found [19-24].

GRNNs work well on interpolation problems. However, because they are function approxi-
mators, they tend to trade accuracy for speed. The GRNN is used for estimation of continuous
variables, as in standard regression techniques. It uses a single common radial basis function
kernel bandwidth (o) that is tuned to achieve optimal learning.

The regression performed by GRNN is in fact the conditional expectation of Y, given X =x. In
other words, it outputs the most probable scalar Y given specified input vector x. Let f(x, y) be
the joint continuous probability density function of a vector random variable, X, and a scalar
random variable, Y. Let x be a particular measured value of the random X. The regression of
Y given x (also called conditional mean of Y given x) is given by:

I:Y.f(x, Y)dy

E[Y/x]=] :Y. F(Y 1 x)dy = I oni

(13)

If the relationship between independent (X) and dependent (Y) variables is expressed in a
functional form with parameters, then the regression will be parametric. Without any real

Generalized Regression Neural Networks with Application in Neutron Spectrometry 65
http://dx.doi.org/10.5772/64047

knowledge of the functional form between the x and y, nonparametric estimation method will
be used. For a nonparametric estimate of f(x, y), we will use one of the consistent estimators
that is a Gaussian function. This estimator is a good choice for estimating the probability
density function, f, if it can be assumed that the underlying density is continuous and that the
first partial derivatives of the function evaluated at any x are small. The good choice for

probability estimator f (x,y) is based on sample values x; and y; of the random variables X and
Y is given by:

A 1 AN X-X)'(X-X Y-1y
f(x,y)=T%-—Zm{exP[‘(2)0(2 ’)}"p{(20;) }

(272_) o n

(14)

p: is the dimension of the vector variable.

n: is the number of training pairs (x; — v,).

o: is the single learning or smoothing parameter chosen during network training.
Y is desired scalar output given the observed input x;.

The topology of GRNN presented in Figure 15 consists of four layers: The first layer is the
input layer that is fully connected to the second layer. The input units are merely distribution
units, which provide all of the (scaled) measurement variables X to all of the neurons on the
second layer, the pattern units. The second layer is the first hidden layer (also called the pattern
layer). This layer consists of N processing elements or nodes, where N is the number of sample
within a training data set and each node represents the input vector, Xi, associated with the
vector assigned with the jth sample in training data. In each node, each input vector is
subtracted from the vector assigned to the node, Xj. This difference is then squared by the
node. The result is fed into a nonlinear kernel, which is usually an exponential function. The
pattern unit outputs are passed on to the summation units.

Note that the second hidden layer always has exactly one more node than the output layer.
When you need a multidimensional (vector) output, the only change to the network is to add
one additional node to the second hidden layer, plus an additional node in the output layer
for each element of the output vector.

The third layer is the second hidden layer (Summation layer) which has two nodes. The input
to the first node is the sum of the first hidden layer outputs, each weighted by the observed
output yj corresponding to Xj. The input of the second node is the summation of the firsthidden
layer activations.

The fourth layer is the output layer. It receives the two outputs from the hidden layer and
divides them to yield an estimate for y (or to provide the prediction result).

In the GRNN architecture, unlike other network architectures as in BD, there are no training
parameters such as learning rate and momentum, but there is a smoothing factor (o) that is

66 Artificial Neural Networks - Models and Applications

applied after the network is trained. The choice of smoothing factor (parameter) of the kernel
o is very important. It has the effect of smoothing the training examples. Small values of ¢ tend
to make each training point distinct, whereas large values force a greater degree of interpola-
tion between the training observations. For GRNNSs, the smoothing factor must be greater than
0 and can usually range from 0.01 to 1 with good results. We need to experiment in order to
determine which smoothing factor is most appropriate for our data.

X; XE e Xn

Input layer

Pattern laver

2 2 e

n D: n D Summation
i Y.exp| — 1 1

2‘1 ‘[_] - [2c] layer

Denominator (D) Numerator (N)

Figure 15. The basic GRNN architecture.

A useful method of selecting an appropriate o is the Holdout method. For a particular value
of 0, the Holdout method consists in removing one sample at a time and constructing anetwork
based on all of the other samples. The network is then used to estimate Y for the removed
sample. By repeating this process for each sample and storing each estimate, the mean square
error can be measured between the actual sample values Yi and the estimates. The value of o
giving the smallest error should be used in the final network.

Generalized Regression Neural Networks with Application in Neutron Spectrometry 67
http://dx.doi.org/10.5772/64047

Fortunately, in most applications there is a unique o which produces the minimum MSE
between the network output and the desired output for the testing set that can be found quickly
by trial and error.

2. Neutron spectrometry by means of generalized regression neural
networks

2.1. Neutron spectrometry

In general, neutrons are more difficult to detect than gamma rays because of their weak
interaction with matter and their large dynamic range in energy [25]. Neutrons have mass but
no electrical charge [26]. Because of this, they cannot directly produce ionization in a detector,
and therefore cannot be directly detected. This means that neutron detectors must rely upon
a conversion process where an incident neutron interacts with a nucleus to produce a secon-
dary charged particle [27]. These charged particles are then directly detected and from them
the presence of neutrons is deduced.

The derivation of the spectral information is not simple because the unknown is not given
directly as a result of measurements [28]. The spectral information is derived through the
discrete version of the Fredholm integral-differential equation of first type [29]. Normally,
researchers solve a discrete version of this equation, which gives an ill-conditioned system of
equations which have no explicit solution, may have no unique solution, and are referred to
as ill-posed [30].

Since the 1960s, the Bonner Sphere Spectrometer (BSS) has been the most used method for
radiological protection purposes [28]. The isotropy of the response, the wide energy range
(from thermal to GeV neutrons), and the easy operation make these systems still applicable.
BSS consists of a thermal neutron detector located at the center of several high-density
polyethylene spheres of different diameters [29]. By measuring the count rates with each
sphere individually, an unfolding process can, in principle, provide some information about
the energy distribution of the incident neutrons.

The most delicate part of neutron spectrometry based on BSS is the unfolding process [30]. The
unfolding spectrum of the neutrons measured consists of establishing the rate of energy
distribution of fluency, known as response matrix, and the group of carried-out measures.
Because the number of unknowns overcomes the number of equations, this ill-conditioned
system has an infinite number of solutions. The process of selecting the solution that has
meaning for the problem is part of the unfolding process.

To solve the system of equations for BSS unfolding, several approaches have been used [29]:
iterative procedures, Monte Carlo, regularization, and maximum entropy methods. The
drawbacks associated with these traditional unfolding procedures have motivated the need
for complementary approaches. Novel methods based on Al have been suggested. In neutron
spectrometry, the theory of ANN has offered a promising alternative to the classic calculations

68 Artificial Neural Networks - Models and Applications

with traditional methods. Previous researches indicate that BPFFNNs perform well and have
been the most popular networks used in neutron spectrometry [30-35].

BPFFNN have the characteristic of being very flexible; the process is highly parallel and can
be used to solve diverse problems; however, this neural network topology has some draw-
backs: the structural and learning parameters of the network are often determined using the
trial-and-error technique [36]. This produces networks with poor performance and generali-
zation capabilities which affect its application in real problems. Training can require a
substantial amount of time to gradually approach good values of the weights. The size of the
training data has to be very large and often it is almost impossible to provide enough training
samples as in the case of the neutron spectrometry problem.

Another drawback is that adding new information requires retraining the network and this is
computationally very expensive for BPFFNN, but not for GRNN which belongs to SNNs.
GRNNSs use a statistical approach in their prediction algorithm given the bases in the Bayes
strategy for pattern recognition. To be able to use the Bayes strategy; it is necessary to estimate
the probability density function accurately. The only available information to estimate the
density functions is the training samples. These strategies can be applied to problems con-
taining any number of categories as in the case of the neutron spectrometry problem.

2.2. Neutron spectrometry by means of generalized regression neural networks

A GRNN has certain differences compared to BPFFNN approach [24]. The learning of BPFFNN
can be described as trial and error. This is no longer the case of the GRNNSs because they use
a statistical approach in their prediction algorithm which is capable of working with only few
training samples. The experience is learned not by trial but by experience others made for the
neural network. GRNNSs are very flexible and new information can be added immediately with
almostno retraining. The biggest advantage is the fact that the probabilistic approach of GRNN
works with one-step-only learning.

A further big difference that exists between BPFFNN and GRNN is the difference in the process
inside the neurons. A GRNN uses functions that are based on knowledge resulting from the
Bayes strategy for pattern classification. The structure of the calculations for the probabilistic
density function in GRNN has striking similarities to a BPFFNN. The strength of a GRNN lies
in the function that is used inside the neuron.

It would be desirable to approach the parameters in one-step-only approach. The Bayes
strategy for pattern classification extracts characteristics from the training samples to come to
knowledge about underlying function.

In this work, both BPFFNN and GRNN architectures were trained in order to solve the neutron
spectrometry problem using customized technological tools designed with this purpose. A
comparison of the performance obtained using both architectures was performed. Results
obtained show that the two architectures solve the neutron spectrometry problem well, with
high performance and generalization capabilities; however, the results obtained with GRNN
are better than those obtained with BPFFNN, mainly because GRNN does not produce
negative values and oscillations around the target value.

Generalized Regression Neural Networks with Application in Neutron Spectrometry 69
http://dx.doi.org/10.5772/64047

As mentioned, a GRNN is a BPFFNN based on non-linear regression. It is suited to function
approximation tasks such as system modeling and prediction. While the neurons in the first
three layers are fully connected, each output neuron is connected only to some processing units
in the summation layer. The function of the pattern layers of the GRNN is a Radial Basis
Function (RBF), typically the Gaussian kernel function.

In this work, a neutron spectrum unfolding computer tool based on neural nets technology
was designed to train a GRNN capable of solving the neutron spectrum unfolding problem
with high performance and generalization capabilities. The code automates the pre-process-
ing, training, testing, validation, and post-processing stages of the information regarded with
GRNN. The code is capable of training, testing, and validating GRNN. After training and
testing the neural net, the code analyzes, graphs, and stores the results obtained.

2.3. Methods

The use of GRNN to unfold the neutron spectra from the count rates measured with the BSS
is a promising alternative procedure; however, one of the main drawbacks is the lack of
scientific and technological tools based on this technology. In consequence, a scientific
computational tool was designed to train, to test, to analyze, and to validate GRNN in this
research domain.

Statistical methods tend to put more emphasis on the structure of the data. For neural network
methods, the structure of the data is secondary. Therefore, the amount of data needed for
statistical methods is a lot smaller than the amount of data needed for ANN approaches.
GRNN s are frequently used to classify patterns based on learning from examples. PNNs base
the algorithm on the Bayes strategy for pattern recognition.

NEUTRON SPECTRA DATA SET

250

Y

o
&

o o

Neutron fluency [1 /(crﬁ - MeV)]

Spectra

100
Neutron energy [MeV]

Figure 16. Neutron spectra data set expressed in energy units, used to train the GRNN.

70

Artificial Neural Networks - Models and Applications

In order to train both BPFFNNs and GRNNSs, the only available information is aneutron spectra
compilation of the International Atomic Energy Agency (IAEA) which contains a collection of
251 different neutron spectra [37]. This compendium was made with the aim to provide specific
technical information that could be used by radiation protection specialists for proper selection
of dosimeters and survey instruments, and for interpretation of data obtained with these
detectors.

The developed code based on GRNNSs technology utilizes these 251 neutron spectra and both,
the response matrixes from IAEA’s compilation and those that could be introduced by the user.
The designed technological tool automates the following activities:

* Read the neutron spectra data set coming from IAEA’s compendium, which are expressed
in 60 energy bins.

* Read a response matrix used to train the neural network.

* Because the neutron spectra coming from IAEA’s compendium are expressed in lethargy
units, the code converts these spectra in energy units.

* The neutrons expressed in energy units are multiplied by the selected response matrix in
order to calculate the count rates.

¢ To train the GRNN, the code uses the 251 calculated count rates as entrance data, and their
corresponding neutron spectra are expressed in energy units as the output data as shown
in Figure 16.

* The code randomly generates the training data set, 80% of the whole data, and the testing
data set, remaining 20%, as shown in Figure 17.

* Using the earlier calculated information, the following stage is to determine the spread
constant value. To calculate this value, the computer tool trains several neural networks
varying this value from 0 in increments of 0.01 through 2 and compares the mean square
error (MSE), which is used to determine the performance of the network. The minimum
value obtained is selected as the spread constant value (Figure 18).

* After the developed code selects the spread constant value, a final GRNN is trained.

* After training, a testing stage is performed in order to analyze the performance and
generalization capabilities of the trained network. In this stage only the input is proportio-
nated to the network. Fifty neutron spectra are randomly selected by the code to test the
performance and generalization capabilities of the trained network. In order to analyze the
performance of the trained network, chi square and correlation tests are performed.

* Finally, the code plots and stores the generated information.

In this work, a comparison of the performance obtained in the solution of the neutron spec-
trometry problem using two different neural network architectures, BPFFNN and GRNN, is
presented. Both BPFFNN and GRNN were trained and tested using the same information: 251
neutron spectra, extracted from IAEA’s compilation. Eighty percent of the whole data set,

Generalized Regression Neural Networks with Application in Neutron Spectrometry
http://dx.doi.org/10.5772/64047

randomly selected, was used at training stage and remaining 20% at testing stage. Fifty neutron
spectra were used as testing data set.

NEUTRON SPECTRA DATA SET AT ANN TESTING STAGE (50/251)

o
[«

o
[}

o
~

o
N

Neutron fluency [1 /(crﬁ - MeV)]

o o

Neutron energy [MeV] 80 Spectra

Figure 17. Neutron spectra data set used at testing stage, compared with target spectra.

Figure 18. Optimum spread constant value, sigma, and determination.

The architectural and learning parameters of BPFFNN were optimized using a statistical
methodology known as Robust Design of Artificial Neural Networks Methodology
(RDANNM) [36]. In GRNN, the only parameter determined was the spread constant value,
known as sigma. For both architectures, BPFFNN and GRNN, customized scientific compu-
tational tools were used for the training, testing, analysis, and storage of the information

71

72 Artificial Neural Networks - Models and Applications

generated in the whole process of both network architectures. It can be observed from the
results obtained that although the two network architectures present very similar performance
and generalization capabilities, GRNN performs better than BPFFNN in the solution of the
neutron spectrometry problem. BPFFNNs produce negative values and high oscillations
around the target values, which makes this type of network unusable in the solution of the
problem mentioned.

2.4. Results

In this work, by using two different technological tools, two different artificial neural networks
architectures, BPFFNN and GRRN, were trained and tested using the same information. The
performance of the networks was compared. From the results obtained, it can be observed that
GRNN performs better than BPFFNN in the solution of the neutron spectrometry problem.

Network parameters BPNN (trial and error) BPNN (RDANNM) GRNN

Networks tested before training Undetermined 50 in 150 minutes 2000 in 154 seconds
Hidden layers Undetermined 1 Fixed architecture
Neurons in hidden layer Undetermined 10 According input
Training algorithm Undetermined Trainscg Statistical methods
Learning rate Undetermined 0.1 -

Momentum Undetermined 0.01 -

Spread constant - - 0.2711
Performance (MSE) Undetermined 2.12E-4 2.48E-4

Training time (seconds) Several hours 170.40 0.058

Epochs Often millions 50E3 1

Best chi-square test BPNN - 2.3525 0.049

Statistical margin 34.7

Best correlation test BPNN - 0.9928 0.99571

Statistical margin 1
Worst chi-square test BPNN - 0.44704 0.3223

Worst correlation test BPNN - 0.2926 0.46023

Table 2. Comparison between BPFFNN and GRNN values in neutron spectrometry.

By using the RDANNDM, around 50 different network architectures were trained in 150 minutes
average, before the selection of the near-optimum architecture. By testing different network
architectures according to RDANNM, each network was trained in 50E3 epochs and 180
seconds average, stopping the training when the network reached the established mean square
error (MSE) equal to 1E-4, the value used to measure the network performance. After selecting

Generalized Regression Neural Networks with Application in Neutron Spectrometry
http://dx.doi.org/10.5772/64047

the near-optimum architectural and learning parameters of the BPFFNN, the network was
trained and tested using the values shown in Table 2: one hidden layer with 10 neurons, a
trainscg training algorithm, and a learning rate and momentum equal to 0.1 and 0.01, respec-
tively.

As can be seen in Table 2, contrary to BPFFNN the spread constant or sigma was the only value
determined in GRNN. Using the same training and testing data sets used for BPFFNN, around
2000 neural networks were trained in 154 seconds average in order to determine the spread
constant equal to 0.2711. Each GRNN was trained in 0.058 seconds average in only one-step-
only learning. Further, a final GRNN was trained and tested in 0.058 seconds average in only
one epoch.

Table 2 shows the values obtained after training the two network architectures compared in
this work. As can be seen, when the trial-and-error technique is used, it is very difficult to
determine if the performance of the network is good or bad, mainly because a scientific and
systematic methodology is not used for determining the near-optimum learning and archi-
tectural values as when RDANNM is used.

As can be appreciated in Table 2, after training both network architectures, BPFFNN was
optimized using RDANNM and GRNN, the performance, MSE, reached by the two networks
is very close to each other. In BPFFNNSs, the MSE is a value optimized by the network designer
using RDANNM,; in GRNN network the value was automatically obtained by the network
based on the training information used by the automated code. The anterior demonstrates the
powerful RDANNM in the optimization of the near-optimum values of BPFFNN architectures.

SPECTRA’S CHI SQUARE TEST
120 T T

T T
CHI SQUARE
GRANN
FFANN

100+ \ g

) |
sl /\‘ i

. .

2] | /; \ J \\
\

Chi square

71
| N

ANEON ‘« Vo
L) PN AN A N
0 5 10 15 20 25 30 35 40 45 50
Spectra

Figure 19. Chi-square test comparison for BPFFNN and GRNN.

Figures 19 and 20 show that at testing stage, the chi square and correlation tests are very close
in both BPFFNN and GRNN network architectures. The same 50 neutron spectra were used
for testing the two network architectures. At testing stage, only the count rates were propor-
tionated to the trained networks. The output produced by the networks was compared with

73

74 Artificial Neural Networks - Models and Applications

the expected neutron spectrum taken from IAEA’s compilation by means of chi square and
correlation tests. In the trained networks, two spectra are above the statistical margin of the
chi-square test. In correlation tests, two values are below 0.5. This shows the high performance

of the networks.

CORRELATION TEST

Correlation

02

CORRELATION ||
— GRANN
FFANN

T

01}

Il
Q 5 10 15 20 25 30 35 40 45 50
Spectra

Figure 20. Correlation test comparison for BPFFNN and GRNN.

As can be seen from Figures 19 and 20, the 50 chi-square and correlation tests of trained
networks are very similar. In both cases, the average value is around 0 and 0.8 respectively,
which is near the optimum values equal to 0 and 1. This means that BPFFNN and GRNN have
high performance and generalization capabilities and demonstrates the effectiveness of the
RDANNM in the design of near-optimum architectures of BPFFNN.

Best spectrum with BPNN

0.7

M Target
Unfolded

0.6

0.5 4

0.4 4

0.3 1

0.2 4

[Neutronsicmz-MeV]

0.0 4 iﬂzﬂ_ﬁ—a—

T T T T T T T T T T T

1e-4 1e-2 1e-2 1e-1 1e+0 1e+1 1e+2 1e+3 le+d 1e+5 1e+6 1e+7 1e+8 1e+9
Neutron energy [MeV]

Figure 21. Best spectrum obtained with BPFFNN.

Generalized Regression Neural Networks with Application in Neutron Spectrometry
http://dx.doi.org/10.5772/64047

As mentioned earlier, 50 neutron spectra were randomly selected at the testing stage. The same
training and testing data sets were used to train and to test the performance and generalization
capability of the networks. The best and the worst cases for both BPFFNN and GRNN are
showed in Figures 21-28. Figures 21-22 and 23-24 show the best cases observed at testing
stage for BPFFNN and GRNN, respectively. From these figures, it can be observed that the chi-
square and correlations tests for both BPFFNN and GRNN are near 0 and 1, respectively, which
means that the compared neutron spectra are very similar.

MEAN SQUARE ADJUST

o7 T T T
R =088266

¥%=23525

B Perform = 0.00021238
081 Train t=170.40711 seq.
05-Sep-2015
rlaglexiesdnl

0.4

03

Calculated

0.2 o
il
01 e
Vo
om = Dispersion D M
Adjust .
Approximation C.
o1 | | 1
o a1 02 03 a4 05 0.8 0.7

Targst

Figure 22. Best chi-square and correlation tests for spectrum obtained with BPNN.

- Best spectrum with GRNN

0.16 4 —— Target
—— Unfolded

0.14 A

0.12 A

0.10 A

0.08 A

0.06

[Neutrons/cmz-MeV]

0.04

0.02 1

0.00 -

T T T T T T T T T T T T

1e-4 1e-3 1e-2 1e-1 1e+D 1e+1 1e+2 1e+3 1e+d 1le+5 1e+6 1e+7 1e+8 1e+9

Neutron energy [MeV]

Figure 23. Best spectrum obtained with GRFFNN.

75

76 Artificial Neural Networks - Models and Applications

Caloulated

o.1a

016

014

012

01F

008 -

0.0&

0.04 -

0.02

o
o

MEAN SQUARE ADJUST

T 1 T
R =088571

%2 = 0.045065
Perform = 0.0002477
Train. t = 0.098195 seg.

05-Sep-2015 ¥
Mglexlesd2iz0 &

1 1 1
006 0.08 [eR 0.12
Target

014

Dispersion O
Adjust C.
Approximation C

016

Figure 24. Best chi-square and correlation tests for spectrum obtained with GRNN.

ae

As can be appreciated in Figures 21-28, despite the good results obtained with BPFFNN, one
drawback is that the calculated neutron spectra produce negative values which have no
meaning in real problems. These negative values are eliminated from the output produced by
the network; however, when the BPFFNN is applied in real workplaces, because the training
received, the network tends to produce negative values and oscillations around the target
value. GRNN networks do not produce these negative values and oscillations and therefore
the performance is better than BPFFNN in the solution of the neutron spectrometry problem.

[Neutrons/cm®-MeV]

05

Worst spectrum with BPNN

04 1

0.3

02

0.1

00 4

—— Target
—— Unfolded

—

T T T T T T T T

T

le-4 1e-3 1e-2 1e-1 1e+0 le+1 1e+2 1e+3 1e+d 1e+5 1e+6 1e+7 1e+8 1e+9

Neutron energy [MeV]

Figure 25. Worst spectrum obtained with BPFFNN.

Generalized Regression Neural Networks with Application in Neutron Spectrometry 77
http://dx.doi.org/10.5772/64047

MEAN SQUARE ADJUST
0.5 T T T

R =028258
o4t A
%2 =0,44704 -
Perform = 0.00021236
Train. t = 170.40711 seg
na| 05-Sep201s
r15g3ex7es19/50

0.z

Calculated

0.1

01k

= Dispersion O
Adjust .
Approximation C.

1 T
4] ans oI 015 az 0.25 0.3 0.35 0.4
Target

Figure 26. Worst chi-square and correlation tests for spectrum obtained with BPNN.

Figures 25-28 show the worst case observed at the testing stage for BPFFNN and GRNN
networks, respectively. As can be seen from these figures, both BPFFNN and GRNN selected
the same neutron spectra as the worst. This could be because of the 50 energy bins that the
neural networks calculated; 49 values are very similar and only one value is far from the
expected target value, which causes that the chi-square and correlation tests to produce low
values. From Figures 25-28, it can be observed that in the GRNN architecture, the output is
closer to the target values of the neutron spectra if compared with BPFFNN. This shows that
in the worst case, GRNNs have better performance than BPFFNN.

Worst spectrum with GRNN

0.5
——— Target

o |[— Unfolded
% 0.3 +
=
J:
% 024
=
jod
S
5]
Z, 01+

| -'JlL
dini) _F,_l_'=1_|_,_,_._ e P =
T T T T T T T T L] T T T

1e-4 1e-3 1e-2 1e-1 1e+0 1e+1 1e+2 1e+3 1e+d 1e+5 1e+6 1e+7 1e+8 1e+9

Neutron energy [MeV]

Figure 27. Worst spectrum obtained with BPFFNN.

78 Artificial Neural Networks - Models and Applications

MEAN SQUARE ADJUST

0.5 T T T

R =0.45083
0.4+ A
x%=0.3223
Perform = 0.0002477
Train. t = 0.058195 seg.
03 05-8ep-2015
' riglexles19/a0
SEAD2
m
i
3
m
9 g1
4 _ %
r +
oo .
01r e -
i = Dispersion D.
Adjust
Appraximation C.
nz I I 1
5} 0.02 0.1 015 0z 0.25 0.3 0.35 0.4

Target
Figure 28. Worst chi-square and correlation tests for spectrum obtained with GRNN.

The results observed in this work indicate that GRNN is able to predict the unknown neutron
spectrum presented to the network with good accuracy. As can be seen from Figures 21-24,
due to proper selection of the spread constant value, the GRNN calculated values, each one of
the 60 energy bins of the spectrum, are around the target value (the spectrum from IAEA’s
compendium). As opposed to BPFFNN, non-negative values and oscillations around the target
value are generated when GRNNSs are used.

Since there is only one parameter in GRNN, this type of ANN is also called a nonparametric
model. It stores the training data as the parameter, rather than calculating and modifying the
weights and bias in each hidden layer as the input data imported into the model. When the
query comes, the model will calculate the value by summing the values of the other points
weighted by the RBF function. Therefore, unlike parametric models such as BP, there are no
weights and bias information produced to characterize the trained model.

3. Discussion and conclusions

Different approaches exist to model a system with available data. Each one of them has its own
qualities and therefore advantages. GRNN falls into the category of PNN. This neural network,
like other PNNSs, needs only a fraction of the training samples a BPNN would need. The data
available from measurements of an instance is generally never enough for a BPNN. Therefore,
the use of GRNN is especially advantageous due to its ability to converge to the underlying
function of the data with only few training samples available. The additional knowledge
needed to get the fit in a satisfying way is relatively small and can be done without additional
input by the user.

Generalized Regression Neural Networks with Application in Neutron Spectrometry 79
http://dx.doi.org/10.5772/64047

Statistical methods tend to put more emphasis on the structure of the data. For neural network
methods, the structure of the data is secondary. Therefore, the amount of data needed for
statistical methods is a lot smaller than the amount of data needed for ANN approaches.

Most methods are asymptotically good but most of them have severe drawbacks as well.
BPNNs need a very large number of training samples and need a lot of time to gradually
approach good values of the weights. Addition of new information requires retraining and
this is computationally very expensive for BPNN but not for PNN. PNNs have the big
advantage that the prediction algorithm works with only few training samples. Other big
advantage is that they are very flexible and new information can be added immediately with
almost no retraining.

PNNs use a statistical approach in their prediction algorithm. The bases for the statistical
approach are given in the Bayes strategy for pattern recognition. These strategies can be applied
to problems containing any number of categories as in the case of the neutron spectrometry
problem. To be able to use the Bayes strategy, it is necessary to estimate the probability density
function accurately. The only available information to estimate the density functions is the
training samples.

The structure of the calculations for the probabilistic density function has striking similarities
to a backpropagation feed-forward neural network. PNNs are frequently used to classify
patterns based on learning from examples. PNNs base the algorithm on the Bayes strategy for
pattern classification. Different rules determine patterns statistics from the training samples.
BPNN uses methods that are not based on statistical methods and need a long time and many
iterations and feedback until it gradually approaches the underlying function. It would be
desirable to approach the parameters in one-step-only approach. The Bayes strategy for pattern
classification extracts characteristics from the training samples to come to knowledge about
underlying function.

In this work, two different artificial neural networks architectures, BPNN and GRRN, were
trained and tested using the same information. The performance of the networks was com-
pared. From the results obtained, it can be observed that GRNN performs better than BPNN
in the solution of the neutron spectrometry problem.

PNNs have a very simple structure and are therefore very stable procedures. PNNs perform
very well for only few available training samples and the quality increases as the number of
training samples increases. This makes GRNN a very useful tool to perform predictions and
comparisons of system performance in practice. GRNN is a promising technological tool that
can be applied to solve with high efficiency the problems related to neutron spectrometry.

Acknowledgements

This work was partially supported by Fondo Sectorial de Investigacion para la Eduacién under
contract 241771, Fondos Mixtos SEP-CONACYT under contract ZAC-C03-2015-26357-4, and
PROSOFT under contract 201513723. The first and second authors want to thank the Doctorate

80 Artificial Neural Networks - Models and Applications

scholarships, with scholarship holder numbers 23386 and 23385, respectively, received by
Fondo Sectorial de Investigacion para la Eduacion under contract 241771. The third and fourth
authors want to thank the Doctorate scholarships received by Fondos Mixtos SEP-CONACYT
under contract ZAC-C03-2015-26357-4. The seventh author want to thank conacyt for the post-
doctoral scholarship number 24296. The authors want to thank the active and determined
participation and collaboration on several activities on this research project of the undergrad-
uate students: Ana Isabel Ortiz Herndndez, Miguel Angel Acosta Garcia, Fabian Garcia
Vézquez, Edgar Viveros Llamas, and Rogelio Osbaldo Reyes Vargas.

Author details

Ma. del Rosario Martinez-Blanco'?, Victor Hugo Castafneda-Miranda'?,

Gerardo Ornelas-Vargas'?, Héctor Alonso Guerrero-Osuna'?, Luis Octavio Solis-Sanchez'?,
Rodrigo Castafieda-Miranda'?, José Maria Celaya-Padilla'?, Carlos Eric Galvan-Tejada®,
Jorge Isaac Galvan-Tejada®, Héctor René Vega-Carrillo*, Margarita Martinez-Fierro'?,
Idalia Garza-Veloz'” and Jose Manuel Ortiz-Rodriguez'**

*Address all correspondence to: morvymm@yahoo.com.mx

1 Centro de Investigacion e Innovacion Tecnoldgica Industrial (CIITI), Universidad Autonoma
de Zacatecas, Zacatecas, México

2 Laboratorio de Innovacion y Desarrollo Tecnoldgico en Inteligencia Artificial (LIDTIA),
Universidad Autonoma de Zacatecas, Zacatecas, México

3 Unidad Académica de Ingenieria Eléctrica (UAIE), Universidad Auténoma de Zacatecas,
Zacatecas, México

4 Unidad Académica de Estudios Nucleares (UAEN), Universidad Autonoma de Zacatecas,
Zacatecas, México

5 Laboratorio de Medicina Molecular, Unidad académica de Medicina Humana y Ciencias
de la Salud (UAMHCS), Universidad Autonoma de Zacatecas, Zacatecas, México

References

[1] Fritzsche P. Tools in artificial intelligence. Viena, Austria: InTech; 2008.

[2] Negnevitsky M. Artificial intelligence, a guide to intelligent systems. Reading, MA,
USA: Addison Wesley; 2005.

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Generalized Regression Neural Networks with Application in Neutron Spectrometry
http://dx.doi.org/10.5772/64047

Coppin B. Artificial intelligence illuminated. Burlington, MA, USA: Jones and Barttlet
Publishers; 2004.

Russell S.J., Norvig P. Artificial intelligence a modern approach. Mexico: Prentice Hall;
2004.

Luger G.F. Artificial intelligence structures and strategies for complex problem solving.
Reading, MA, USA: Addison-Wesley; 2005.

Baldi P.,, Brunak S. Bioinformatics, the machine learning approach. Cambridge, MA,
USA: Mit Press; 2001.

Yu W. Recent advances in intelligent control systems. London: Springer-Verlag; 2009.

Munakata T. Fundamentals of the new artificial intelligence, neural, evolutionary, fuzzy
and more. London: Springer; 2008.

Chennakesava R.A. Fuzzy logic and neural networks, basic concepts and applications.
New Delhi,India: New Age International Publishers; 2008.

Arbib M.A. Brain theory and neural networks. Cambridge, MA, USA: The Mit Press;
2003.

Haykin S. Neural networks: a comprehensive foundation. Mexico: Prentice Hall; 1999.

Zupan]. Introduction to artificial neural network methods: what they are and how to
use them. Acta Chimica Slovenica. 1994;41(3):327-352.

Jain A.K., Mao J., Mohiuddin K.M. Artificial neural networks: a tutorial. IEEE: Com-
puter. 1996;29(3):31-44.

Lippmann R. An introduction to computing with neural nets. IEEE ASSP Magazine.
1987;4(2):4-22.

Floreano F., Mattiussi C. Bio-inspired artificial intelligence, theories, methods and
technologies. Cambridge, MA, USA: The MIT Press; 2008.

Gupta M., Jin L., Homma N. Static and dynamic neural networks: from fundamentals
to advanced theory. New Jersey, USA: John Wiley Sons; 2003.

Huang D.S. Radial basis probabilistic neural networks: model and applications.
International Journal of Pattern Recognition and Artificial Intelligence. 1999;13(7):1083—
1101.

Mao K., Tan K., Ser W. Probabilistic neural network structure determination for pattern
classification. IEEE Transactions on Neural Networks. 2000;11(4):1009-1016.

Spetch D.F. Probabilistic neural networks for classification, mapping or associative
memory. IEEE International Conference on Neural Networks. 1998;1:525-532.

Spetch D.F. Probabilistic neural networks. Neural Networks. 1990;3(1):109-118.

81

82 Artificial Neural Networks - Models and Applications

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Spetch D.F. Enhancements to probabilistic neural networks. International Joint
Conference on Neural Networks. 1992;1:761-768.

Taylor].G. Mathematical approaches to neural networks. Holland: North-Holland
Mathematical library; 1993.

Spetch D.F., Romsdhal H. Experience with adaptive probabilistic neural networks and
adaptive general regression neural networks. IEEE International Conference on Neural
Networks. 1994;2:1203-1208.

Spetch D.F., Shapiro P. Generalization accuracy of probabilistic neural networks
compared with backpropagation networks. IJCNN-91-Seattle International Joint
Conference on Neural Networks. 1991;1:887-892.

Attix FH. Introduction to radiological physics and radiation dosimetry. New Jersey,
USA: Wiley-VCH; 2004.

Lilley J. Nuclear physics, principles and applications. New Jersey, USA: John Wiley &
Sons, Ltd.; 2001.

Bromley D.A. Detectors in nuclear science. Nuclear Instruments and Methods.
1979;162:431-476.

Bramblett R.L., Ewing R.I., Bonner T.W. A new type of neutron spectrometer. Nuclear
Instruments and Methods. 1960;9:1-12.

Thomas D.J. Neutron spectrometry for radiation protection. Radiation Protection
Dosimetry. 2004;110(1-4):141-149.

Matzke M. Unfolding procedures. Radiation Protection Dosimetry. 2003;107(1-3):155—
174.

Braga C.C., Dias M.S. Application of neural networks for unfolding neutron spectra
measured by means of Bonner spheres. Nuclear Instruments and Methods in Physics
Research Section A. 2002;476(1-2):252-255.

Kardan M.R., Setayeshi S., Koohi-Fayegh R., Ghiassi-Nejad M. Neutron spectra
unfolding in Bonner spheres spectrometry using neural networks. Radiation Protection
Dosimetry. 2003;104(1):27-30.

Kardan M.R., Koohi-Fayegh R., Setayeshi S., Ghiassi-Nejad M. Fast neutron spectra
determination by threshold activation detectors using neural networks. Radiation
Measurements. 2004;38:185-191.

Vega-Carrillo H.R., et al. Neutron spectrometry using artificial neural networks.
Radiation Measurements. 2006;41:425-431.

Vega-Carrillo H.R., Martinez Blanco M.R., Hernandez Davila V.M., Ortiz Rodriguez
J.M. Ann in spectroscopy and neutron dosimetry. Journal of Radioanalytical and
Nuclear Chemistry. 2009;281(3):615-618.

Generalized Regression Neural Networks with Application in Neutron Spectrometry 83
http://dx.doi.org/10.5772/64047

[36] Ortiz-Rodriguez J.M., Martinez-Blanco H.R., Vega-Carrillo H.R. Robust design of
artificial neural networks applying the Taguchi methodology and DoE. Proceedings of
the Electronics, Robotics and Automotive Mechanics Conference (CERMA’06), IEEE
Computer Society. 2006;1:1-6.

[37] IAEA. Compendium of neutron spectra and detector responses for radiation protection
purposes. Technical Report 403; Vienna, Austria: International Atomic Energy Agency
(IAEA); 2001.

ntechOpen

ntechOpen

