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Abstract

Extracorporeal membrane oxygenation (ECMO) is a well-established therapy for the
temporary substitution for the heart and/or lungs in patients with acute cardiac or
pulmonary failure.  Recently,  the development of portable systems has allowed for
implementation of therapy outside of the intensive care units.  ECMO can even be
initiated in out-of-hospital situations to allow for patient stabilization and subsequent
transfer to an appropriate hospital. This chapter will focus on the authors’ develop‐
ment of a perfusion system based on a new double chamber pump. This unique design
will, in theory, allow for a more complete and effective circulatory support to allow for
myocardial and pulmonary recovery. The evolution from bench-top to animal testing
will be described. The theoretical issues—including the advantages and disadvantag‐
es of roller and centrifugal pump designs—will also be discussed.

Keywords: blood pump, pulsatile flow, resuscitation, circulatory support

1. Introduction

The use of extracorporeal membrane oxygenation (ECMO), as a therapy for acute cardio-
pulmonary failure, as a form of “substitute” for the full circulation has undergone extensive
development over the years. ECMO is a method of temporary replacement for cardiac and/or
pulmonary function in cases of failure to wean from cardiopulmonary bypass after open-
heart surgery, or cardiac arrest, or acute respiratory failure. As a result, ECMO has the ability
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to provide a broad spectrum of support options for patients with severe combined heart–
lung, or isolated cardiac or pulmonary diseases.  The therapy is based on the temporary
replacement of native vital organs (heart and lungs) with artificial analogs (blood pumps and
oxygenators) in the clinical scenarios of a critical impairment or temporary absence of their
functions [1, 2].

Historic milestones of ECMO development track closely the rapid development of other
similar medical technologies over the past 50 years—specifically, the development of a number
of clinically useful portable extracorporeal biocompatible blood pumps and membrane
oxygenators. As with other developing medical technologies, the initial applications clinically
tended to be in extremely high-risk or near-futile cases in which the chances of meaningful
survival, even with technical success, was rare. Therefore, as with new methods for external
blood circulation (extracorporeal support), membrane oxygenation was used in cases of dying
patients and the outcomes, predictably, were poor [3]. Consequently, successful cases were
uncommon. Hence, prior to the creation of modern membrane oxygenators, ECMO was rarely
used. In subsequent years, the indications for the use of oxygenators widened and ECMO used
became more common in children after cardiac surgery and in newborns with severe respira‐
tory distress.

Regarding the terminology, according to the nomenclature of Extracorporeal Life Support
Organization (ELSO-1989) a modern term—extracorporeal life support (ECLS) is often used
instead of the term extracorporeal membrane oxygenation (ECMO). It is believed that ECLS
simultaneously involves the use of other methods of circulatory support—ventricular assist
device (VAD) as well as extracorporeal circulation (ECC) circuits [4].

In recent years, despite considerable expense, there is a trend toward a significant increased
used of ECLS clinically. Annually published ELSO registry data from the 36,000 patients
worldwide treated with ECLS as of 2008, more than 26,000 (72%) survived. Among the patients
requiring extracorporeal cardio-pulmonary resuscitation (ECPR) 26% survived.

By 2012, nearly 51,000 patients had been treated with ECLS. Thirteen thousand patients were
treated with ECLS for the purpose of circulatory support during the cardiac arrest or cardio‐
genic shock. Accordingly, in cases of ECPR, a 40% survival rate was observed in newborns,
49% in children, and 39% in adult patients [5, 6].

2. Types of pumps for extracorporeal perfusion

Depending on the clinical application, ECLS support differs in the manner in which the patient
is connected to the artificial system, the configuration of bypass circuit, the character of pulse
wave, and whether “arterial” or “venous” blood enters into the machine. The components of
technical devices themselves also vary considerable as well. In order to understand the essence
of the ECLS therapy, it is necessary to consider the configuration of partial (or in some cases
full) blood bypass using an artificial pump and the integrated blood oxygenator [7, 8].

Thus, for the treatment of acutely and potentially reversible respiratory, cardiac, or combined
failure, refractory to standard therapy, the usage of veno-venous (VV) or veno-arterial (VA),
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ECMO is indicated. While VV ECMO is used in cases of severe respiratory failure, VA ECMO
is mainly used with severe heart failure. The differences between them lie in the blood bypass
configuration and how the system is “connected” to the patient.

In cases of veno-venous support:

• The blood intake is drained out from the inferior vena cava through a cannula, typically,
inserted into the femoral vein. As for the pumping, it is returned into the right atrium by a
separate cannula, inserted through the right internal jugular vein or the contralateral
femoral vein;

• With a dual-lumen cannula, inserted through the right internal jugular vein (often requiring
ultrasound or fluoroscopic guidance), intake of the blood may be performed from the right
atrium, pumped it through the second inflow of the catheter with flow directed across the
tricuspid valve into the right ventricle.

In cases of veno-arterial support:

• The blood intake is carried out from the right atrium by means of cannula inserted through
the right internal jugular vein or either femoral vein, and actively pumping into the arterial
system via either the right common carotid artery (in neonates), the axillary artery, or by
direct cannulation of the ascending aorta;

• Alternatively, peripheral arterial return can be provided via the femoral artery.

Each of the described methods has its own indications, advantages, and disadvantages. But,
in general, veno-venous bypass is used in case of respiratory insufficiency while veno-arterial
can be used for either respiratory or cardiac insufficiency [9, 10].

For cardiac arrest and cardiogenic shock developing in the hospital or in an out-of-hospital
situation, the complete setup of machine is similar. The system can be assembled as a mobile,
portable ECLS system is used for the ECPR [11]. Teams experienced with emergency cardio-
pulmonary resuscitation are required to successfully use these devices. The purpose of using
ECLS during cardiac arrest (ECPR), first of all, is the restoration of blood circulation in the
patient. In these instances, artificial pump replace the ejecting function of the heart. In extreme
conditions, when surgical venous and arterial cut-downs cannot be performed, percutaneous
cannulation of large peripheral vessels (in most cases cannulation of the femoral artery and
vein) can be performed. Such configurations of ECLS implementation (veno-arterial), require,
by definition, a membrane oxygenator with heat exchanger, in addition to the main blood
pumping components [12–15].

When connecting an artificial perfusion system to a living body, an interdependent bio-
technical system is created. In other words, complex of biological to mechanical (bio-object)
system is created for the purpose of the functional support (temporary or permanent replace‐
ment of the function) of vital organs. To understand the processes taking place within this
complex system, it is necessary to consider all the parameters of the operation of the artificial
components of the system, their technical characteristics affecting the bio-object and disad‐
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vantages, causing certain morphological and functional changes within the extra and intra-
corporeal system [10, 11].

Advanced extracorporeal life support (ECLS) systems consist of three main components: the
pumping unit, the unit for gas exchange and blood flow temperature support, and the
monitoring unit. Each of them, individually, has evolved through a long path of development
and formation, with each becoming specific components of the perfusion system. This applies
to blood pumps as well, which are key parts of the perfusion system.

From a technical point of view, all the pumping equipment designed for pumping liquids
are divided into two main classes: dynamic (so-called continuous current) and volumetric
(so-called shifting volume). In dynamic pumps, liquid entered into them and then get eject‐
ed in a continuous fashion. The driving force in them becomes inertia. For volumetric
pumps—pumping process is based on the alternate filling in with liquid of the operating
chamber and ejecting the liquid. For dynamic pumps, there is a characteristics double con‐
version of energy. On the first stage, mechanical energy is converted into kinetic energy, and
on the second stage, the kinetic energy is converted then into potential energy. As for volu‐
metric pumps—liquid is transferred, under pressure at its surface, with periodic changes in
the pump chamber volume, which is alternately intercommunicating with the inlet and out‐
let of the pump. There is only a single energy conversion. It means that mechanical energy is
directly converted into potential energy. Both classes of pumps are divided into main sub‐
groups (Tables 1 and 2).

VV ECMO VA ECMO

Advantages • The ability to avoid arterial cannulation

• The ability to use a single cannula

• Provides direct pulmonary oxygenation

• Improves coronary oxygenation

• Reduces the risk of neurological disorders

• May improve cardiac output

• Provides cardiopulmonary support

• Reduces preload right ventricle (RV) and left
ventricle (LV)

• No risk of blood recirculation

• Better oxygen delivery

Disadvantages • Adequate oxygenation may be not achieved 

• There is no direct support for the heart

• High risk of recirculation

• Increases LV post-load

• Reduces pulse pressure

• Coronary perfusion from the left ventricle

• Stunning

• Certain artery cannulation

• Ischemia during peripheral arterial cannulation

Table 1. Comparison of the advantages and disadvantages according to the configuration.
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The basic requirements for blood pumps were generally formulated at the beginning of the
second half of the twentieth century. Therefore, at various stages of development of the
extracorporeal circulation systems industry, pumps were developed and used.

Dynamic Volumetric

• Centrifugal

• Axial

• Vortex

• Auger

• Jet

• Piston drive

• Membrane

• Screw

• Peristaltic

• Air driven (pneumatic)

Table 2. Classification of pumping equipment for pumping over fluids.

These pumps belonged to most of the above-mentioned sub-groups with various names
assigned to each design (roller, finger, rotor, rotating in a liquid, centrifugal, axial, etc.). Over
time, the requirements and details were continually refined and depended on the type of
perfusion system as well as their particular purpose.

Hence, we believe that a modern extracorporeal blood pump should have:

• Maximum biocompatibility (biochemical and hemocompatibility);

• Maximum atraumaticity (not to injure the plasma and formed elements—that is, blood cells);

• The ability to pump up to 10 l/min of blood;

• Minimum of dilution (to have a minimum amount of filling blood chambers);

• Discharging (outlet) mode, continuous, as well as pulse (controlled pulse flow, from the
predetermined, an internal asynchronous rhythm as well as from ECG or pressure curve—
cardio-synchronized counter pulsation);

• Compact and transportable (with minimum size and weight) control system and power
supply (battery powered for several hours of continuous use).

Based on these requirements, today, the most commonly used ECLS systems are equipped
with either a volumetric peristaltic (shifting volume, for convenience are referred to as roller)
pumps, or with dynamic centrifugal pumps [16–18].

2.1. The peristaltic (roller) pumps

According to the latest classification of blood pumps, proposed at the 94th Annual Congress
of the American Association of Thoracic Surgery (Toronto 2014), peristaltic (roller) pumps
should be attributed functionally to extracorporeal blood pumps as for mono- or biventricular
support; for mechanical short-term circulatory support [up to 4 h on the recommendations of
US Food and Drug Authority (U.S. FDA)], as a bridge for the heart recovery.
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The operating principle of such a pump is based on the fact that the rollers pinch the tube with
a fluid and push the liquid forward while moving along the tube. Usually, it consists of a
flexible tube, several (usually two or three) rollers, and the surface (track) against which the
rollers compress the tube. There are some designs without a bearing surface as the tube is
clamped down on the roller due to the tension applied to the roller.

According to the implementation of the housing roller, pumps can be monobloc (Cased pump)
and modular (Close-coupled pump). For the monobloc pumps, the drive, the reducer (gear),
and control elements are all within a single unitary case housing. In a modular pump, the
modules are also connected to each other, but there is no housing. Capacity of the roller pump
depends on the rotational speed of the shaft and the number of rollers. The number of rollers
also determines evenness of the fluid flow.

The peristaltic pumps, in contrast to other types of pumps, are not equipped with valves or
seals. When in use, the pumped blood is in contact only with the inner surface of the tube.
Tubes for roller pump, the most important element of the entire pump, determine: system
pressure, volume of inflow, capacity, and durability of the pump. The process of the pump
service is minimal, as far as only tubes are changed. Its main hydrodynamic characteristics are
as follows:

• Ability to set totally or partially occlusive;

• Positive displacement—pushes blood by “squeezing” raceway;

• Automatically calculated blood flow (stroke volume × revolutions per minute);

• Blood flow is not dependent on resistance.

These pump properties, as well as high reliability and simplicity of operation, have resulted
in widespread adoption clinically. In addition, it has been successfully used in ECMO systems.

2.2. The centrifugal pump

The centrifugal pump (rotating in the direction of flow) using the same classification system
as roller pumps (Toronto 2014) considers extracorporeal or paracorporeal blood pumps.
Centrifugal pumps can be used for uni- or bi-ventricular bypass for mechanical circulatory
support for cases that require short-term therapy (up to 9 h according to US Food and Drug
Authority—U.S. FDA—recommendations) as a stage for the heart recovery.

A centrifugal pump consists of housing with a tapered shape. Positioned inside is a rigidly
fixed wheel consisting of two disks with blades fixed between them. They are bent away from
the radial direction in the opposite direction in which the wheel is directed to rotate. Pump
connection with inlet and outlet connectors to main lines is used to direct blood flow.

The operating principle of centrifugal pumps is as follows: an impeller rotates in the case filled
with fluid (i.e., blood). The result from rotation is a centrifugal force that causes flow of the
fluid from the center of the wheel to the peripheral areas. This flow creates a high pressure
that begins to displace fluid in the outlet pipe. Lowering the pressure in the center of the
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impeller makes fluid to enter the pump through the inlet. Thus, the work for continuous fluid
supply is performed [19].

Centrifugal pumps may have a different number of impellers, the shape and number of blades,
the slope and volume of the housing cone, the number of rotor rotations per minute (1000–
4000 rpm), and so on. But, regardless, the operating principles of centrifugal pumps remain
the same—the fluid shifts are performed by the centrifugal force caused by rotating the
impeller in the fluid. This last fact is extremely important from the point of view of a blood
trauma. However, technological advances and the introduction of new coating materials for
the surfaces that are in direct contact with blood, significantly reduced the risk of a blood
trauma. The innovation in coating surfaces has resulted in a large number of structurally
modified centrifugal pumps (Roto Flow (Jostra); Sorin (Revolution); Delphin (Sarns); Centri‐
Mag (Levitronix); Capiox (Terumo); BioMedicus, BP-80 Biopump (Medtronic); Nikkiso
(Nikkiso), etc) into clinical practice. In spite of such developments, the hydrodynamic char‐
acteristics of these pumps are not significantly different from each other and they generally
have the following characteristics:

• Unlike roller pumps, they are totally non-occlusive

• Passive displacement—Cones or impellers create kinetic energy using centrifugal force of
fluid constrained vortexing

• Revolutions per minute are proportional to resistance

• Blood flow is inversely proportional to resistance

• Priming volume 30–60 ml

• Blood flow rate 5–10 lpm

• Minimal surface area

• Low blood transit time

• No stagnant areas

Considering the above-mentioned pump characteristics, operation, and management of these
pumps require specific conditions, namely

➢They are preload and after-load dependent, that is, an increase in downstream resistance
decreases forward flow delivered to the patient.

◦ This has both favorable and unfavorable consequences.

◦ Flow is not determined by rotational rate alone, so a flow meter must be incorporated in
the arterial outflow to quantify pump flow.

➢When the pump is connected to the patient’s arterial system but is not running, blood will
flow backward through the pump and out of the patient unless the arterial line is clamped.

◦ This can cause reverse flow (left to right shunt), exsanguination of the patient or aspiration
of air into the arterial line (e.g. from around the purse string sutures);

Practical and Theoretical Considerations for ECMO System Development
http://dx.doi.org/10.5772/64267

363



◦ Thus, whenever the centrifugal pump is not running, the arterial line MUST be clamped!

➢Blood flow is dependent on:

◦ Revolutions per minute’s (within limitation as increased rotational rates can result in over
pressurization and cavitation);

◦ After-load;

◦ Pre-load.

Over the years, there has been a vast accumulated experience in the experimental and clinical
use of these pumps in a variety of perfusion systems. Each pump has specific advantages over
other types of blood pumps. However, each of them is also characterized by the specific
disadvantages that are manifested in the course of their operation—especially during pro‐
longed and long-term applications. Complications, inherent to the specifics of each pump, are
associated with the peculiarities of their construction and therefore are hard to overcome.

2.3. Disadvantages and complications inherent to used pumps

The literature relating the history of the blood pump development shows a difficult, contro‐
versial path, passed by researchers from the second quarter of the last century to the present
day. Trying to reproduce the work of the heart by the means of artificial analog has been
initially implemented in two directions:

• The maximal work of artificial pump is according to the basic parameters of native heart
operation (these systems were known for high complexity, difficult to manage, technological
inaccessibility, and high prices)—hence, widespread clinical implementation has not been
reached (mainly concerns pumps, shifting volume);

• The complete detachment from the morphological and physiological identity in favor of the
simplicity of design, practicality, physiological adequacy, and affordability (such designs
had been intensively developed and attained clinical application), while continuing to
improve on all of the basic characteristics as described above.

Technical advances along with the introduction of new materials and technologies into clinical
practice have led to the rapid development of industries focusing on artificial perfusion. A
major area of this focus has been regarding therapies directed to advancing ECMO and ECPR.
There are generalized advantages of different pump designs and perfusion benefits achieved
as well as the complications and potential disadvantages related to their design. While
analyzing the advantages related to the clinical application of roller and centrifugal pumps,
we should note the existence of “old” deficiencies and complications, inherent in these pumps.
This is interdependence of blood inflow and outflow parameters, lack of counter pulsation,
potential for blood trauma, and other problems reflect the inherent limitations of all extra-
corporeal systems [20].

These theoretical disadvantages limit, to some extent, the effectiveness of such perfusion
systems and the clinical applications in which they are being used. In situations, when the
perfusion system is used for the treatment of respiratory insufficiency, the main function of
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oxygenating blood is performed by a membrane oxygenator. The blood pump then functions
in an auxiliary role by serving as a means of transporting blood inside the complex bio-
technological system. With veno–veno perfusion, non-pulsatile blood flow, implemented by
the pump, is quite acceptable, when the oxygenation (and elimination of carbon dioxide)
function of the impaired lung is replaced. A significant disadvantage of such bypass scheme
is the risk of blood recirculation, which can partially reduce by modifying bypass circuit.
Recirculation is where the inflow and outflow cannulas are physically close to one another and
the suction of the outflow cannula actively drains the inflow. An example would be dual-lumen
cannula, draining the blood from the right atrium with one lumen and with the other lumen,
directed across the tricuspid valve into the right ventricle pumping the blood in which any
misdirection of inflow blood is aspirated back into the drainage lumen.

The needs of the pump are greatly increased during combined cardiopulmonary insufficiency,
when in addition to the needs of gas exchange replacement (i.e., lung function), the need for
cardiac pumping function is also required. In such patients, the veno-arterial bypass configu‐
ration, pumping oxygenated blood directly into the aorta (or a major branch—such as the iliac,
axillary, or femoral arteries) is used. This configuration allows for replacing the oxygenation
function of the injured lung and simultaneously reducing the pre-load of the right heart.
However, at the same time, due to the necessity of continuous shifting of the blood volume
into the aorta, the after-load of the left ventricle myocardium is increased. This is an important
downside of the VA support, particularly evident in patients with left ventricular myocardial
dysfunction. The solution was found while using intra-aortic balloon pump (IABP) using
counter pulsation in the thoracic aorta and reducing post-load of the left heart.

2.4. Extracorporeal cardio-pulmonary resuscitation (ECPR)

Since the beginning of the twentieth century, ECLS has been intensively for circulatory support
in the cases of cardiogenic shock or cardiac arrest. ECLS can be applied in a variety of clinical
settings—such as in out-of-hospital conditions. In cases within the hospital setting, determi‐
nation the indications for use, implanting the ECLS system, and managing its operation is
provided by qualified hospital staff. In out-of-hospital conditions, these activities are per‐
formed by specially trained teams of medical and technical personnel, emergently called to
the scene of a witnessed cardiopulmonary arrest [21–23]. In cases where conventional cardio-
pulmonary resuscitation (CPR) is ineffective, an essential component of success is the speed
and quality of the initiation ECLS machine and restoring systemic circulation. This more
aggressive approach to extracorporeal cardio-pulmonary resuscitation (ECPR) has no other
alternatives. According to recent literature, this approach is considered to be the most effective,
as is quite justified from etiological and pathogenic points of view. This is confirmed by
encouraging outcome data, accordingly, successful ECPR cases exceeds 60% on average, while
same outcomes of the standard CPR varies—often within the range of 15% [6, 24].

The bypass configuration during ECPR is veno-arterial, but there can be used different
cannulation sites. In order to connect the perfusion system, options include the femoral vessels
(arterial and/or vein), jugular vein and carotid artery (inflow connection) or a combination
thereof (mixed connection). Moreover, the careful selection of the cannula to ensure adequate,

Practical and Theoretical Considerations for ECMO System Development
http://dx.doi.org/10.5772/64267

365



smooth, and even flow of blood to the pump from the venous bed and then pumping, according
to the predefined hemodynamic requirements to a particular arterial tissue bed is essential.
Modern venous cannula and technique of great vessel cannulation allow for delivery of up to
70% of the circulating blood volume (CBV) through the common jugular vein from the right
atrium. At the drainage location of the end of venous cannula (when it is located not in the
right atrium, but in the lumen of a vein), the prevention of the suction of the venous walls
should be considered, which is achieved by controlling the value “pressure gradient,” in
addition to using special cannulas to avoid such “suction events.” Depending on specific ECPR
method, in most cases for returning blood (particularly in terms of out-of-hospital conditions),
the femoral artery is used. In the case of veno-arterial ECMO oxygenated blood is pumped
into the aorta in a retrograde manner. Therefore, depending on position of the end of the
cannula, oxygenated blood is mainly returned to the distal part of a patient’s body, and the
brain and ventricular myocardium are still in more unfavorable perfusion condition. In such
cases, we speak of uneven redistribution of oxygenated blood at the level of the aorta and its
branches, called the “Harlequin Effect.” Thus, in theory, the optimal location for the location
of the end of the cannula should be considered as the ascending aorta or arch.

Depending on the specific ECPR approach, important is the providing the appropriate system
for safe, quick, and easy to initiate therapy. Requirements for the system include portability,
mobility, flexibility, minimum weight, a complete set components, and ease of management.
Obviously, affordability is also important. The basic unit of this system, of course, remains the
blood pump. Modern devices in most cases are equipped with centrifugal pumps. The
relatively small size, a small amount of filling, reliable control, and monitoring of the entire
system all increase the chances of clinical success and a good outcome. However, considering
the fact that centrifugal pumps rotate in the flow and belong to a class of dynamic pumps, they
are capable of producing only a continuous, steady stream of flow. Therefore, realizing 70%
of the blood flow, it can be effective even in cases of asystole. However, in cases of successful
ECPR and restoration of cardiac activity, operation of the pump in continuous mode can
increase the after-load of left ventricular myocardium hence limiting adequate cardiac
recovery, worsening ischemia (or other pressure and/or volume overload variables). It is
necessary to take into account the nature and localization of the pathological process (zone of
ischemia) caused by the cardiogenic shock, especially if it covers the area of the heart and the
left atrial septum. In such cases, the overall outcome of ECPR may be worsened and impact
patient outcomes. Regardless, during the period of therapy in the case of ECPR, the phases of
therapy can be divided into two periods—each requiring maintenance of different blood
inflow and pumping options:

• I—The period before the restoration cardiac activity

• II—The period after the restoration of cardiac activity

In period I of extracorporeal resuscitation, the recovery of hemocirculation using continuous
blood flow in the cardiovascular system is far preferable to blood flow, implemented by
external heart massage (providing not more than 5% of cerebral blood flow). Artificial
perfusion with oxygenated blood, in which the desired temperature mode, the acid-base
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balance (ABB) and drug saturation can be easily maintained, is able to provide adequate tissue
and organ blood flow. In case of a high-end location of the aortic cannula, the adequate
coronary perfusion is also possible. Such perfusion is able to support the required electrical
activity of the myocardium and the restoration of sinus rhythm, sometimes even without
defibrillation.

In period II of ECPR, after the restoration of cardiac activity, the pump must carry out support
for the systemic circulation. The goal should be maximum unloading of the myocardium for
the gradual, smooth and simultaneous recovery of the myocardium, weakened by “disaster”.
In other words, the perfusion mode should ensure that pumping of a certain volume of blood
from the right atrium to the aorta not to impede the emptying of the natural ventricular. Left
ventricular ejection must continue—as because stagnation of blood in the cavity can result,
even in the setting of adequate anticoagulation, clotting of blood which when ejected can be
fatal. Therefore, unloading of the myocardium of both ventricles in terms of volume and
pressure must be considered as the best option. Such perfusion therapies, for example, are
characteristic for the pulsating types of left ventricular assist devices (LVADs) with the pumps
serving to shift the volume. A pump operating in counter pulsation mode, taking up a blood
from the right atrium, will unload right heart in terms of volume. By pumping this volume
back into the aorta, it also bypasses the left heart, also unloading it in terms of volume, while
at the same time contributing to additional after-load reduction of the right heart. Finally, if
the volume of blood is pumped into the aorta during diastole (provided the aortic valve is
closed), there will be additional after-load reduction of the left ventricle—and much like the
function of an IABP, coronary perfusion with oxygenated blood will also increase [25–28].

2.4.1. Pulse wave properties at extracorporeal circulation

Probably, the largest and longest standing debates between the experts about the advantages
and disadvantages of the blood flow are the nature of extra-corporeal blood flow/wave
properties. Specifically, it is the comparison of non-pulsatile, continuous flow with a pulsatile
flow synchronized with the cardiac cycle of native heart flow. The main argument supporting
non-pulsatile flow is the significant decrease of the pulsatile flow from the aorta and its major
branches to the thin peripheral arteries—arterioles, and then the eventual elimination, or
“smoothing out” of the pulse wave as it reaches the capillaries. According to this logic, if the
transcapillary flow in normal physiological conditions has a continuous, non-pulsatile nature,
then in case of artificial continuous flow (i.e., ECMO), cell and accordingly tissue blood flow
should not be affected. On the other hand, supporters of pulsatile flow, in case of the artificial
perfusion, insist on the need of maintaining the pulsatile wave, especially in the central part
of the cardiovascular system. Numerous investigations suggest that besides the large arteries,
arterioles, particularly those in kidneys, contain baroreceptors. In addition, the baroreceptors
of the aortic arch trigger neural and humoral reactions that impact the regulation of circulating
blood volume and arterial blood pressure by increasing sympathetic tone and activating the
renin–angiotensin system and vasopressin release. The large main arteries provided with
baroreceptors instantly and quite sensitively react to the slightest pressure changes within this
system and participate in the redistribution of blood volume, depending on the needs of the
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body. In the process of blood flow redistribution, little to no function is performed by the
arterioles, which are called “taps” of the vascular system or “resistance vessels.” About 50–
60% of the total resistance to blood flow is contributed to by these vessels. Arterioles determine
the systemic blood flow at the regional and microcirculatory level. Total vascular resistance at
different parts of the body contribute to the systemic diastolic blood pressure, changes it a
certain level as the result of common neurogenic and humoral changes of the tone of these
vessels. Differently directed changes of the tone of different regional arterioles provide
volumetric blood flow redistribution between regions—this complex feedback mechanism
controls the microcirculation. The cardiovascular system (especially the large, main arterial
vessels), which are evolutionary adapted to such neuro-humoral regulation, if not receiving
the normal physiologic (or even pathophysiologic) baro-excitation, results in the adverse
operating conditions. Thus, in a continuous flow, they react adversely to the non-physiological
artificial perfusion. This results in repeatedly described situations of inadequate peripherial
circulation, secondary impairment of the microcirculation, impairment of organ blood flow,
the accumulation of toxic metabolites, and buffer shifts with homeostasis dysfunction.
However, clinicians over the years have learned to correct these shifts timely, both by means
of medications and fluid (crystalloid and colloid) as well as the use of technical devices (i.e.,
dialysis and renal replacement therapies). But, despite all attempts and various degrees at
correction of these biochemical abnormalities, the damages continue to exist as they are
believed to be related to the non-physiological flow of artificial perfusion [29–31].

In cases of ECLS, carried out during cardiac arrest or cardiogenic shock, there are additional
reasons to employ synchronized pulsatile flow. Specifically, the need of reduce both pre- and
after-load in the weakened ventricular myocardium. To do this, blood, taken by the pump
from the right atrium, should be returned, provided with the required kinetic energy, to the
aorta during diastole (after closing aortic valve—critical to preventing LV distention). None
of the above-discussed structures of the pumps, which are commonly used clinically are able
to carry out such a specific counter pulsation. Therefore, we can conclude that despite certain
clinical successes of the different ECLS methods, the technology is far from perfect and there
is a critical need for improvement of blood pumps. Given this, the goal of the researchers is
the creation of universal extracorporeal pump is understandable. The structure of such pump,
regardless of the nature of the blood flow, should allow for the desired pumping of flow both
in non-pulsatile mode as well as in a controlled counter pulsatile mode [32].

2.5. Description of blood pump with own design

Since 2000, our team has been developing paracorporeal blood pumps for perfusion in ECLS
systems. Currently, many of our pump designs are protected by national patents. These
pumps, which are handmade, are tested in systems of cardiopulmonary bypass, ECMO
systems, portable systems to be used for ECPR and in retrofit systems for the perfusion of
isolated organs and organ systems “in situ.”

After the bench testing, the systems are tested in various experimental models on animals. In
addition to blood pumps, the complete circuit of these systems generally includes the parts
and accessories for single-use perfusion sets for cardiopulmonary bypass: oxygenator with
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heat exchanger, the arterial filter, a set of flexible connecting tubes from PVC or silicone,
various fittings, taps, etc. The blood pump itself belongs to the class of volume shifting pumps.
With regard to the sub-group, it is a hybrid between membrane and pneumatic pumps. It is
equipped with two chambers, connecting tubes (lines) for blood and air, external electronic
clamps of the tube-lines, the pulsator, and a control system.

In the design of the pump, in order to separate the functions of filling and ejection, we have
chosen a two-chamber circuit in which both chambers perform the opposite function at the
same time. At the time, when in one of the chambers experiences blood inflow through the
inlet branch conduit and it is filled, the blood from other chamber is ejected through the outlet
branch conduit and the chamber is emptied. This allows controlling parameters of inlet and
outlet separately. This is in contrast to similar parameters in roller or centrifugal pumps and
is a significant distinguishing feature of this pump.

The second distinctive feature is the absence of any parts, moving in the flow, hence minimiz‐
ing affecting blood cells and traumatizing them. So, compressed air (pressure) was chosen for
pumping in the capacity of the substance imparting kinetic energy to the blood.

In the pump, running on a pneumodrive (actuator), compressed air, or a vacuum is applied
to the rigid chamber from the branch pipes of the compressor with the receivers of positive
and negative pressure (Figures 1–3). Each of the branch pipes is provided with an electrically
operated stop-cock, consisting of external electronic clamps (EEC) on the tubing lines. Thus,
each rigid clamp has four holes with branch pipes provided with the EEC. Accordingly, both
chambers together have eight such branch pipes. In the filling cycle (diastole) of one of the
chambers, two of them are open and two are closed. At this time, in the other chamber, there
is a pump cycle, and again, two EEC are open and two are closed. Consequently, in each phase
of the pump operation, four of the eight EECs are open, and four are closed.

1 Casing of the first chamber.

1a Bag of the first chamber.

2 Casing of the second chamber.

2a Bag of the second chamber.

3 The blood inlet branch-pipe of the first chamber.

4 The blood inlet branch-pipe of the second chamber.

5 The blood outlet branch-pipe of the first chamber.

6 The blood outlet branch-pipe for second chamber.

7 The common outlet tubing-line of the pump.

8 The common inlet tubing-line of the pump.

9 Sensors of filling and emptying the bags.

10 EEC of the blood inlet branch-pipe of the first chamber.
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11 EEC of the blood inlet branch-pipe of the second chamber.

12 EEC of the blood outlet branch-pipe of the first chamber.

13 EEC of the blood outlet branch-pipe of the second chamber.

14, 15 Vacuum line EECs of the chambers.

16, 17 Pneumatic pressure line EECs.

18 Compressor of the positive and negative pressure.

19 Pressure receiver.

20 Vacuum receiver.

21, 22 Pneumatic pressure lines.

23, 24 Vacuum lines.

25 Pulsator.

26 Control system.

Figure 1. Variety of pumps developed with our design.
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Figure 2. The external view of the pump.

Figure 3. Scheme of the two-chamber pump.
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In order to keep the components separate (i.e., blood from the air), the principle of a saccular
chamber “Bag in Can” was chosen. This consists of an outer housing—”Can”, which is a
cylindrically shaped casing and is made of a transparent rigid material that can withstand
pressures up to 3 atm (303.9 kPa). The inner, elliptically shaped, chamber—”bag”, it is a thin-
walled, elastic, biologically compatible (polyurethane) blood bag. Inlet and outlet conduits of
the blood chamber are located at the poles of ellipsoidal bag and are mounted in the branch
pipes of the rigid housing. Blood enters directly, via the inlet branch-pipe, directly into the
blood chamber from the one end. After passing through the bag, it is pumped out through the
outlet-branch pipe of the rigid housing, located at its opposite end.

Another feature of the pump is that each of the blood chambers filling (storage) and emptying
(systole—pumping) functions is integrated. Thus, the filling (diastole) process, as well as
emptying, is multi-cyclic. This means that filling (or discharging) chamber can store blood
volume, equal to a few cardiac outputs. Accordingly, this increases the amount pump can store
as a whole. This feature becomes evident when the pump is in a pulsatile mode. This mode of
operation allows, depending on the specific requirements of the clinical situation, the blood
to be stored in the blood pump for a certain number of native heart cycles with an arbitrary
frequency of pulse cycles of the pump. In addition, it is possible to change the volume and
pressure of each pump ejection and arbitrarily. In other words, the pump construction
maintains one of the most important characteristics of myocardium—the ability to adapt to
the amount of blood inflowing in accordance with the Starling law (in terms of volume and
pressure changes).

Each chamber is equipped with electronic sensors for filling and emptying the blood storage
“bags” (i.e., bladders). With these sensors, it is possible to set the desired maximum and
minimum blood bag filling volume in each chamber. When blood volume exceeds the set value,
the sensors are instantly activated and the give impulse to the control system that switches the
chambers and changes their function—from filling to ejection.

Both chambers are functionally integrated into a single pump and reservoir unit, acting both
—as a blood accumulator (reservoir) and a hydraulic pump. Thus, only changing the chambers
of a certain size to the chambers of another leads to creation of the pump with different capacity
and identical hydrodynamic characteristics to those, described above. Inlet branching conduits
of both chambers are interconnected with a free end connected to the inflow (venous) bloodline
of the patient. The outlet branch conduit of the chambers is also interconnected—with a free
end serving as the outflow back to the patient.

Finally, one of the most important parts of the pump is pulsator. It is located at the connection
between outlet tubing of the pump and the oxygenator. The principle of pulsator function is
very simple—external clamping of the silicone tubing-line. However, management of this
pulsator allows achieving the desired effects of adequate circulatory support, namely

• Carry out pulsation mode in cases of native heart asystole;

• Change the clamping frequency—pump pulsation frequency;

• Change the duration of clamping—the time of “diastole” of the pump;
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• Change the duration of time between clamping—the time of “systole”;

• Synchronize pulsation of the pump in accordance with an electrocardiogram or pulse wave
in cases even minimal cardiac activity;

• Change the timing ratio of “systole” and “diastole” of the pump in the counter pulsation
mode to match the native cardiac cycle.

Although, in terms of universality of the pump, it should be noted that it has the ability to
perform not only the pulsatile flow, which attempts to match physiologically arterial flow, but
also non-pulsatile flow—a characteristic of the venous bed. It is this feature, which we realized
in a number of experiments in the settle of liver transplantation that demonstrated adequate
protection of the recipient patient in the anhepatic phase.

By choosing appropriate pump chamber sizes (i.e., volume), it can be adapted to both—
perfusion applications (chamber volume up to 1000 ml) for large experimental animals (calves,
donkeys—some weighing up to 100 kg), as well as medium-sized experimental animals (dogs,
sheep, pigs—weighing 45 kg). We have successfully tested circuits for small experimental
animals (rabbit, rat—weighing less than 3 kg) with the chamber volume up to 50 and 20 ml.

2.5.1. Description of the pump operation

The priming volume of the pump chambers may vary depending on the type and size of the
experimental animal and the planned experimental model. For example, in the model ECPR
on the sheep (up to 40 kg), we used blood pump with the chamber volume up to 200 ml. The
total volume of priming of the entire system with the oxygenator and arterial filter was 750
ml.

I phase

In the first chamber, after the activation of the blood level sensor, the EEC closes the inlet
branch-pipe for blood—a vacuum line then opens the tubing conduit for pressure and blood
release. The pumping begins. Simultaneously, by a signal from the level sensor in the second
chamber, the EEC closes the outlet branch-pipe for blood—the pneumatic pressure tubing
conduit then opens the inlet branch-pipe for the blood and the vacuum line. Thus, the second
chamber begins filling.

II phase

When blood reaches a certain volume level, the sensor switches the position of tubing conduit
of the EECs. Thus, the chambers change their functions instantly: Empty changes to filling,
and filling starts pumping. By changing the position of the volume level sensor in the circuit,
filling level of blood chambers and therefore, the filling level of the pump system may be
changed.

Since the chambers function cyclically, all their work can be divided into two opposite phases:
the filling phase and the emptying phase (Figures 4 and 5). The compressor (#18) is switched
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on after priming the blood circuit pump. The receivers (#19, #20) provide excess pressure and
vacuum relief valves. Thus, in phase I in the casing of the chamber (#1), the air is supplied from
the control system by the EEC (through line #21), under pressure from the receiver (#19). In
this chamber under the action of an impulse from the control system, the branch conduits (#10
and #14) are closed and branch conduits (#12 and #16) are opened. Thus, the chamber (#1a)
begins to pump blood through the outlet branch conduit (#12) and the outlet tubing-line (#5)
to the common output line (#7). The pulsator (#25) is located on this tubing line, and it is also
controlled from the general control panel. At the same time, automatically, by remote control
impulses in the chamber (#2), the branch conduits (#13 and #17) are closed and the other branch
pipes (#11 and #15) are opened. In the chamber casing, the vacuum is supplied through the
line (#24) from the receiver (#20). The blood chamber (#2a) begins to fill with blood from the
common inflow tubing-line (#8). After reaching a certain filling or emptying blood level, level
sensors (#9) are switching over all and EECs of the branch conduits are changed to the opposite
position and the chambers then change (reverse) functions and phase II begins.

Figure 4. Phases of the pump operation.

Figure 5. Process of the experiment on animal.
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Kind of pump
Specifications

Rotary (roller) pump Centrifugal pump Our pump on the pneumatic
actuator

Design features and capabilities (resources)

Manufacturer (Brand) CAPIOX (Terumo) LIFEBRIDGE (Sorin),
CARDIOHELP (Maquet)

Prototype

The volume of the blood
chamber (SV—stroke
volume)

Variable SV for different-
sized patients

Filling volume up to ≈
50 ml

Filling volume up to ≈ 150–300
ml

Managing the power
component

Electric drive Electric drive Pneumatic actuator

Use As a system of
cardiopulmonary bypass
during cardiopulmonary
resuscitation

As a system of
cardiopulmonary bypass
during cardiopulmonary
resuscitation, preferable for
long-term extracorporeal
support

As a system of cardiopulmonary
bypass during cardiopulmonary
resuscitation, as well as in
preservation of organs in situ

Maximum capacity Up to 10 l/min Up to 8 l/min Up to 10 l/min

Realizable value of the
system pressure

60/40 mm.Hg 60/40 mm.Hg 120/80 mm.Hg

Advantages

Duration of conducted
safe perfusion

Limitation in time several
(3–4) hours

Possible long-term
perfusion

Possible long-term perfusion

Discharge flow
characteristics

Excessive positive or
negative pressure

Provides positive and
negative pressure (poor)

Provides positive and negative
pressure (as close as possible to
the created native myocardium)

Specifications filling flow – – Adaptation to the venous return

Opportunities It provides systemic
circulation

Higher bypass for right or
left ventricles

Maximum bypass the right or
left ventricle

The nature of the pulse
wave

The possibility of a weak
pulsation

The possibility of a weak
pulsation

The ability to flow as a non-
pulsed and clear
counterpulsation

Disadvantages

Possibility of reverse
flow along arterial line

No blood return Potentially exists Potentially exists

Embolism Potentially massive air
embolism

Protection against massive
air embolism

Protection against massive air
embolism

Damage to the blood
cells

Hemolysis Slight hemolysis No hemolysis
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Kind of pump
Specifications

Rotary (roller) pump Centrifugal pump Our pump on the pneumatic
actuator

The possibility of
damage to blood contact
details

The destruction of tubes The destruction of rotor
blades

–

Additional requirements Tubing-line occlusion control
is required

– An additional compressor with
vacuum supply control is
required

Additional accessories The volume of ejected blood
is automatically calculated

The flowmeter is required The flowmeter is required

Possibility of circuit
disruption from
excessive line pressure
buildup

Possible of circuit disruption
and termination and
termination

No possibility No possibility

Cost Low High Low

Table 3. Comparison of blood pumps used commonly and pump developed by us.

Prototype pumps are made by hand. Bench testing has shown that the main hydrodynamic
parameters and efficiency, safety, and reliability are similar to clinically used, commercially
available, pumps (Table 3).

During bench testing, a dual-chamber pump with a chamber volume of 350 ml was placed at
the same level as a volume of liquid, attempting to match clinical flow. Perfusion was carried
out in two different modes of blood flow—non-pulsatile and pulsatile. Blood flow was
measured in the output tubing-line of pump.

In the non-pulsatile flow mode:

• Pressure in the receiver #20: 1.5 atm;

• Vacuum in the receiver #19:0.7 atm;

• Flow through lines #21, #22: up to 6 1/min;

• Flow through lines #23, #24:1 to 4 1/min;

• Total flow in the line #7: upto 10 1/min.

In the pulsatile flow mode:

• Pressure in the receiver #20: 1.5 atm

• Vacuum in the receiver #19: 0.7 atm

• Flow through lines #21, #22:8 1/min

• Flow through lines #23, #24: upto 2 1/min

• Total flow in the line #7 (after pulsator):10 1/min
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2.5.2. Experimental studies on animals

The pump was tested in several acute experiments on the animal models in the various
perfusion setting:

• Heart–lung bypass (HLB) machine

• ECLS system for ECPR

• Perfusion preservation of isolated donor organs and complexes of organs “in situ”

The dual-chamber pump passed a long-standing test as a heart–lung bypass machine in 68
different experiments on dogs and sheep. In these experiments, the main pump circuit was
connected via a standard configuration in cases of an open-chest model, simulating various
cardiac surgery scenarios. The pump provided adequate heart–lung bypass for 2–6 h, both
with the non-pulsatile and pulsatile flow without difficulty. Hemodynamic parameters were
maintained within physiological limits, and therefore, the main parameters of physiology of
animals during extra-corporeal perfusion did not require significant correction.

In the ECLS configuration, which was designed for ECPR on sheep, the pump was tested in
14 experimental models of cardiac arrest. A portable, mobile version of the pump and the entire
perfusion system complete set with autonomous energy supply was used in these experiments.
The effects of extra-corporeal perfusion in a number of experiments on models, within 10 min
of cardiac arrest, confirmed the following:

• Successful recovery of the cardiac contraction (in case of non-pulsatile and pulsatile mode);

• Stable rehabilitation of cardiac activity with prolonged perfusion (in a synchronized mode
counter pulsation).

In addition, in some experiments on rabbits, the pumps have been tested using a portable
system for extra-corporeal isolated preservation of donor organs and organ complexes “in
situ.” The standard conserving solutions, as well as whole blood at various temperatures, were
used as preservatives.

3. Conclusions

In the design of the dual-chamber pump, with saccular chambers modelling the concept of a
“Bag in Can,” there are incorporated a full range of opportunities for achieving the desired
range of physiologic perfusion parameters similar to that of a healthy native heart. The dual-
chamber design, with inter-changing chamber functions, allows for separate control of the
different parameters for the filling and emptying functions, thus allowing for optimization of
blow independently. In other words, the design allows the pump to be filled with a smooth,
non-pulsatile flow, while simultaneously ejecting with physiologic pulsatile flow. The pump
design provide minimal trauma of the blood cells due to lack of internal valves and, most
importantly, the absence of the rotating parts in the path of flow. Changing only the chamber
unit with a different size “bag,” while leaving other components of the unit unchanged allows
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for a full range of volumetric hemo-circulatory pump characteristics. In other words, the pump
can be easily adapted for extra-corporeal perfusion experimental on animals of different sizes.
Consequently, in a clinical setting, it can be used, with only minor changes, for infants, children,
and as well as for adults. The pump can perform non-pulsatile blood flow—characteristic for
the venous bed while also providing pulsatile flow—characteristic of flow in the aorta and
large arteries. Moreover, it can be easily switched from pulsatile flow to non-pulsatile perfu‐
sion, depending on the specific necessities, at any time. Finally, counter pulsation during pump
operation during ECPR allows continuous unloading of the work of the heart, hence contri‐
buting to the actual recovery of the weakened and injured myocardium. Prolonged and stable
rehabilitation of cardiac activity in a synchronized counter–pulsation mode can also be
accomplished.

In addition, in experiments on rabbits, the pumps have been successfully tested using a
portable system for isolated perfusion and preservation of donor organs and organ complexes
“in situ.”
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