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Abstract

It is known that tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) could
induce both apoptosis and autophagy. Here, we summarized the recent findings of the
key regulators and the crosstalk pathway that highlights the intricate interplay between
TRAIL‐induced apoptosis and autophagy.
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1. Introduction

Tumor necrosis factor (TNF)‐related apoptosis‐inducing ligand (TRAIL), also known as Apo‐
2 ligand (Apo2L), is a multifunctional cytokine of the TNF superfamily (TNFSF) [1, 2]. TRAIL
gained much attention due to its specific antitumor potential without toxic side effects [3],
making TRAIL itself as well as agonists of its two receptors, which can submit an apoptotic
signal, TRAIL‐R1 (DR4) [4] and TRAIL‐R2 (DR5) [5–8], promising novel biotherapeutics for
cancer therapy [9–11]. Importantly, TRAIL can also induce autophagy, which has been linked
to apoptosis, serving either a prosurvival or prodeath function [12, 13]. Recent findings reveal
that the cellular contexts require a balanced interplay between apoptosis and autophagy.
Here, we summarized the recent findings of the key regulator and the crosstalk pathway
that highlights the intricate interplay between TRAIL‐induced apoptosis and autophagy.
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2. TRAIL‐induced apoptosis and autophagy

2.1. TRAIL signaling

There are four TRAIL transmembrane receptors: TRAIL‐R1 (DR4), TRAIL‐R2 (DR5), TRAIL‐
R3, also known as decoy receptor 1 (DcR1), and TRAIL‐R4 (DcR2), and a soluble receptor
osteoprotegerin (OPG) [4, 7, 14]. Only TRAIL‐R1 and TRAIL‐R2 are able to induce apoptosis,
whereas TRAIL‐R3, TRAIL‐R4, and OPG lack the intracellular functional domain, which is
required for apoptosis induction [15, 16]. This domain is characteristic for all apoptosis‐
inducing members of the TNFR superfamily (SF) and is called the death domain (DD). TRAIL‐
R3 and TRAIL‐R4 have been suggested to act as decoy receptors that inhibit apoptosis
induction [17]. It has been delineated that TRAIL triggers two major apoptosis signaling
pathways, the death receptor (extrinsic) and the mitochondrial (intrinsic) pathways. TRAIL
triggers the extrinsic apoptosis pathway upon binding of the TRAIL trimer to TRAIL‐R1 and/
or TRAIL‐R2, resulting in receptor trimerization, which in turn leads to recruitment of the
adaptor protein Fas‐associated DD (FADD). FADD in turn recruits procaspase‐8 and procas‐
pase‐10 through homotypic interactions of death‐effector domains (DED) presenting in FADD
and caspase‐8 and caspase‐10, respectively. This multiprotein complex is called death‐inducing
signaling complex (DISC) [18–21]. The DISC is an aggregation of the intracellular death domain
of the death receptor. In “type I” cells, the procaspase‐8 and procaspase‐10 form homodimers.
This induces a conformational change that exposes their proteolytical active sites, resulting in
autoactivation and subsequent cleavage of additional procaspase‐8 and procaspase‐10
molecules leading to activation of sufficient caspase‐8 to stimulate effector caspase‐3 to induce
apoptosis [22–24]. However, “type II” cells generate less‐active caspase‐8 at the DISC. These
cells induce apoptosis requiring further signal amplification by the intrinsic/mitochondrial
pathway. In this situation, an intracellular complex is activated [25–27]. The next is triggered
by caspase‐8‐mediated cleavage of Bid to truncated Bid (tBid) as the active fragment of this
protein [28–31]. Subsequently, tBid activates the mitochondrial pathway eventually leading to
mitochondrial outer membrane permeabilization (MOMP) and releasing of cytochrome C and
Smac/DIABLO [30, 32]. In the cytosol, cytochrome c Apaf‐1 and caspase‐9v forms a multimeric
complex called apoptosome. Activated caspase‐9 as the initiator caspase cleaves and activates
the effector caspases. Release of Smac augments apoptosis by antagonizing the inhibitor of
apoptosis (IAP) proteins, a family of antiapoptotic proteins that block apoptosis by binding to
and inhibiting effector caspases such as caspase‐3 and caspase‐7 [33, 34].

In the DISC, the main regulator protein is cellular FLICE‐like inhibitory protein (cFLIP) and
caspase‐8, cFLIP contains a death domain, which allows them to interact with proteins of the
TRAIL DISC, thereby blocking the transmission of the proapoptotic signal and preventing
caspase‐8 activation [35–37]. cFLIP closely resembles caspase‐8 but lacks the protease activity
required for apoptosis induction [38, 39]. Two main variants of cFLIP are expressed on the
protein level: a short isoform (cFLIP‐S) and a long isoform (cFLIP‐L) [40]. The cFLIP‐S isoform
can inhibit caspase‐8 activation in a dominant‐negative manner by competing with it for
binding to FADD. cFLIP‐L can also completely prevent DR‐induced apoptosis when it is
expressed at high levels. Several studies have demonstrated that cancer cells exploit overex‐
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pression of cFLIP to evade TRAIL‐induced apoptosis [41–43]. Overexpression of cFLIP is a
frequent event in human cancers and has been correlated with resistance to the induction of
apoptosis, including TRAIL‐mediated cell death [36, 37]. Consequently, downregulation of
cFLIP may sensitize certain cancers to TRAIL‐induced apoptosis [44–46]. Another key
regulator in the DISC is caspase‐8 that, besides caspase‐10, represents the initiator caspase that
is engaged during TRAIL‐induced apoptosis [47]. Hypermethylation of a regulatory motif that
controls caspase‐8 expression has been shown to be responsible for low or even absent caspase‐
8 expression in several cancer entities, resulting in resistance or decreased sensitivity to TRAIL‐
induced apoptosis [48–51]. Caspase‐8 function can be suppressed in a dominant‐negative
manner by aberrant expression of a splice variant of caspase‐8, that is, caspase‐8 long (caspase‐
8L) [52, 53]. This variant of caspase‐8 was detected in cancer cells. Caspase‐8L interferes with
caspase‐8 activation by competing with wild‐type caspase‐8 for the recruitment into the TRAIL
DISC. Additional regulatory mechanisms that control caspase‐8 activity include post‐transla‐
tional alterations of caspase‐8 such as phosphorylation. The tyrosine kinase Src has been
reported to phosphorylate caspase‐8 on one specific residue (tyrosine‐308), which impairs the
enzymatic function of caspase‐8 [54]. These regulation factors can influence the activity of
caspase‐8 that causes the change of TRAIL‐induced apoptosis.

Except from inducing apoptosis, TRAIL can also induce cell survival signaling such as
proinflammatory pathways (through NF‐kB, Akt, MAPK, and JNK activation). TRAIL can
promote a variety of cell survival cascades leading, for example, to proliferation, migration,
invasion, and even metastasis, especially in cancers in which the cell death signaling part of
the signaling network is impaired [55–57]. The induction of pathways has been suggested to
be mediated by the formation of a secondary complex containing FADD, caspase‐8, cFLIP,
RIP1, TRAF2, and NEMO [25, 58]. RIP1 is an important regulatory protein in the DISC that
can activate NF‐κB and caspase‐8 and generate reactive oxygen species (ROS) [59–61]. RIP1
function is modulated by ubiquitination and phosphorylation [62, 63]; a previous report
showed that in TNF‐α‐induced DISC, RIP1, and NEMO form a stable chain of linear ubiquitin.
This complex is involved in determining cell survival, necrosis, and apoptosis [64].

2.2. The regulators and pathways in TRAIL‐induced apoptosis and autophagy

Apoptosis and autophagy are evolutionarily conserved processes that regulate cell fate
together. Although apoptosis and autophagy has obvious difference, but their regulation is
closely related; they share the same regulator molecules and same pathway; however, these
same regulators may determine a different cell fate.

Nowadays, most studies focused on the relationship between TRAIL sensitivity and autoph‐
agy [12, 65–68], TRAIL has been shown to induce apoptosis and autophagy in a number of
cancer cell lines, including colon, glioma, bladder and prostate, and breast carcinoma. Han et
al. first explained TRAIL‐mediated cytoprotective autophagy in apoptosis‐deficient tumor
cells. They found that TRAIL can induce autophagic response in apoptosis‐defective tumor
cells (Hct116‐FLIP or Bax‐/‐ Hct116). Engineered apoptotic deficiencies included stable FLIP
transfection, which is expected to block the TRAIL‐apoptotic cascade at the DISC level, and
Bax knockout demonstrated to block the TRAIL apoptotic response of colon carcinoma Hct116
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cells despite the processing of caspase‐8 upstream of the mitochondria. Inhibition of autophagy
by the knockdown of Beclin 1, UVRAG, Vps34, or Atg7 allows for the induction of significant
apoptosis in response to TRAIL [69]. The following work from this laboratory demonstrates
that TRAIL‐mediated autophagic response counterbalances the TRAIL‐mediated apoptotic
response by the continuous sequestration of the large caspase‐8 subunit in autophagosomes
and its subsequent elimination in lysosome [66]. Inhibition of autophagy induces caspase‐8
activity; these findings provide evidence for regulation of caspase activity by autophagy. These
results suggest that the regulators, such as Beclin 1 and caspase‐8, play an important role in
the regulation of TRAIL‐induced apoptosis and autophagy.

He et al. demonstrate that TRAIL induced cytoprotective autophagy in different cancer cell
lines. MAPK8/JNK activation mediated by TRAF2 and RIP1 is required for TRAIL‐induced
autophagy. Blocking MAPK8 but not NF‐κB effectively blocked autophagy, suggesting that
MAPK8 is the main pathway for TRAIL‐induced autophagy. TRAF2 and RIP1 modulated
TRAIL‐induced and MAPK8‐mediated autophagy. These results reveal that inhibiting MAPK8
pathway‐mediated autophagy will increase TRAIL's anticancer activity in cancer cells [65].
Inhibition of antiapoptosis factors in the DISC (cIAP1, cIAP2, XIAP, and c‐FLIP, and so on)
increases TRAIL‐induced apoptosis. Also, some autophagy‐related pathways, such as AMPK
and MAPK/JNK pathway, are involved in TRAIL‐induced apoptosis [65, 70, 71]. These results
suggest that there are some regulators and pathways that are necessary for autophagy involved
in the regulation of TRAIL‐induced apoptosis and autophagy.

Following these researches, some new regulators were found. Caspase‐9 is a novel coregulator
of apoptosis and autophagy. Han et al. demonstrate that caspase‐9 facilitates the early events
leading to autophagosome formation; that it forms a complex with Atg7, and Atg7 represses
the apoptotic capability of caspase‐9, whereas the latter enhances the Atg7‐mediated formation
of light chain 3‐II. The repression of caspase‐9 apoptotic activity is mediated by its direct
interaction with Atg7, and it is not related to the autophagic function of Atg7. The Atg7 caspase‐
9 complex performs a dual function of linking caspase‐9 to the autophagic process while
keeping in check its apoptotic activity [72]. So far it has been found that many regulators such
as Beclin 1 and caspase 8 IAPs XIAP in TRAIL induced apoptosis and autophagy in cancer
cells. Caspase‐8L, cFLIP‐L, and cFLIP‐S act not only as antiapoptotic factors but also as
suppressors of autophagy. Inhibition of autophagy by gene silencing of these regulators or
small compounds targets these regulators sensitizing TRAIL‐resistant tumor cells to TRAIL‐
induced apoptosis. Taken together, these researches suggest some potential targets in the
prediction of tumor resistance to DR‐targeted therapies. Interestingly, a basal level of autoph‐
agy is needed for TRAIL‐induced apoptosis [73].

In addition to cancer cells, TRAIL has been shown to induce apoptosis and autophagy in other
cell lines such as U937 cell, Jurkat T cell, breast epithelial cells, and so on. We found that TRAIL
induces both apoptosis and autophagy in human U937 cells [74]. Inhibition of autophagy
facilitates TRAIL‐induced apoptosis, suggesting that autophagy of macrophages protects
against TRAIL‐induced apoptosis. RIP1 ubiquitination rapidly increased in U937 cells treated
with TRAIL, and RIP1 ubiquitination was significantly reduced in the presence of 3‐MA in the
cells treated with TRAIL. RIP1 expression was also distinctly decreased in the presence of 3‐
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MA in the cells treated with TRAIL. Furthermore, c‐FLIP‐L cleaved into the p43 variant
caspase‐8 was degraded into p43/41 while autophagy was suppressed by 3‐MA in the cells
treated with TRAIL. Knockdown of RIP1 suppresses autophagy in macrophage. These data
demonstrate that RIP1 is essential for the regulation of death receptor‐mediated apoptosis and
autophagy in macrophage and suggest that the expression and ubiquitination of RIP1 regulate
TRAIL‐induced apoptosis and autophagy. The results in this study contribute to understand‐
ing the regulation of apoptosis and autophagy in macrophages, and sheds light on inflamma‐
tion and autoimmune diseases [74].

Wang et al. in our group demonstrate that HTLV‐1 (human T cell leukemia virus type 1) Tax
protein increases autophagosome accumulation in human U251 astroglioma cells. In addition,
HTLV‐1 Tax deregulated the autophagy pathway, which plays a protective role during the
death receptor‐mediated apoptosis. Tax‐induced c‐FLIP expression also contributes to the
resistance against death receptor‐mediated apoptosis. Tax‐induced c‐FLIP expression corre‐
lated with the phosphorylation of IKK and the transcriptional activation of NF‐κB. But Tax‐
triggered autophagy only depends on the activation of IKK but not on the activation of NF‐
kB. TRAIL‐induced apoptosis is correlated with the degradation of Tax, which can be facilitated
by the inhibitors of autophagy [75]. These results outline a complex regulatory network
between apoptosis and autophagy, and Tax‐induced autophagy represents a new potential
target for therapeutic intervention for the HTVL‐1‐related diseases.

Herrero‐Martin et al. demonstrate that TRAIL triggers cytoprotective autophagy in untrans‐
formed human epithelial cells by the AMP‐activated protein kinase pathway. Transforming
growth factor‐b‐activating kinase 1 (TAK1) and TAK1‐binding subunit 2 mediate TRAIL‐
induced activation of AMPK and autophagy. These data have broad implications for under‐
standing the cellular control of energy homoeostasis as well as the resistance of untransformed
cells against TRAIL‐induced apoptosis [71]. These studies of macrophage, Jurkat T cell, and
breast epithelial cells have shown that some new regulators are involved in TRAIL‐induced
apoptosis and autophagy, and the expression and ubiquitination of RIP1, HTLV‐1 Tax protein,
and TAK1‐AMPK pathway regulate the balance of TRAIL‐induced apoptosis and autophagy
in different extent.

3. Conclusion

Taken together, both the regulators in apoptosis pathway such as caspase‐8 and caspase‐9 and
the key factors in autophagy such as Beclin 1 and ATG7 can regulate the TRAIL‐induced
apoptosis and autophagy [66, 72]. Moreover, some molecular switchers, like RIP1, regulate the
balance between TRAIL‐induced apoptosis and autophagy by dynamic expression and
modification [65, 74]. They share the same regulators even pathways to control the complicated
process (Table 1).

Both apoptosis and autophagy are important biological processes that play essential roles in
the development of tissue homeostasis and disease. Interactions among components of the two
pathways indicate a complex crosstalk. Insight into the complex network of TRAIL‐induced
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apoptosis and autophagy contributes to the development of novel therapeutic strategies for
the treatment of TRAIL‐related diseases and deeply understand the molecular mechanism of
apoptosis and autophagy.

Cell lines Key regulators pathway References

Hct116‐FLIP or (Bax‐/‐)Hct116 Beclin 1 and caspase‐8 [66, 69]

UM‐UC‐3, PC‐3, and A549 TRAF2 (RIP1)‐MAPK8/JNK pathway [65]

Hct116, HeLa, MB‐MDA‐231, and RKO Atg7·caspase‐9 complex [72]

U937 RIP1 caspase‐8 and cFLIP [74]

U251 HTLV‐1 Tax and cFLIP [75]

MCF10A–eGFP–LC3 TAK1‐AMPK pathway [71]

Table 1. The regulators and pathways in TRAIL‐induced apoptosis and autophagy in differences cell lines.
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