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Abstract

In  this  chapter,  iterated  sigma‐point  Kalman  filter  (ISPKF)  methods  are  used  for
nonlinear state variable and model parameter estimation. Different conventional state
estimation methods, namely the unscented Kalman filter (UKF), the central difference
Kalman filter (CDKF), the square‐root unscented Kalman filter (SRUKF), the square‐
root central difference Kalman filter (SRCDKF), the iterated unscented Kalman filter
(IUKF), the iterated central difference Kalman filter (ICDKF), the iterated square‐root
unscented  Kalman  filter  (ISRUKF)  and  the  iterated  square‐root  central  difference
Kalman  filter  (ISRCDKF)  are  evaluated  through  a  simulation  example  with  two
comparative studies in terms of state accuracies, estimation errors and convergence.
The state variables are estimated in the first comparative study, from noisy measure‐
ments with the several estimation methods. Then, in the next comparative study, both
of  states  and  parameters  are  estimated,  and  are  compared  by  calculating  the
estimation root mean square error (RMSE) with the noise‐free data. The impacts of
the  practical  challenges  (measurement  noise  and  number  of  estimated  states/
parameters) on the performances of the estimation techniques are investigated. The
results of both comparative studies reveal that the ISRCDKF method provides better
estimation accuracy than the IUKF, ICDKF and ISRUKF. Also the previous methods
provide better accuracy than the UKF, CDKF, SRUKF and SRCDKF techniques. The
ISRCDKF method provides accuracy over the other different estimation techniques;
by iterating maximum a posteriori estimate around the updated state, it re‐linearizes
the measurement equation instead of depending on the predicted state. The results
also represent that estimating more parameters impacts the estimation accuracy as
well  as  the  convergence  of  the  estimated  parameters  and  states.  The  ISRCDKF
provides  improved  state  accuracies  than  the  other  techniques  even  with  abrupt
changes in estimated states.
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1. Introduction

Dynamic state‐space models [1–3] are useful for describing data in many different areas, such
as engineering [4–8], biological data [9, 10], chemical data [11, 12], and environmental data [8,
13–15].  Estimation of  the  state  and model  parameters  based on measurements  from the
observation process is an essential task when analyzing data by state‐space models. Bayesian
estimation filtering represents a solution of considerable importance for this type of problem
definition as demonstrated by many existing algorithms based on the Bayesian filtering [16–
25]. The Kalman filter (KF) [26–29] has been extensively utilized in several science applications,
such as control, machine learning and neuroscience. The KF provides an optimum solution
[28], when the model describing the system is supposed to be Gaussian and linear. However,
the KF is limited when the model is considered to be nonlinear and present non‐Gaussian
modeling assumptions. In order to relax these assumptions, the extended Kalman filter (EKF)
[26, 27, 30–32], the unscented Kalman filter (UKF) [33–36], the central difference Kalman filter
(CDKF) [37, 38], the square‐root unscented Kalman filter (SRUKF) [39, 40], the square‐root
central difference Kalman filter (SRCDKF) [41], the iterated unscented Kalman filter (IUKF)
[42, 43], the iterated central difference Kalman filter (ICDKF) [44, 45], the iterated square‐root
unscented Kalman filter (ISRUKF) [46] and the iterated square‐root central difference Kalman
filter (ISRCDKF) [47] have been developed. The EKF [26] linearizes the model describing the
system to approximate the covariance matrix of the state vector. However, the EKF is not
always performing especially for highly nonlinear or complex models. On behalf of linearizing
the model, a class of filters called the sigma‐point Kalman filters (SPKFs) [48] uses a statistical
linearization technique which linearizes a nonlinear function of a random variable via a linear
regression. This regression is done between n points drawn from the prior distribution of the
random variable, and the nonlinear functional evaluations of those points. The sigma‐point
family of filters has been proposed to address the issues of the EKF by making use of a
deterministic sampling approach. In this approach, the state distribution is approximated and
represented by a set of chosen weighted sample points which capture the true mean and
covariance of the state vector. These points are propagated through the true nonlinear system
and capture the posterior mean and the covariance matrix of the state vector accurately to the
third order (Taylor series expansion) for any nonlinearity. As part of the SPKF family, the UKF
[26, 27, 33] has been developed. It uses the unscented transformation, in which a set of samples
(sigma points) are propagated and selected by the nonlinear model, providing more accurate
approximations of the covariance matrix and mean of the state vector. However, the UKF
technique has the limit of the number of sigma‐points which are not so large and cannot
represent complicated distributions. Another filter in the SPKF family is the central difference
Kalman filter (CDKF) [37, 38]. It uses the Stirling polynomial interpolation formula. This filter
has the benefit over the UKF in using only one parameter when generating the sigma‐point.
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To add some benefits of numerical stability, the SRUKF and the SRCDKF [41] have been
developed. The advantage of these filters is that they ensured positive semidefiniteness of the
state covariances. The iterated sigma‐point Kalman filter (ISPKF) methods employ an iterative
procedure within a single measurement update step by resampling the sigma‐point till a
termination criterion, based on the minimization of the maximum likelihood estimate, is
satisfied.

The objectives of this chapter are threefold: (i) To estimate nonlinear state variables and model
parameters  using  SPKF  methods  and  extensions  through  a  simulation  example.  (ii)  To
investigate the effects of practical challenges (such as measurement noise and number of
estimated states/parameters) on the performances of the techniques. To study the effect of
measurement noise on the estimation performances, several measurement noise levels will be
considered. Then, the estimation performances of the techniques will be evaluated for different
noise levels. Also, to study the effect of the number of estimated states/parameters on the
estimation performances of all the techniques, the estimation performance will be studied for
different numbers of estimated states and parameters. (iii) To apply the techniques to estimate
the state variables as well as the model parameters of second‐order LTI system. The perform‐
ances of the estimation techniques will be compared to each other by computing the execution
times as well as the estimation root mean square error (RMSE) with respect to the noise‐free
data.

2. State estimation problem

Next, we present the formulation of the state estimation problem.

2.1. Problem description and formulation

The state estimation problem for a system of nonlinear complex model is described as follows:

(1)

where  � ∈ Rn is the state variable vector, � ∈ Rm is the measurement vector, � ∈ Rq is the

unknown vector, � ∈ Rp is the input variable vector, � ∈ Rn and � ∈ Rm are respectively process
and measurement noise vectors, and � and � are nonlinear differentiable functions. The
discretization of the model (1) is presented as follows:

(2)

Nonlinear State and Parameter Estimation Using Iterated Sigma Point Kalman Filter: Comparative Studies
http://dx.doi.org/10.5772/63728

119



which describes the state variables at some time step (�) in terms of their values at a previous
time step (� − 1). Since we are interested to estimate the state vector ��, as well as the param‐

eter vector ��, the parameter vector is assumed to be presented as follows:

(3)

This means that it corresponds to a stationary process, with an identity transition matrix,
driven by white noise. In order to include the parameter vector �� into the state estimation

problem, let us define a new state vector ��  that augments the state vector �� and the parameter

vector �� as follows:

(4)

where  �� ∈ Rn+q. Also, defining the augmented noise vector as:

(5)

The model (2) can be written as:

(6)

(7)

where ℱ and ℛ  are differentiable nonlinear functions. Thus, the objective here is to estimate
the augmented state vector  ��, given the measurement vector  ��.

3. Description of state estimation methods

3.1. UKF

The UKF is a SPKF that uses the unscented transformation. This transformation is a method
for calculating the statistics of a random variable that undergoes a nonlinear mapping. It is
built on the theory that “it is easier to approximate a probability distribution than an arbitrary
nonlinear function”.

The state distribution is represented by a Gaussian random variable (GRV) and by a set of
deterministically chosen points. These points capture the true mean and covariance of the GRV
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and also capture the posterior mean and covariance accurately to the second order for any

nonlinearity and to the third order for Gaussian inputs. Suppose that GRV � ∈ �� characterized
by a mean � and covariance �� is used in the model. This variable is transformed by a nonlinear

function � = �(�). To reach the statistics of   �, a 2� + 1 sigma vector is defined as follows:

(8)

where L is the dimension of the state z, � = �2 � + � − � is a scaling parameter and ( (� + �)��)�
denotes the ith column of the matrix square root. The constant 10−4 < � < 1 defines the spread
of the sigma‐points around  �. The constant � is a scaling parameter which is usually set to zero
or 3 − � [30].

Then, these sigma‐points are propagated through the nonlinear function,

(9)

And the mean and covariance matrix of � can be approximated as weighted sample mean and
covariance of the transformed sigma‐point of �� as follows:

(10)

where the weights are given by

(11)

The parameter ξ is used to integrate prior knowledge about the distribution of �.
The algorithm of the UKF includes two steps: prediction and update. In the prediction step,

we calculate the predicted state estimate ��− and the predicted estimate covariance ��−. In the

update step, we calculate the updated state estimate �� and the updated estimate covariance�� after calculating the innovation residual ����� and the optimal Kalman gain ��.
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The UKF technique is summarized in Algorithm 1.

3.2. CDKF method

The CDKF is another filter from the family of SPKF. This filter is based on Sterling polynomial
interpolation formula instead of the unscented transformation used in UKF. The CDKF is
similar to the UKF with the same or superior performance. However, it has an advantage over
the UKF that it uses only one parameter instead of three parameters in the UKF. The CDKF
uses a symmetric set of (2� + 1) sigma‐point which are calculated as follows,

(12)

where � is the dimension of the state �, ℎ is a scaling parameter (the optimal value is ℎ = 3)
and � indicates the �th column of the matrix.

These sigma‐points are propagated through the nonlinear function to form the set of the
posterior sigma‐point,

(13)

Within the above results, the sterling approximation estimates of the mean � , covariance ��
and cross covariance ��, � are obtained through a linear regression of weighted point,

(14)

(15)

(16)

The set of corresponding weights for the mean ��(�) which are used to compute the posterior
mean is defined as:

(17)

And the set of corresponding weights for the covariance �0(�) which is used to recover the
covariance and the cross‐covariance is defined as,
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(18)

The CDKF technique is summarized in Algorithm 2.

3.3. SRUKF method

One drawback of the UKF is that it requires the calculation of the matrix square‐root����� = ��, at each time step. That is why a square‐root form of the UKF has been developed

to reduce the computational complexity. In this new method the covariance matrix �� will be

propagated directly, avoiding to refactorize at each time step [34].

The SRUKF is initialized as follows:

(19)

(20)

Algorithm 1: UKF algorithm

• Initialization step:

• Prediction step:
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• Estimation (update) step:
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Return the augmented state estimation ��
Algorithm 2: CDKF algorithm

• Initialization step:
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• Estimation (update) step:

1 2( ) ( )2 2
, | 1 , | 1 , | 1 , | 1 00

( ) ( 2 )
k

L c c
y i i k k L i k k i i k k L i k ki
P W Y Y W Y Y Y- + - - + -=

é ù= - + + -ë ûå

1( )
1 1: , | 1 1:2 , | 1 

k k

Tc
z y k L k k L L k kP W P Y Y-

- + -é ù= -ë û

1
k k kk z y yK P P-=

ˆ ( )ˆˆk k k k kz z K y y- -= + -

k

T
k k k y kP P K P K-= -

Return the augmented state estimation ��
The Cholesky factorization decomposes a symmetric, positive‐definite matrix into the product
of a lower triangular matrix and its transpose. This new matrix is utilized directly to obtain

the sigma‐point: The scaling constant h is expressed as ℎ = ��2  , where α is a tunable
parameter less than one.

In order to predict the current attitude based on each sigma‐point, these sigma‐points are
transformed through the nonlinear process system

(21)

Then, the state mean and the square‐root covariance are estimated and calculated through the
transformed sigma‐point as follows:

(22)
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(23)

(24)

where �0(�) = 2 1 − �2+ 12� ,   �0(�) = 1 − �2 and   ��(�) = ��(�) = 12��2�,   � is a tunable

parameter used to include prior distribution. The transformed sigma‐point vector is then used
to predict the measurements using the measurement model:

(25)

The expected measurement ��− and square‐root covariance of �� = ��− ��− (called the inno‐

vation) are given by the unscented transform expressions just as for the process model:

(26)

(27)

(28)

In an attempt to find out how much to adjust the predicted state mean and covariance based
on the actual measurement, the Kalman gain matrix �� is calculated as follows:

(29)

(30)

Finally, the state mean and covariance are updated using the actual measurement and the
Kalman gain matrix:

(31)

(32)

(33)
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where �� is the process noise covariance, �� is the measurement noise covariance, chol is
Cholesky method of matrix factorization, qr is QR matrix decomposition and cholupdate is a
Cholesky factor updating.

The SRUKF technique is summarized in Algorithm 3.

3.4. SRCDKF method

Like the SRUKF, the matrix square‐root �� will be propagated directly, avoiding the compu‐

tational complexity to refactorize at each time step in the CDKF. The SRCDKF is initialized
with a state mean vector and the square root of a covariance.

(34)

After the Cholesky factorization we obtain the sigma‐point:

(35)

The sigma‐point vector is then gone through the nonlinear process system, which predicts the
current attitude based on each sigma‐point.

(36)

The estimated state mean and square‐root covariance are calculated from the transformed
sigma‐point using,

(37)

(38)

where ��(�1) = 14ℎ2 ,     ���2 = ℎ2 − 14ℎ4 ,   �0(�) = ℎ2 − �ℎ2   and     ��(�) = 12ℎ2 . The next step,

the sigma‐point for measurement update is calculated as,

(39)

The transformed sigma‐point vector is then used to predict the measurements using the
measurement model:
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(40)

The expected measurement ��− and square‐root covariance of �� = ��− ��− (called the inno‐

vation) are given by expressions just as for the process model:

(41)

(42)

In an attempt to find out how much to adjust the predicted state mean and covariance based
on the actual measurement, the Kalman gain matrix �� is calculated as follows:

(43)

(44)

Then, the state mean and covariance are updated using the actual measurement and the
Kalman gain matrix is:

(45)

(46)

(47)

The SRCDKF technique is summarized in Algorithm 4.

3.5. ISPKF

In order to achieve superior performance of the statical linearization methods in terms of
efficiency and accuracy, the ISPKFs have been developed. These filters include IUKF, ICDKF,
ISRUKF and ISRCDKF. The major difference between the ISPKFs and the noniterated SPKFs
is shown in the step where the updated state estimation is calculated using the predicted state
and the observation. Instead of relying on the predicted state, the observation equation is
relinearized over times by iterating an approximate maximum a posteriori estimate, so the
state estimate will be more accurate.
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3.5.1. IUKF

The difference between the UKF and the IUKF consists in the iteration strategy.

After generating the prediction and the update steps, and getting both the state estimate ��
and the covariance matrix ��, an iteration loop is set up with the following initializations:

��, 0 = �� −,   ��, 0 = ��−, ��, 1 = �� ,   ��, 1 = �� and � = 2 with j is the jth iterate.

In this loop, for each j, new sigma‐points are generated in the same way as the standard UKF

(48)

Algorithm 3: SRUKF algorithm

• Initialization step: �0 = � �0
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Algorithm 4: SRCDKF algorithm

• Initialization step: �0 = � �0
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• Prediction step:
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Return the augmented state estimation ��
Then the prediction step and the update step are executed as follows:

(49)
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(50)

where ��, � represents the ith component of ��
(51)

(52)

(53)

(54)

(55)

(56)

Those steps are repeated many times until a following inequality is not satisfied.

(57)

The IUKF is summarized in Algorithm 5.

3.5.2. ICDKF

The iterated sigma‐point methods have the ability to provide accuracy over other estimation
methods since it relinearizes the measurement equation by iterating an approximate maximum
a posteriori estimate around the updated state, instead of relying on the predicted state.

In the ICDKF, the prediction step is calculated as the standard CDKF and we get ��−and ��−.

Then the sigma‐point in measurement updating is calculated as follows:

(58)

After that, the initialization �0 = ��− is set up and then the iteration step is executed, so the

following equations are repeated m times.
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(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

The algorithm of the ICDKF is summarized in Algorithm 6.

3.5.3. ISRUKF

The ISRUKF has the same principle as the IUKF. After executing the standard SRUKF, an

iteration loop is started. The predicted estimated state   ��−,  ��  and the predicted and esti‐

mated covariance matrix  (��−, ��) obtained through the prediction and the update steps will

be the initialization inputs for the iteration loop (��, 0 = �� −,   ��, 0 = ��− and��, 1 = �� ,   ��, 1 = ��) . Also let j=2 where j is the jth iteration.

In the iteration loop, and for each j, the new sigma‐point vector is generated as follows:

(67)

Then, the prediction and the update steps are executed as follows:

(68)

(69)
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(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

The equations in the iterative loop are repeated m times.

The ISRUKF algorithm is summarized in Algorithm 7.

3.5.4. ISRCDKF

The ISRCDKF has the ability to provide accuracy over other SRCDKF since it relinearizes the
measurement equation by iterating an approximate maximum a posteriori estimate around
the updated state, instead of relying on the predicted state.

The algorithm of the ISRCDKF consists of generating the prediction step as the standard
SRCDKF, then applying m iterations over the update step described as follows:

(81)

(82)
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(83)

(84)

(85)

(86)

(87)

(88)

(89)

The ISRCDKF algorithm is summarized in Algorithm 8.

In the next section, the SPKF method performances will be assessed and compared to ISPKF
methods. The performances of UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF and
ISRCDKF methods will be evaluated through a simulation example with two comparative
studies in terms of estimation accuracy, convergence and execution times.

4. Simulation results

4.1. State and parameter estimations for a second‐order LTI system

Consider a second‐order LTI described by the following state variable,

(90)

where �� is a Gaussian process noise (��; 0, 10−1), and � =   1.9223 −0.96041 0  is a matrix with

scalar parameter � = 0.20.2   .

Algorithm 5: IUKF algorithm

• Initialization step:

[ ]0 0Z E z=
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0 0 0( )(ˆ ˆ )TzP z z z zé ù= - -ë û

• Prediction step:

Generate the UKF prediction step and return ��−���   ��−
• Estimation (update) step:

• Generate the UKF update step and return �����   ��
• Iteration: Let ��, 0 = �� −,   ��, 0 = ��−
And ��, 1 = �� ,   ��, 1 = ��
Also let � = 1 and � = 2.
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Define these equations:

, ,(ˆ ˆ )k j k jy h z=

, , , 1ˆ ˆk j k j k jz z z -= -%

, , ˆk j k k jy y y= -%

If the inequality is fulfilled

1 1
, , 1 , , , 1 , 1ˆT T T T
k j k j k j k k j k j k k jz P y R y Ry y- -

- - -+ <% %% %

And � < � then set � = � . �,   � = � + 1, and return to the iterated loop.

Otherwise set�� = ��, � And �� = ��, � Return the augmented state estimation   ��
Algorithm 6: ICDKF algorithm

• Initialization step:

[ ]0 0Z E z=

0 0 0( )(ˆ ˆ )TzP z z z zé ù= - -ë û

• Prediction step:

1 1 1 1ˆ ˆ ˆk k k z k zz z h P z h P- - - -
é ùY = + -ë û

| 1 1( )k k kf- -Y = Y

2
( )

, |
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1ˆ
L

m
k i i k
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kz W-
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=
= å Y
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• Estimation(update) step:
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• Iteration: for j=0,.., m
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Return the augmented state estimation   ��
Algorithm 7: ISRUKF algorithm

• Initialization step: �0 = � �0
( )( ){ }0 0 0 0 0ˆ ˆ 'S chol E z z z z= é - - ùë û

• Prediction step:

• Generate the SRUKF prediction step and return ��− and Sk
−

• Estimation (update) step:

Generate the SRUKF update step and return �����   ��
• Iteration: Let ��, 0 = �� −,   ��, 0 = ��− and ��, 1 = �� ,   ��, 1 = �� . Also let j=2
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End

, kk m yU K S= %

{ }, , , 1k k mS cholupdate S U= -

Return the augmented state estimation ��
Algorithm 8: ISRCDKF algorithm

• Initialization step: �0 = � �0
( )( ){ }0 0 0 0 0ˆ ˆ 'S chol E z z z z= é - - ùë û

• Prediction step:

[ ]1 1  1 1 1  1ˆ ˆ               ̂  k k k k k kz z hS z hS- - - - - -Y = + -

[ ]/ 1 1k k kf- -Y = Y
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• Estimation(update) step:
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{ }, , 1k kS cholupdate S U-= -

End � = ��,����
{ }, , , 1k k mS cholupdate S U= -

Return the augmented state estimation ��
The nonstationary observation model is given by,

( )2k k ky Cx DU k n= + + (91)

where � = 1 0  and � = 00.2   . The observation noise �� is a Gaussian noise �(��; 0, 3.10−1).
Given only the noisy observations ��, the different filters were used to estimate the underlying

clean state sequence �� for � = 1…100.

4.1.1. Generation of dynamic data

It must be noted that this simulated state is assumed to be noise‐free. They are contaminated
with Gaussian noise. Given noisy observations ��, the various KFs were used to estimate the

clean state sequence �� = �1�2  for k = 1...100. Figure 1 shows the changes in the state variable�1.

Figure 1. Simulated data used in estimation: state variable (x1).
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Here, the number of sigma‐points is fixed to 9 for all the techniques (L = 4). The process noise(��; 0, 10−1) was added. The observation noise is �(��; 0, 3.10−1). The initial value of the state
vector is  �0 = 1 0 ' .
4.1.2. Comparative study: estimation of state variables from noisy measurements

The purpose of this study is to compare the estimation accuracy of UKF, IUKF, CDKF, ICDKF,
SRUKF, ISRUKF, SRCDKF and ISRCDKF methods when they are utilized to estimate the state
variable of the system. Hence, it is considered that the state vector to be estimated �� = ��  and
the model parameters �1, �2 are assumed to be known. The simulation results for state
estimations of state variable xk using UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF
and ISRCDKF methods are shown in Figures 2 and 3, respectively. Also, the performance
comparison of the state estimation techniques in terms of RMSE and execution times is
presented in Table 1.

Figure 2. Estimation of state variables using various state estimation techniques (UKF, CDKF, SRUKF and SRCDKF).

Figure 3. Estimation of state variables using various state estimation techniques (IUKF, ICDKF, ISRUKF and
ISRCDKF).
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Technique x1 (RMSE) x2 (RMSE) Time execution(s) Technique x1 (RMSE) x2 (RMSE) Time execution(s)

UKF 0.3539 0.4658 0.3577 IUKF 0.3342 0.4341 0.5952

CDKF 0.3512 0.4583 0.3367 ICDKF 0.3265 0.4315 0.4351

SRUKF 0.3495 0.4590 0.3354 ISRUKF 0.3254 0.4256 0.5803

SRCDKF 0.3324 0.4593 0.2586 ISRCDKF 0.3121 0.4213 0.4229

Table 1. Comparison of state estimation techniques.

It is easily observed from Figures 2 and 3 as well as Table 1 that the ISRCDKF method achieves
a better accuracy than the other methods.

4.1.3. Comparative study: simultaneous estimation of state variables and model parameters

The state variables and parameters are estimated and performed using the state estimation
techniques UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF and ISRCDKF. The results
of estimation for the model parameters using the estimation techniques (UKF, IUKF, CDKF,
ICDKF, SRUKF, ISRUKF, SRCDKF and ISRCDKF) are shown in Figures 4 and 5, respectively.
It can be seen from the results presented in Figures 4 and 5 that the IUKF, CDKF, ICDKF,
SRUKF, ISRUKF, SRCDKF and ISRCDKF methods outperform the UKF method, and that the
ISRCDKF shows relative improvement over all other techniques. These results confirm the
results obtained in the first comparative study, where only the state variable is estimated. The
advantages of the ISRCDKF over the other techniques can also be seen through their abilities
to estimate the model parameters.

Figure 4. Estimation of the model parameters (P1, P2) using UKF, CDKF, SRUKF and SRCDKF.
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Figure 5. Estimation of the model parameters (P1, P2) using IUKF, ICDKF, ISRUKF and ISRCDKF.

4.1.3.1. Root Mean Square Error analysis

The effects of the practical challenges on the performances of the UKF, IUKF, CDKF, ICDKF,
SRUKF, ISRUKF, SRCDKF and ISRCDKF for state and parameter estimation are investigated
in the next section.

4.1.3.1.1. Effect of number of state and parameter to estimate on the estimation RMSE

To study the effect of the number of states and parameters to be estimated on the estimation
performances of UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF and ISRCDKF, the
estimation performance is analyzed for different numbers of estimated states and parameters.
Here, we will consider two cases, which are summarized below. In all cases, it is assumed that
the state �� is measured.

Case 1: the state �� along with the first parameter �1 will be estimated.

Case 2: the state �� along with the two parameters �1 and �2 will be estimated.

The estimation of the state variables and parameter(s) for these two cases is performed using
UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF and ISRCDKF, and the simulation results
for the state variables and the model parameters for the two cases are shown in Tables 2 and
3. For example, for case 1, Table 2 compares the estimation RMSEs for the two state variables�� (with respect to the noise‐free data) and the mean of the estimated parameter �1 at steady

state (i.e., after convergence of parameter(s)) using the estimation methods. Tables 2 and 3 also
present similar comparisons for cases 1 and 2, respectively.
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Technique x1

(RMSE)

x2

(RMSE)

P1

(mean)

Time

execution (s)

Technique x1

(RMSE)

x2

(RMSE)

P1

(mean)

Time

execution (s)

UKF 0.4221 0.5418 2.2453 0.3906 IUKF 0.3854 0.5093 1.9826 0.6963

CDKF 0.4192 0.5205 2.2232 0.3696 ICDKF 0.3827 0.4920 1.9786 0.5160

SRUKF 0.4063 0.4978 2.2228 0.3835 ISRUKF 0.3757 0.4748 1.9661 0.6798

SRCDKF 0.3970 0.4943 2.1858 0.3420 ISRCDKF 0.3737 0.4720 1.9297 0.5154

Table 2. Root mean square errors of estimated state variables and mean of estimated parameter: case 1.

The results also show that the number of parameters to estimate affects the estimation accuracy
of the state variables. In other words, for all the techniques the estimation RMSE of �� increases

from the first comparative study (where only the state variables are estimated) to case 1 (where
the states and one parameter �1 is estimated) to case 2 (where the states and two parameters,�1 and �2, are estimated). For example, the RMSEs obtained using ISRCDKF for �1 in the first

comparative study and cases 1–2 of the second comparative study are 0.3121, 0.3737 and 0.3846,
respectively, which increase as the number of estimated parameters increases (see Tables 2 and
3). This observation is valid for the other state estimation techniques.

It can also be shown from Tables 2 and 3 that, for all the techniques, estimating more model
parameters affects the estimation accuracy. The ISRCDKF method, however, still provides
advantages over other methods in terms of the estimation accuracy.

Technique x1

(RMSE)

x2

(RMSE)

P1

(mean)

P2

(mean)

Technique x1

(RMSE)

x2

RMSE)

P1

(mean)

P2

(mean)

UKF 0.1962 0.6590 1.9484 ‐0.9798 IUKF 0.4056 0.4927 19408 ‐0.9721

CDKF 0.4170 0.4932 1.9482 ‐0.9786 ICDKF 0.4012 0.4908 1.9389 ‐0.9720

SRUKF 0.4133 0.4977 1.9481 ‐0.9776 ISRUKF 0.3989 0.4843 1.9342 ‐0.9677

SRCDKF 0.4090 0.4956 1.9436 ‐0.9741 ISRCDKF 0.3846 0.4875 1.9305 ‐0.9486

Table 3. Root mean square errors of estimated state variables and mean of estimated parameter: case 2.

4.1.3.1.2. Effect of noise content on the estimation RMSE

It is assumed that a noise is added to the state variable. In order to show the performance of
the estimation algorithms in the presence of noise, three different measurement noise values,10−1,   10−2 and 10−3, are considered. The simulation results of estimating the state �� using

the UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF and ISRCDKF methods when the

noise levels vary in 10−1, 10−2   and   10−3  are shown in Table 4.
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Noise levels UKF CDKF SRUKF SRCDKF IUKF ICDKF ISRUKF ISRCDKF

10‐1 x1 0.3539 0.3512 0.3495 0.3324 0.3342 0.3265 0.3254 0.3121

x2 0.4658 0.4593 0.4590 0.4593 0.4341 0.4315 0.4256 0.4213

10‐2 x1 0.1293 0.1264 0.1208 0.1174 0.1134 0.1095 0.1075 0.1066

x2 0.3564 0.3493 0.3474 0.3457 0.3440 0.3371 0.3355 0.3314

10‐3 x1 0.0460 0.0454 0.0448 0.0446 0.0436 0.0415 0.0394 0.0376

x2 0.3426 0.3360 0.3188 0.3062 0.2989 0.2918 0.2875 0.2830

Table 4. Root mean square errors (RMSEs) of the estimated states for different noise levels.

In other words, for the estimation techniques, the estimation RMSEs of �� increase from the

first comparative study (noise value = 10−1) to case (where the noise value = 10−3). For
example, the RMSEs obtained using ISRCDKF for x1 where the noise level in10−1, 10−2   and   10−3  are 0.3121, 0.1066 and 0.0376, which increase as the noise variance
increases (refer to Table 4).

5. Conclusions

In this chapter, various SPKF‐based methods are used to estimate nonlinear state variables and
model parameters. They are compared for the estimation performance in two comparative
studies. In the first comparative study, the state variables are estimated from noisy measure‐
ments of these variables, and the several estimation methods are compared by estimating the
RMSE with respect to the noise‐free data. In the second comparative study, of the state variables
as well as that the model parameters are estimated. Comparing the performances of the several
state estimation extensions, the impact of the number of estimated model parameters on the
convergence and accuracy of these methods is also evaluated. The results of the second
comparative study show that, for all the techniques, estimating more model parameters affects
the estimation accuracy as well as the convergence of the estimated states and parameters. The
iterated square‐root central difference Kalman method, however, still provides advantages
over other methods in terms of the estimation accuracy, convergence and execution times.
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