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Abstract

In this chapter, we describe the development of a new approach to simulate the friction
stir-welding (FSW) process using a solid-mechanics formulation of a mesh-free
Lagrangian method called smoothed particle hydrodynamics (SPH). Although this type
of a numerical model typically requires long calculation times, we have developed a
very efficient parallelization strategy on the graphics processing unit (GPU). This
simulation approach allows the determination of temperature evolution, elastic and
plastic deformation, defect formation, residual stresses, and material flow all within the
same model. More importantly, the large plastic deformation and material mixing
common to FSW are well captured by the mesh-free method. The parallel strategy on
the GPU provides a means to obtain meaningful simulation results within hours as
opposed to many days or even weeks with conventional FSW simulation codes.

Keywords: Friction stir welding, Numerical simulation, Smoothed particle hydrody-
namics, Coupled thermal-mechanical, GPU

1. Introduction

Friction stir welding (FSW) is a solid-state welding process that was patented in the UK by “The
Welding Institute” (TWI) in 1991. In this process, illustrated in Figure 1, a non-consumable
rotating tool is used and the workpieces are joined in a solid state, without fusing the materi-
als. This tool is classically made up of a cylindrical shoulder and a cylindrical or conical pin. To
perform a weld, the rotation of the tool is initiated, and then the tool is forced into the parts to
be welded. When the shoulder reaches the surface of the material, an important amount of
friction heat is generated along the contact surface. The increase in temperature softens the
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material and helps the workpieces to become highly plastic. Although significant heat is
generated, the material nevertheless stays in the solid state, at about 0.8-0.9 times the melting
point. The combined effect of the increased temperature and the pressure exerted by the tool
allows the workpiece material to be mechanically mixed. The plates are then joined together in
a solid state as the tool advances along the weld seam.

Figure 1. Friction stir-welding process.

FSW was initially developed and used to join aluminum alloys. However, since its invention,
the application field of the process has been extended to weld various materials: copper,
titanium, magnesium, steel, stainless steel, nickel, polymers, and lead.

To join two plates using the FSW process, a sequence of prescribed motions is performed. This
sequence is normally divided into four different phases. Each phase plays a specific role in the
welding process. These phases are illustrated in Figure 2 and are identified as follows:

1) Plunge phase,

2) Dwell or stabilization phase,

3) Welding or advancing phase,

4) Tool removal or retraction phase.

During the plunge phase, the rotation of the welding tool is initiated and the tool plunges into
the workpieces. During this phase, the material is relatively cold; only the pinis in contact with
the workpiece. The axial force (also called forging force) and the torque applied to the tool are
high, and in most cases, reach their highest values. At the end of the plunge phase, the pin has
tully penetrated the workpiece and the shoulder is in contact with the surface. The rotation
speed of the tool during the plunge and advance phase is frequently the same.
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Figure 2. The four main phases of friction stir welding.

The dwell phase begins when the desired plunge depth has been achieved. The axial force
Figure 2 is maintained on the tool during this stabilization phase. The combined effect of the
relative speed between the rotating tool and the material with the applied axial force generates
heat due to friction at the tool-material interface. The tool is kept in place for a sufficiently long
time to reach the temperature required for welding.

After the dwell phase, the tool starts to advance and accelerates to the prescribed translational
velocity along the weld line. The acceleration may be fast if the dwell phase was sufficiently
long and the temperature is high in the weld zone. However, too fast an acceleration can result
in high mechanical stresses for both the tool and welding equipment, reducing their useful
lifetime. Depending on the design of the tool and the specific process parameters, the FSW tool
may be tilted slightly (a few degrees) to improve the quality of the weld.

In conventional arc-welding techniques, the material is physically melted to produce a weld.
In FSW, numerous drawbacks associated with the presence of a liquid phase during welding
are eliminated: solidification cracking is eradicated, and the distortions and the size of the heat-
affected zone (HAZ) are reduced. Spatter, fume, and ultraviolet (UV) emissions are also
eliminated. Compared to arc-welded parts, the FSW assemblies frequently exhibit higher
mechanical properties in tension, compression, bending, and an increased life in fatigue. In
addition, no flux, protective gas, or filler material is needed during welding. Finally, the
thickness of FSW welds may go from few tenths of millimeters up to more than 70 mm in
aluminum alloys.

However, the FSW process has certain limitations as well. In order to bring the material
into the plastic state, the required torque and forces can be very high. The axial force ap-
plied on the tool can reach many kilonewtons (many tons of force). For this reason, the
welding machine must be robust, typically leading to relatively expensive equipment. In
order to have high-quality welds, it is also important to assure the appropriate clamping
and support of the pieces to be welded. Further limitations of the FSW process are mostly
related to geometrical factors. During welding, the tool shoulder must have constant and
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uniform pressure on the workpieces. Certain traditional types of welds such as the fillet
weld cannot be accomplished without modification of the standard tool geometry.

There are two main classes of FSW tools: single and double shoulder. The tool shown in
Figure 2 belongs to the first category, while the double-shoulder tools have a pin located
between two shoulders. These double-shoulder tools create high pressure in the weld zone by
forcing the parts into a space slightly narrower than their thickness. This method eliminates
the need for a solid backing plate that bears the axial force in case of single-shoulder technol-
ogy. Furthermore, in the case of double-shoulder tools, the problem of insufficient penetration
is eliminated and the temperature distribution is symmetrical about the center of the weld
zone.

After its invention, FSW has been rapidly introduced in various fields: in marine and rail
industries, automotive, aeronautic, aerospace, and fixed structures. Various types of materials
are now welded, and composite welds (e.g., Al-Cu or Al-steel) are performed. There are also
many variations on the standard FSW process. For example, using a procedure essentially
similar to FSW, a method that is comparable to traditional resistance spot welding called
Friction Stir Spot Welding (FSSW) has been developed. These two techniques can produce
similar punctual welds, for various parts with similar geometry and thickness. To produce a
weld, a rotating tool is plunged into the material. The axial motion stops when the shoulder
touches the surface of the workpiece, the rotating tool stays there for a short period of dwell,
and then it is extracted. FSSW has the benefit of being easy to mechanize with a robot, leading
to excellent repeatability and improved weld quality compared to resistance spot welding.
Another variation on the standard FSW process is the use of a tool with a retractable pin; this
type of tool can be used to mitigate the presence of the hole left behind when the tool is retracted
in phase 4. This process can be used to join parts where the presence of a hole at the end of the
weld line is unacceptable.

The physical principle of FSW has also been used to improve the microstructure of the
workpieces. In this technique, called friction stir processing (FSP), an FSW tool is used to
modify the microstructure of the material. The principal improvements made by FSP are as
follows:

* Creation of very fine microstructures to obtain super plasticity (nanograins can be pro-
duced);

* Homogenization of the microstructure to reduce segregation, eliminate porosity, and
increase mechanical properties, ductility, and corrosion resistance;

* Introduction of particles to develop composite surface (metal matrix composite (MMC)) and
modify the elasticity, wear resistance, thermal and electrical conductivity, or internal
damping of the material.

The local modifications performed by FSP to the microstructure can be very beneficial in a
zone of high stress, where a good ductility is needed, or where the fatigue life should be
increased.
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Numerical simulation of FSW is a popular field of research since the underlying physics is
complex and requires the use of advanced multi-physics solvers. There are various numerical
methods that can be used to simulate the friction stir-welding process. The finite difference
method (FDM) and the finite element method (FEM) have certain applicability for studying
the temperature distribution (heat transfer simulations). Lagrangian-based FEM typically will
suffer excessive element distortion for processes that occur with large finite strains. The finite
volume method (FVM) is also popular for studying the material flow and is strictly an Eulerian
approach (cannot follow the evolution of each material point). Arbitrary Lagrangian Eulerian
(ALE) is a meshed-based method that includes a material advection of the Lagrangian mesh
within an Eulerian mesh. This allows for larger levels of plastic deformation to be studied.
However, the method does have certain downfalls. Since the ALE scheme is highly dissipative,
this makes simulating long processes (such as FSW) prone to precision error. The method also
suffers from advection errors when the material movement is predominately out of the corner
of an element (the classic ALE scheme advects material orthogonal to element faces). To date,
mesh-free methods such as smoothed particle hydrodynamics (SPH) have shown the most
potential to simulate the entire FSW process. Because SPH is meshfree, very large plastic
deformation can be simulated without the problem of mesh distortion. Although the SPH
method is computationally burdensome, the method can easily be adapted to run in parallel
on the graphics processing unit (GPU) to significantly improve the calculation time.

Shi et al. [1] studied the effects of ultrasonic vibration to improve the weld quality using
computational fluid dynamics (CFD). They validate their model by comparing predicted
temperature and flow for experimental work. They note that the ultrasonic-assisted FSW
process provides a larger flow region and allows for faster welding without the presence of
defects. Since they use CFD, they are not able to follow the material history (Eulerian frame of
reference). Furthermore, they cannot predict residual stresses or defects in the weld zone.
Fraser et al. [2] have used FDM to predict the temperature distribution during the full FSW
process. They use the results to find the optimal process parameters (based on an optimal
temperature). Their method is efficient and was shown to correlate well with experimental
work. The model is limited to temperature calculation and cannot be used to predict defor-
mations, stresses, and defects.

Buffa et al. [3-5] used FEM to develop a hybrid model capable of determining the residual
stresses in the resulting weld. They split the FSW process simulation into two phases. In the
tirst phase, they model the plunge, dwell, and advance using a rigid viscoplastic model (fluid-
based) that does not provide elastic stresses. Then, they switch to an elastic-plastic model to
approximately calculate the resulting residual stresses during weld cooldown. They are able
to obtain good correlation for the residual stresses. On the downside, their model does not
allow for tracking defects since the welding phase is based on a fluid model.

Guerdoux and Fourmont [6] used the ALE method to study the different phases of the entire
process. They used an elastoviscoplastic rate and temperature-dependant material model with
the Hansel-Spittel rheological model. On the downside, the Hansel-Spittel model requires
coefficient fitting from tensile tests and the coefficients are not commonly available. Grujicic
etal. [6-8] as well as Chiumenti et al. [7] used ALE to simulate the FSW process and considered
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the effect of pin shape, contact friction, material and temperature flow. Their models are highly
sophisticated, but are not able to predict residual stresses and defects. They noted that the
calculation time is many weeks with their approach.

Bohjwani [8] used the SPH method to study the FSW process with the Johnson-Cook constit-
utive model in LS-DYNA. At the time, it was not possible to perform a coupled thermome-
chanical SPH simulation. As such, thermal softening is not taken into consideration. Timesli
et al. [9] used the SPH method in two dimensions (2D) to simulate the FSW process. They have
used the fluid formulation that directly calculated the deviatoric stress from the strain rate and
anon-Newtonian viscosity (function of temperature). They showed that their model correlates
well to an equivalent CFD model; however, they did not validate the model experimentally.
Recently, Pan et al. [10] used the SPH method to solve the fully coupled thermomechanical
problem for the FSW process in three dimensions (3D). Their approach gives detailed grain
size, hardness, and microstructure evolution using the SPH method. However, they use a fluid-
based formulation that does not allow the determination of elastic strains and stresses. Fraser
et al. [11-13] have used the SPH method to simulate various FSW processes using a fully
coupled thermos-mechanical SPH-FEM model. The tool is modeled with rigid FEMs and the
workpieces with SPH. The model is able to predict temperatures, stresses, and defects all
within a Lagrangian framework. This approach permits following the material point history
throughout the entire welding process. Since the tool is modeled with FEMs, friction contact
can be included.

In this chapter, we describe our approach toward simulating the entire FSW process using SPH
on the GPU. In Section 2, we explain what SPH is and how the method can be used to solve
large plastic deformation problems with an elastic-plastic formulation, including a description
of our parallelization strategy on the GPU. Section 3 introduces the simulation model of a
complex aluminum alloy joint. The simulation model will be used to show the power of the
SPH method. A validation case is presented to show that the model is able to predict tool
torque, force, and the temperature distribution, as well as the size and shape of the flash.
Finally, Section 4 wraps up the chapter with concluding remarks and an outlook toward the
future of FSW simulation.

2. Simulation theory

2.1. Smoothed particle hydrodynamics

Smoothed particle hydrodynamics is an advanced Lagrangian mesh-free simulation method.
The numerical technique has applications in a wide variety of dynamic problems such as
astrophysics, magnetohydrodynamics (MHD), computational fluid dynamics, and computa-
tional solid mechanics (CSM). The method was originally proposed by two independent
research groups within the same year. Gingold and Monaghan [14] showed that the method
could be used to simulate nonspherical stars, and Lucy [15] used the method to test the theory
of fission for rotating protostars. One of the first groups to apply the SPH method to solid
mechanics was Libersky and Petschek [16] in 1991.
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What makes the SPH method meshfree is that the set of field equation (conservation equations
for a solid body in this case) is solved by interpolation using a kernel, W(r, h), from a set of j
neighbor particles that are within the influence domain of a particle of interest, i. Figure 3 gives
a graphical representation of this concept. In this method, continuous field equations are
“weakened” into a set of discrete ordinary differential equations. A continuous function is
approximated by an interpolant through the use of a convolution integral:

F(x)=If(2)W(x-x h)dx (1)

Figure 3. Smoothed particle interpolation.

is called the kernel, also commonly referred to as the smoothing function. It is a function of
the spatial distance between the point at which the function is to be calculated (calculation
point, x), the interpolation location (x '), and the smoothing length, h. The kernel is the key to
the SPH method. The continuous SPH interpolation equation can then be written for a set of
discrete material points:

f(xia)zﬁ;%f(xj“)w(r,h) )

x; is the spatial location vector for particle i and x; for the j* particle. m; and p; are the mass and
density of a j™ particle and = | X0 =X | . The interpolation kernel, W(r,h), will be written as

W, throughout the rest of the paper. The sum is taken over the total number (N)) of the j particles
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within the influence domain of i; these are termed the neighbors of the i particle. As a general
rule, we will use tensor notation to describe variables in continuum equations and indicial
notation for the discrete SPH equations. Subscripts are reserved to indicate the i or j* particle,
whereas superscripts follow the general rules of the Einstein notation. For example, the Cauchy
stress tensor, (:f, in this notation would be ¢, for the i particle.

Determining the neighbors list is a major part of the computational time in the SPH method.
We have developed an efficient adaptive neighbor-searching algorithm (complete details in
Fraser [17]). The adaptive search typically cuts the search time in half or better.

In the SPH method, the gradient of a vector function can be shown to be simply the function
multiplied by the gradient of the smoothing function:

i

Vf(x)= S fx )V W, 3

j=1 Fj

The evaluation of first derivatives is straightforward in the SPH method through the use of
Eq. (3). The gradient of the smoothing function is given by

- :dW(r’h)[l](lj(fi_f) @
T ox dR h)\r !

i

The smoothing function is typically normalized using the ratio R = -=| X, - x il / h. The

available choices of smoothing functions are vast as this is an ongoing research topic. We have
tested a number of different options such as the cubic spline by Monaghan [18], the quadratic
function by Johnson and Beissel [19], the quintic function of Wendland [20], and the hyperbolic
spline by Yang et al. [21], among others. Of those tested, we have found that the hyperbolic
spline is well adapted for simulating friction stir welding with SPH. The function for simula-
tions in three dimensions is defined as

R*~6R+6, 0<R<1
W, =15/62zh3{ (2-R), 1<R<2 )
0, R=22

2.2. Coupled thermal mechanics SPH formulation for FSW

In this section, the solid-mechanics formulation of smoothed particle hydrodynamics that is
used in this work is outlined. The formulation bears close resemblance to that of a fluid
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approach; however, the main difference is the ability to account for elastic and plastic defor-
mation. Liu and Liu [22] as well as Violeau [23] provided in-depth development of the SPH
conservation equations.

2.2.1. Conservation equations

In order to simulate the FSW process, we must discretize conservation of mass, momentum,
and energy using the SPH method previously outlined. We use the weakly compressible
approach that is common for large deformation problems (e.g., see [24-27]). Fundamentally,
for a system described by particles, mass is inherently conserved at the particle level. It follows
then that mass would be conserved for a set of rigid particles (incompressible) that make up
a system. On the other hand, for a system made up of non-rigid (compressible) particles, we
must take into account the spatial and temporal change of mass, m, within an infinitesimal
volume. A convenient measure of this change is the local density, p=m/V, of an element within
the infinitesimal volume. The conservation of mass for a temporally changing compressible
system is

dp _
—+V.po=0 6
7 P (6)

where t is time and v is velocity. Using the definitions outlined in Egs. (1)~(5), we can now
write the discrete equation for Eq. (6) as

dp, < W
L= pN' Ly 7

where N; is the number of neighbors of the i particle and v;# = v/ — vf. There are other forms
of conservation of mass in the SPH method; this form is found to be robust and has the added
benefit that it provides improved results for a system with significant spatial variation of
density such as in multi-phase problems. The continuum mechanics description of conserva-
tion of momentum for a solid body is

d—UZlV'g-I-lFmt-f-E (8)
dt  p m

Equation (8) describes the change in velocity (acceleration) of a material point in a solid body
subject to internal forces due to stress, o, external forces, F,.,, (on the surface of the body), such

ext’
as contact forces, and body forces, such as thermal expansion. Gravity is not considered in the
formulation as its effects are not significant during the welding process. Now, we are ready to
translate the momentum equation for a continuum to the discrete SPH form:
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do” Y o O'jaﬂ aW], 1 "
1 = m. ! + i T F N b.a
dt ]Zl ] L p,'2 ij axiﬂ m. ( ext )i i (9)

1

This version of the momentum equation is commonly called the symmetric form since the
pairwise particle interactions are balanced. Moreover, this form exactly conserves linear
momentum.

In order to simulate the FSW process, we must take into account the change in energy in the
system due to conversion of internal energy (plastic deformation) and frictional heating. The
standard energy equation for a weakly compressible body takes on the same form as the heat
diffusion equation:

oT 1

Py (kV°T+4) (10)

Equation (10) provides the temporal change in temperature, T, in a solid body due to the
diffusion of thermal energy. C, is the heat capacity and 4 takes into account heat generation
and dissipation due to plastic deformation, frictional heating, convection, and radiation. The
discrete SPH approximation of Eq. (10) is (see Cleary and Monaghan [28])

dar 1 Yom, (4kk) (T-T) ow,

i

at PC, i3 P (ki +ki) ‘x

+q; (11)

Although frictional heating, convection, and radiation are surface integrals, we have found
that these terms can be approximated as volume integrals without any loss of precision for the
FSW simulations. In this sense, the heat generation and dissipation take on the following form:

(12)

+ Al (T -T) a0 (T -T)

where p*f is the plastic strain rate tensor, V, = m; [ pj, Fr¢is the tangential force from sliding

contact (we have used a constant coefficient of friction with the standard Coulomb friction
law), v, @ = v, @—v; @ is the relative tangential velocity at the contact surface, h is the
ij i j

convi
coefficient of convection, A; is the equivalent surface area of a particle taken to be /% ¢; is the
emissivity of the workpieces, og; is the Stefan-Boltzmann constant, T..,) is the temperature of
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the ambient air, and T, is the (average) temperature of the surroundings. The friction heat is
distributed into the workpieces (i particle) and the tool (j'* finite element) by the A, parameter:

\ kicpipi

A=
kG + K Cyip,

(13)

Certainly, the heat loss and gain at the surface (convection, radiation, and friction heating) can
be evaluated accordingly as surface integrals. However, we have found that the added
complexity does not lead to improved precision for the FSW models that we have considered.
In our experimental work, the surfaces of the workpieces are painted black to improve the
quality of the image taken with an infrared camera. Note that for unpainted aluminum, the
emissivity is very low (often less than 0.1); however, for a painted plate, the emissivity is ~0.95.
Because of this, radiation effects are significant and should not be disregarded in the energy
balance.

2.2.2. Stress and strain in SPH

The stress state can be updated in the material using a frame-indifferent objective stress rate
equation. There are many different stress rate equations that can be used such as Truesdell,
Green-Nahgdi, or the Jaumann rate equation (others exist). The Jaumann rate has a relatively
simple formulation, thus making it unassuming to implement in a CSM code. The rate equation
is

(14)

~—
J’_
Wl
o]l
&

J’_
o]l
52l

S is the time rate of change of the deviatoric stress, G is the shear modulus of the material, e
and Q are the strain rate and spin tensor, respectively, and 5 is the Kronecher delta. The rate
equation can be transformed into the discrete SPH formulation by using the discrete form of
the strain rate and spin tensors:

S = 2G[g'aﬂ - %5“&] +S7Q" + QS (15)

The strain rate is found from

1Y , . , ’ )
soff _ 1 a 1] I yij i
& = 22( 4 Uﬁ ox’ + ' Uji ox.® ] ﬂexpandirl;é‘ij (16)
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i7ij
expansion. f...q is the coefficient of volumetric expansion of the material. The SPH form of

The ﬁexpand_T 0, term takes into account the thermal strain rate and allows us to include thermal

the spin rate is

(17)

As the SPH method used is that of a weakly compressible approach, an equation of state is
required to link the pressure, p, to the density, and speed of sound, c:

P; ZCZ(pi _pio) (18)

Plasticity is included in the simulation by using an elastic-perfectly-plastic-thermal-softening
flow stress model of the form

T-T, )
o,(T)=0, 1_[ﬁ} (19)

melt ~ TR

Here, 0, is the room temperature yield strength, Ty and T}, are the room and melt temperature,

y
respectively. m is the thermal-softening exponent. Plasticity is accounted for using the radial
return algorithm (see [29-31] for further details).

2.3. Parallelization strategy on the GPU

Many types of engineering simulations require a large amount of computational time due to
the complexity of the numerical model and/or the sheer size of the computational domain. In
the case of friction stir welding, capturing all the aspect of the process requires a multi-physics
approach that is very computationally burdensome. A typical FSW simulation can take many
days or even weeks running on a single processing unit (sequential approach). For this reason,
it is critical to be able to find an efficient means to run the simulation code in parallel. The idea
is to split the domain into subregions and assigns them to individual processing units.

There are a number of different parallelization strategies that can be used. A popular method
for small- to medium-sized modelsis to use a shared memory parallel (SMP) approach wherein
each processor has its own set of tasks, but the processors share memory. In this sense, all the
simulation data are stored in a common memory location. OpenMP is a very common
directives-based programming language that can be used for SMP codes running on central
processing units (CPUs).
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For larger models, a different tactic is often employed with large number of CPUs, whereby
the model and the data in memory are split up and assigned to individual compute “nodes.”
This approach is called distributed-memory parallel and requires the individual compute
“nodes” to be linked by a network. A message-passing interface (MPI) can be used to provide
the communication.

Another parallelization strategy that has become very popular is to use the graphics processing
unit. Today’s GPUs have hundreds and in most cases thousands of “cores”. Figure 4 shows a
schematic of the architecture of a typical GPU. We can see that each multiprocessor is com-
posed of a large number of “thread processors”. The GPU has its own memory called global
memory that is accessed by all the multiprocessors. For this reason, as much as possible of the
code should be programmed on the GPU to limit the amount of data transfer between the CPU
and GPU.

Figure 4. GPU architecture (adapted from NVIDIA [32] and Ruetsch and Fatica [33]).

In the case of simulating the FSW process with SPH, the GPU is ideally suited for paralleliza-
tion. The large number of streaming multiprocessors on a GPU is perfect for the computa-
tionally heavy nature of SPH. SPH codes written to take advantage of the GPU can typically
achieve speedup factors of 20-100x over an equivalent serial CPU (e.g., see Dalrymple et al.
[34]). In some cases, speedup factors of over 150x are possible, although these are typically
problems that are set up to fully exploit the architecture of a specific GPU.

Our parallelization strategy for the SPH code on the GPU is to assign each particle to a thread
processor. In this sense, a thread will then carry out a set of calculations for a single particle.
The number of threads that can run in parallel is hardware and code specific, but is typically
in the multi-thousand range. Certainly, there are different parallelization strategies for SPH
on the GPU; however, we have found this approach to be straightforward and efficient.
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3. Simulation of a complex FSW joint

To date, most of the work on simulating the FSW process has been focused on a simple butt-
joint geometry model. Such a model is sufficient for academic research. However, for real
engineering applications, the numerical model should be robust enough to be able to simulate
complex geometries within a reasonable timeframe. In this section, we describe the FSW
simulation model and results for a complex geometry. The case considered is of an aluminum
alloy bridge deck that is fabricated by extrusion in multiple sections and joined using FSW.
The joint geometry can be seen in Figure 5. One of the drawbacks of using extruded sections
is that the parts tend to fit together with some undesirable qualities for FSW. In this case, the
two workpieces join together with a ~0.5-mm step at the top surface of the joint (as shown in
Figure 5). The left-most workpiece is slightly thicker than the other, and, as such, poses a
challenge for FSW. The tool will have to push down an extra 0.5 mm in order to come into
contact with the lower of the two surfaces. This in turn causes the formation of a significant
flash on the thicker workpiece. The overall height of the joint is 100 mm, the three vertical
members are 3 mm thick, the thicker plate (left side of step in image) is 3.7 mm thick, and the
thinner plate is 3.2 mm thick.

0.5 mm Step from
thicker to thinner plate

Figure 5. Complex joint.

3.1. Model description

The complex joint geometry is modeled by a combination of SPH for the workpieces and rigid
finite elements for the tool. Since the tool is made of hardened steel, it can safely be approxi-
mated as a rigid body. The simulation model is shown in Figure 6; here, we can see the rigid
tool and the two workpieces including the step at the top surface. The mesh size for the finite
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elements is 0.6 mm in the pin and shoulder region. Large elements are used outside of this
region since contact with the workpieces is only during flash formation.
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Figure 6. FSW joint simulation model.

The entire joint geometry is modeled with elastic-plastic-thermal SPH elements to allow for
an improved prediction of the thermal expansion and the stresses in the joint during the
welding process. The vertical member below the weld seam carries 90% of the forge force
during the welding process. With our modeling approach, the stresses and the possibility that
the member could collapse can be evaluated. The tool interacts with the workpieces through
a penalty-based contact algorithm that we have developed for FSW (full details in Fraser et al.
[35]). The tool has a shoulder diameter of 15 mm, an average pin diameter of 6 mm, and a pin
depth of 3.8 mm. The simulation model is composed of only a small region of interest of the
actual bridge deck. Convection (10 W/m?K) is included in the model as well as radiation (the
surface of the workpieces was painted black, an emissivity of 0.95) using a novel adaptive
thermal boundary condition algorithm (see Fraser et al. [36]). The material parameters of the
aluminum alloy used in the simulation are shown in Table 1.

Mechanical Workpieces Thermal
Parameter Value Units Parameter Value Units
Density, p 2700.0 Kg/m? Conductivity, k 175.0 W/mK
Initial yield, o, 240.0 MPa Heat capacity, C, 895.0 J/kgK
Shear modulus, G 26.3 GPa Tool thermal
Room temperature, Ty 20.0 °C Conductivity, k 55.0 W/mK
Melt temperature, T, 605.0 °C Heat capacity, C, 485.0 J/kgK
Softening exponent, m 1.34 - Density, p 7850.0 Kg/m?®
Speed of sound, ¢ 4722 m/s

Table 1. Thermal-physical properties of the aluminum alloy.
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We have used a uniform grid particle distribution of 0.6 mm to discretize the workpieces. This
spacing allows for a sufficient number of particles through the thickness without incurring
excessive calculation penalty. The time step size is selected based on the Courant-Friedrichs-
Lewy (CFL) criteria, dt,;, = CFL[h/(vsatc)]. For this FSW model, we found that CFL = 0.7 was
acceptable, leading to dt,;, = 9.8 x 10®). The small time step size is one of the major drawbacks
of using a solid-mechanics approach. Nevertheless, the time step size is required in order to
capture the propagation of elastic stresses within the aluminum.

The model is run as two distinct phases: plunge and advance. The dwell phase was not part
of the process as a ramp-up procedure to full advance speed was used in the experiment. A
well-defined ramp-up is good practice to limit the forces and torque on the tool and can replace
the dwell phase. The plunge speed is 25 mm/min and the full advance speed is 1250 mm/min
with 2100 rpm. The ramp-up is performed linearly for an initial tool displacement of 40 mm;
after this point, the tool speed is constant at 1250 mm/min.

Because of the 0.5-mm step, excessive amounts of flash are produced as the tool advances. The
flash has to be removed following the welding phase and requires a significant amount of work
for the welding technician. In order to attempt to reduce the quantity of flash produced, we
investigate three cases as follows:

Case 1- As performed in experiment—Full depth plunge (4.3 mm) until the tool shoulder
contacts the lower workpiece surface with a counterclockwise tool rotation. This simulation
case uses the same process parameters as the production run. The model serves as the
validation case using temperature, force, torque, and flash height.

Case 2- Variation 1—Partial depth plunge (4.2 mm) with a counterclockwise tool rotation.

Case 3- Variation 2—Full depth plunge (4.3 mm) until the tool shoulder contacts the lower
workpiece surface with a clockwise tool rotation.

Case 1 represents the actual process parameters used in the experiment. This case is used to
validate the tool force and torque, as well as the temperature distribution and history. Cases
2 and 3 are variations on case 1. In case 2, we attempt to reduce the quantity of flash by plunging
less (4.2 as opposed to 4.3 mm). This will have the effect of limiting the volume of material that
is sheared off the top surface of the thicker plate. In case 3, the flash formation will be reduced
by operating the FSW tool with a clockwise rotation. This results in the advancing side being
on the surface of the thicker plate. This will increase the weld temperature and help to move
more material to the lower side of the step, ultimately creating a superior weld compared to
cases 1 and 2.

3.2. Simulation results

The three cases were run in SPHriction-3D; in this section, we present the results from the three
different cases. The production process parameters correspond to case 1 and are used to
validate the model. A video of the results for the three cases is available here: https://
www.youtube.com/watch?v=eLOQILkUx-A.
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The temperature distribution results for the three cases are shown in Figure 7 at different times
during the simulation. We can see that the maximum temperature for case 2 is lower than for
the other two cases. This is because the tool plunges 0.1 mm less, in turn decreasing the forge
force and the heat generated due to Eq. (12). The ultimate result is that the quality of the weld
in case 2 is significantly lower than in the other cases. Of the three cases, the best weld quality
is obtained from case 3. Since the tool rotates clockwise, the advancing side is on the surface
of the thicker workpiece. This helps to move the hot material to the thinner workpiece at the
front of the tool. This is a favorable situation compared to having the hot material move around
the back of the tool (as in cases 1 and 2). We have every advantage to have the advancing side
on the thicker workpiece since the pressure is higher there. This causes the workpieces to heat
up more uniformly than is possible in either case 1 or 2.

Caze 1 Caze 2 Caze 3

r= B354
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=103 %
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Figure 7. Temperature and deformation results for the three cases.
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Figure 8. Temperature measurement points in the simulation model.

We have used four measurement points (TCs) for the temperature histories as shown in
Figure 8. TC1 and TC2 are placed at the middle of the workpiece (along the weld direction).
TC3 and TC4 are placed in line with the tool axis during the plunge phase. The four TCs are
at the surface of the workpieces and located 11.5 mm from the interface of the two workpieces.
MTC1 is a moving temperature measurement point that is located on the underside of the tool
and follows the tool as it rotates and advances. MTC1 is located 6 mm from the tool axis on
the underside of the tool shoulder.

The temperature was measured experimentally at two points on the surface of the thicker
workpiece (at locations TC1 and TC3) using data obtained from an infrared camera (IRcam).
Due to the filming angle available with the IRcam (restricted access to work area), temperatures
on the thinner workpiece could not be evaluated. Figure 9 shows that there is a good agreement
between the experimental and simulation results. The simulation model has a tendency to
slightly overpredict the temperature. Since we have used the perfectly-plastic-thermal-
softening model presented in Eq. (19), there is an overprediction of the plastic deformation
and in turn an increase in the heat generated as shown in Eq. (12). Furthermore, the heat
capacity and thermal conductivity of the aluminum alloy at high temperature are not known.
These parameters play an important role in the coupled thermal-mechanical model.
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Figure 9. Temperature history results for the three cases.

The relative difference between the TCs on the thicker and thinner plates gives a good means
of diagnosing the quality of the weld. If there is a large difference in the temperature reading,
we can conclude that the pressure is higher on one side of the weld than the other. This leads
to an unfavorable temperature distribution and the weld quality suffers. Case 2 is an excellent
example of such a situation. Notice the large difference in temperature in TC3 and TC4. Since
the plunge depth was insufficient, there is not enough pressure on the thinner plate, leading
to a decrease in temperature.

The temperature results at MTC1 are also an excellent indication of the weld quality. Since
MTC1 follows the tool as it rotates and advances, large temperature fluctuations are suggestive
of inadequate process parameters. We can see that the variation in temperature at MTC1 for
case 3 is significantly less than in other two cases. The experimental setup that we used did
not allow us to embed thermocouples in the workpiece or in the tool. Using an IRcam is
beneficial in cases such as this since holes do not need to be drilled in the aluminum or in the
tool. The surfaces to be filled should be painted a light coat of flat black paint that can easily
be removed with light buffing following welding. Temperature measurements with an IRcam
provide a very powerful diagnosis tool in the laboratory or in the hands of an FSW technician
at a commercial company. The images obtained can help the technician or an engineer to
understand whether their chosen process parameters are adequate and if not give good hints
as to why. For example, if the IRcam shows a significantly higher surface temperature on the
advancing side than the retreating side, the tool is likely advancing too fast for the chosen rpm.
During the plunge phase, the IRcam can again be used to determine whether the plunge speed
is too high (surface temperature too low) or low (surface temperature too high) (Figure 10).
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Figure 10. Spindle torque and forge-force comparison.

We can conclude that the weld zone has a more uniform temperature distribution. This leads
to favorable welding conditions and results in improved weld quality. Of particular interest
is the strong oscillation at MTC1 for case 2. Near the end of the simulation, there is a peak-to-
peak temperature change of over 300°C. The temperature on the thinner plate is too low to
allow the aluminum material to flow and the weld is essentially incomplete. This can be
verified by investigating the plastic strain contours in the weld zone as shown in Figure 12.
We can see that case 3 is the only one of the three in which the mechanically effected zone
spans the entire diameter of the tool. In case 1, the welded zone gets narrower as the tool
advances. For case 2, the welded zone spans no more than half the tool diameter from the edge
of the tool pin on the thinner plate into the thicker plate.
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Figure 11. Flash height comparison at the end of advancing phase.
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Figure 12. Plastic strain at the end of advancing phase showing the effective weld zone.

A comparison of the spindle torque and the forge force is shown in Figure 10. The inertia of
the spindle plays a strong role in the experimentally measured torque. Because the plates being
welded are very thin, the maximum process torque does not exceed 25 Nm and the average
torque during the advancing phase is ~20 Nm. However, the no-load torque measured was
~10 Nm, accounting for almost half of the typical process torque. In the simulation models, the
inertial effects of the spindle are not taken into consideration. The simulation torque is
calculated by taking the cross-product of the contact forces and the distance vector between
the tool axis and an SPH element. For this reason, the torque trends line up well with the
experimental data, though the magnitude is diffident (Figure 11).

A good correlation between the forge force from experiment and simulation was obtained. The
inertial effects do not play an important role here, leading to a better prediction than was
obtained with the torque. There are other factors that lead to a reduction in the precision of
the predicted torque and forge force such as the thermophysical properties of the material, the
chosen friction law, differences in how the FSW machine and simulation model control the
position, and rpm of the tool, as well as discrepancies between the actual geometry of the
workpieces and the tool compared to their idealization in the simulation model.

Nevertheless, the simulation model provides an excellent understanding of how a change in
process parameters effects the torque and forces. We can see that the tool torque and forge
force for case 2 are lower than those for cases 1 and 3. This is an intuitive result as the plunge
depth is shallower, leading to less contact pressure (Figure 12).

A flash height of 4.2 mm was measured experimentally; case 1 predicts a flash height of
4.5 mm, 3.9 mm for case 2, and less than 1 mm for case 3. The flash heights are shown in
Figure 11; notice that the wavy pattern of the flash is well represented in the simulation
model for case 1. The images have been cleaned up to show only the continuous flash
line by omitting sporadic “flash flakes” that typically do not require much effort to re-
move. Clearly, the flash produced in case 3 is significantly less than that in other two
cases. The reason is entirely due to the change in tool rotation. Flash lines will most com-
monly be laid down on the retreating side of the weld. By ensuring that the advancing
side is on the thicker side, the material is “ripped” from the thicker side and transported
to the retreating side. Because of the height change, the flash is not able to attach to the
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thinner side and creates intermittent “flakes” that can be removed in less time than is
possible in the case of a continuous flash line on the thicker side (as in cases 1 and 2).

4. Conclusions

In this work, we have presented our approach toward simulating the entire FSW process using
a solid-mechanics approach. By using a mesh-free numerical method such as SPH, the large
plastic deformation encountered during FSW can be easily calculated. Mesh-based methods
struggle to capture all the physics of the process due to discretization errors as the mesh
distorts. The fully coupled elastic-plastic-thermal code is able to predict temperature, stress,
and deformation histories. Because of the mesh-free Lagrangian nature of SPH, the model is
able to predict defects (free surface changes) in a way that other numerical methods cannot.
The prediction of defects is an invaluable feature for an engineer working on the design of the
joint geometry to be welded. Optimal process parameters can then be chosen that lead to no-
weld defects. In this manner, the design engineer can find the fastest rate of advance that can
be used to increase the overall profit margin during a high-volume production run.

One of the major advantages of using a solid-mechanics approach compared to a fluid
approach is that the simulation models are able to capture the elastic stresses and strains.
Figure 13 shows the effective stress in the joint at the end of the plunge phase. This is the point
when the forge force reaches its maximum value. This is of great interest to a joint designer
who is interested to know if the joint will withstand the forge force during the welding process.
If the vertical members under the weld seam are too thin, they will likely undergo significant
plastification and could collapse. This certainly would be disastrous for the finished product.
Other benefits of including the elastic stresses and strain are the ability to more precisely
predict defect size and shape, as well as residual stresses and deformation following a
cooldown phase.

Figure 13. Stress state at the end of plunge phase.

Looking toward the future of numerical simulation of FSW, we can see that as the performance
of GPUs continues to improve, larger and more complex simulation models will be possible.
We are currently working on a multi-GPU parallelization strategy that will allow tens and
even hundreds of millions of SPH elements to be simulated. This approach requires the use of
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a highly optimized communication strategy between the GPUs (e.g., using MPI). We are
currently working on various developments in the code, such as follows:

* Improved contact models with different friction treatments (such as including the shear
limit and/or a stick-slip behavior);

* Wear prediction at the surface of the tool using Archard’s model;

* Improved thermo-physical material representations that more accurately model the
behavior of the aluminum alloy during the FSW process;

* An implicit mesh-free collocation approach that will permit efficient simulation of long
duration phases such as cooling.

Since the simulation code is developed using a highly optimized parallel-processing strategy,
complex 3D-joint geometries can be simulated within a reasonable period. In this work, the
three simulation models were run simultaneously on a personal workstation with three
individual GPUs. The cost of such a computer is less than five thousand dollars in today’s
market. Because of the parallel strategy, a cluster with many GPUs can be used with 100%
efficiency (as long as an individual GPU has enough memory for each simulation model). In
the sense of optimization, a company with access to a GPU compute cluster (say eight or more
GPUs) could run parametric models (e.g., varying the rpm and advance speed) simultane-
ously. The obtained data sets would provide the required information to construct a response
surface and find the optimal advancing speed and rpm.
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