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Abstract

The  chapter  presents  applications  of  the  scaling  in  several  problems  of  magnetic
materials. Soft magnetic materials (SMMs) and soft magnetic composites (SMCs) are
considered. Application of scaling in investigations of problems, such as power losses,
losses  separation,  data  collapse  of  the  losses  characteristics  and  modelling  of  the
magnetic hysteresis, is presented. The symmetry group generated by scaling and gauge
transformations enables us to introduce the classification of the hysteresis loops with
respect  to  the  equivalence  classes.  SMC materials  require  special  treatment  in  the
production process. Therefore, algorithms for optimization of the power losses are
created. The algorithm for optimization processes is based on the scaling and the notion
of the pseudo-equation of state. The scaling makes modelling and calculations easy;
however, the data must obey the scaling. Checking procedure of statistical data to this
respect is presented.

Keywords: magnetic materials, hysteresis loop, power losses, losses separation, scal‐
ing, gauge

1. Introduction

The notion of scaling describes invariance of various phenomena and their mathematical models
with respect to a change of scale. Let us take into account the simplest mathematical model
revealing such behaviour:

.y Axa= (1)
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where α and A are the constants of model. Such functions appear in mathematical modelling
in physics, mathematics, biology, economics and engineering. In this section, we consider data
of classical gas. By simple calculation, we will prove that these data are self-similar. Let us
change the scale of the both variables x and y with respect to λ > 0 multiplier.

' ', .x x y yb gl l= = (2)

Substituting (2)–(1) we obtain:

,y A x a¢ ¢ ¢= (3)

where β and γ are scaling exponents and A′ = λγ−αβ A is the model constant in new scale. (1)–
(3) reveal that the phenomenon described by the model (1) is self-similar. This means that the
phenomenon reproduces itself on different scales. In achieving the property of self-similarity,
an important role plays dimensional analysis. Its idea is very simple: physical laws cannot
depend on an arbitrary choice of basic units of measurement [1]. Set of all transformations (2)
and multiplication constitutes =(ℝ+ , · ) group. In the next section, we will consider self-
similar model of hysteresis loop. Extension of (2) to the two parameters group is necessary to
this respect. Let us extend (1) to non-homogenous form:

c,y Axa= + (4)

The full symmetry of (4) consists of the two transformations, λ scaling and χ gauge transfor‐
mation:

( ) .y A x cal c= +¢ + (5)

where χ�� is additive gauge operation which constitutes additive group =(ℝ, + ). Therefore,
the full symmetry of (5) consists of the following direct product:  [2]. However, the
symmetry of the hysteresis loop will occur to be semi-direct product.

In this chapter, we will consider more advanced function and then the models (1) and (4).
Therefore, we will need definition of homogenous function in general sense [3] which has
played crucial role in the all achievements presented in this chapter. Let f(x1, x2, … xn) be a
function of n variables. If ∃ (α0, α1, α2, …αn)�ℝn+1  such that ∀λ�ℝ+ , the following relation holds:

( ) ( )0 1 2
1 2 1 2, , , , .n

n nf x x x f x x xa aa al l l l¼ = ¼ (6)
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Then, f (x1, x2, … xn) is homogenous function in general sense. Based on the measurement data
of classical gas presented in Table 1, we present simple application of this notion. We assume
that the phenomena are represented by measurement data which satisfy certain relation called
law. Let us assume that searched on phenomenon have a form of the homogenous function in
general sense:

( ) ( ), , .a b gT p T pl r r l l= (7)

ρ[mol·m-3] T K p Pa
0.096 500 400

0.090 515 385

0.084 530 370

0.078 545 355

0.073 560 340

0.068 575 325

0.063 590 310

0.059 605 295

0.054 620 280

0.050 635 265

0.046 650 250

Table 1. Measurement data of classical gas.

where ρ, T and p are gas density, temperature and pressure, respectively. Coefficients a, b and
c are the scaling exponents. Since (7) holds for each value of λ, we are free to substitute the
following expression λ = T−1/b and get the following relation:

( ) ( )/ /, 1, .a b g bT T p T pr r- -= (8)

Introducing new symbols for the scaling exponents: α = a
b , γ = g

b  we derive the following
equation of state:

.T AT pa gr- -= (9)

where the right-hand side of (8) was approximated by linear function, A is an expansion’s
coefficient. In the next sections of this chapter, we will use the Maclaurin expansion beyond
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the linear term as a way for creation of scaling function. Equation (9) depends on the one
effective exponent δ = γ–α:

( , ) .pT p A
T dr = (10)

where the model constants A and δ have to be determined from the experimental data of Table
1. Using formula (10) and Table 1 we have created error function Chi2 which was minimized
by the SOLVER program of the Excel package. The obtained results are as follows: A = 0.121
(mol K J−1) and δ = 1.002 (−). Note that A−1 = 8.22 (mol−1 K−1J) reveals an approximation of the
gas constant. Mentioned and illustrated above methodology for applications of the scaling and
the gauge transformations will be applied to the following problems: self-similarity of
hysteresis, self-similarity of total loss in SMM, multi-scaling of core losses in SMM, optimiza‐
tion of total loss in SMC and scaling conception of losses separation.

2. Self-similar model of hysteresis loop

The goal of the present section is to describe the self-similar mathematical model of hysteresis
loop which enables us to express its self-similarity by the homogeneous function in general
sense. Derivation of the model based on the well-known properties of tanh(⋅) suits for model
of initial magnetization function [4]. It describes properly the saturation for both asymptotic
values of the magnetic field H → ±∞, as well as and the behaviour of magnetization in the
neighbourhood of origin. However, this is too rigid for scaling. We make tanh(⋅) to be a softer
by making the base of the natural logarithm free parameters [5]:

(11)

where the bases have to satisfy the following conditions: a > 1, b > 1, c > 1, d > 1. These conditions
guarantee correctness of the model; however, a little deviations from the mentioned constrains
are possible.

First, we write down the model expression for initial magnetization curve:

( ) ( )0, , ; [0, ].P maxM X M P X X Xe e= ò (12)

where M0 is magnetization corresponding to saturation expressed in tesla: [T], X = H
h , where

H is magnetic field, and h is a parameter of the magnetic field dimension (A m−1) to be
determined. Function P(X, ε) is of the following form:
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( ),
X X

X X

a bP X
c d

e e

e ee
- - +

- - +

-
=

-
(13)

where ε is modelling parameter related to θ, where ε � − θ
2 , + θ

2 . Let the upper and the lower
branches of the hysteresis loop are of the following forms:

( ) ( ) ( ) ( )0 0, , ; , , .F GM X M F X M X M G Xq q q q= = (14)

where

( , ) ( , ) .
X X X X

X X X X

a b a bF X G X
c d c d

q q q q

q q q qq q
+ - - - - +

+ - - - - +

- -
= =

- -
(15)

Let us consider for illustration the following symmetric example: a = b = c = d = 4 and θ = 1.3, ε
= 0, M0 = 1 (See Figure 1).

Figure 1. A model of nucleation-type hysteresis constructed with functions F, P and G according to (12)–(15).

Due to the asymptotic properties of magnetization, the functions F(X, θ) and G(X, θ) have to
possess the same asymptotic properties. As we have mentioned, these components get equal
values for H → ±∞. However, due to the uncertainty of measured magnitudes, it is possible to
accept the saturation points at X = Xmin and X = Xmax being the end points of the hysteresis loop.
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Therefore, the modelling process has to ensure that the initial function satisfies the following
constrain:

( ) ( )| , , | | | .max maxF X G Xq q- £ ψ (16)

where |ψ | = su pX
| M F (X , θ) −M G(X , θ) |

M 0
 is dimensionless measure of uncertainty corresponding

to |MF (X )−MG(X )| .

The scaling in space of loops is performed by scaling each loop’s component (13), (14), (15) and
(16). For simplicity of further investigations, we consider simplified symmetric model, where
all the bases of tanH( ) are equal:

0

( , ) ( ) ( )
( ) ( )

X X
F

X X

M X a a
M a a

q q

q q

q + - -

+ - -

-
=

+
(17)

0

( , ) ( ) ( )
( ) ( )

X X
G

X X

M X a a
M a a

q q

q q

q - - +

- - +

-
=

+
(18)

0

( , ) ( ) ( )
( ) ( )

X X
P

X X

M X a a
M a a

e e

e e

e + - -

+ - -

-
=

+
(19)

Let us perform scaling on (17) and (18). Since exponents are dimensionless, the scaling on this
level cannot be supported by dimension analysis. However, we are able to scale the following
magnitudes a, MF(X, θ), MG(X, θ), MP(X, θ), and to prove the following theorem:

For the symmetric model (17)–(19), the hysteresis loop is invariant with respect to scaling and
gauge transformation [5]. Following definition of the homogeneous function in general sense
(6), we write down the scaled form of the hysteresis loop:

0

( , ) ( ) ( ) ,
( ) ( )

X X
F

X X

M X a a a a
M a a a a

a q c a q c
n

a q c a q c

q l ll
l l

+ - - -

+ - - -

-
=

+
(20)

0

( , ) ( ) ( ) ,
( ) ( )

X X
G

X X

M X a a a a
M a a a a

a q c a q c
n

a q c a q c

q l ll
l l

- - + -

- - + -

-
=

+
(21)

where exponentials aχ and a−χ represent action of the gauge transformation. This formal trick
guarantees proper order of actions: the first has to be performed scaling than after that gauge
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transformation. According to the assumption just above (6), we are free to make the following
substitution:

1,paal -= (22)

where . Substituting (22) leads to the following forms of (20) and (21):

( ) ( )

( ) ( )
0

( , ) ( ) ( )
( ) ( )

p X p X
nF

p X p X

M X a aa
M a a

q c q c

q c q c

q + + - - -

+ + - - -

-
=

+
(23)

( ) ( )

( ) ( )
0

( , ) ( ) ( ) .
( ) ( )

p X p X
nG

p X p X

M X a aa
M a a

q c q c

q c q c

q - + - + -

- + - + -

-
=

+
(24)

where for abbreviation, we introduce n = ν
α (p −1). Introducing the following new variables:

0 0 , , ,nM a M X pX pc q q-¢ ¢ ¢= = + = (25)

Figure 2. Magnetic hysteresis family for a =4, p=1, n=1, θ =1.3, ν
α =1.

we derive (17) and (18), which proves the considered thesis. The initial magnetization curve
(19) is invariant with respect to scaling and gauge transformation as well. The proof goes the
same way as for (17) and (18). Therefore, we can formulate conclusion that the presented model
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of hysteresis loop is self-similar. Below in Figures 2–4, we present some examples of the
hysteresis loops which may suggest how to apply the scaling and gauge transformation for
modelling of hysteresis phenomena.

Figure 3. Magnetic hysteresis family for a =4, χ=0, n =1, θ =1.3, ν
α =1.

Figure 4. Magnetic hysteresis family for the following values of the model and scaling parameters:

(a) a =4, θ=3,  p =14, v
α = −0.18, χ =0, (b) a =4, θ =2, p =13, v

α = −0.18, χ =0,

(c)a =4, θ =1.3, χ =0, (b) θ =2, p =13, v
α = −0.18, χ =0.

Magnetic Materials8



Figure 2 presents how the pure gauge transformations generate a displacement of transformed
loops along the horizontal axis. Figure 3 presents compression of loops along the vertical axis
under the scaling. Finally, Figure 4 presents the loop’s family for large value of the scaling
parameter p. Each element of this set resembles the Preisach hysteron [6, 7].

Multi-scaling of hysteresis loop. The derived above mathematical model of the hysteresis
loop is not full. There is need to extend considered model with respect to frequency, pick of
induction and temperature. As we have shown the loop’s model is self-similar with respect to
scaling of the following magnitudes X, M0 and θ, these are as follows: dimensionless magnetic
field, amplitude of magnetization and loop’s closing parameter, respectively. By introducing
new independent variables, we introduce new scales and corresponding new scaling param‐
eters [8]. We have shown in [8, 9] that it is always possible to introduce a new characteristic
scale; however, one must investigate whether the considered system possesses corresponding
symmetry. This can be known only from investigations of the measurement data. In the
considered model, there are two places where the new variables can be implemented. These
are base of the tanH() function and the loop’s closing parameter θ. There are many possible
combinations for configurations of the new variables in presented model which can be applied:

( ) ( ) ( ) ( )'' ' '
' ' ' ', ; , ; , ; ;( ) ; .m m m m m

m m m m m m m

f T f T f T fi B a B ii B a B iii B a
B B B B B B B

b b b b b
a g a g a g aq q q

é ù é ù é ùæ ö æ ö æ ö æ ö
- -ê ú ê ú ê úç ÷ ç ÷ ç ÷ ç ÷

ê ú ê ú ê úè ø è ø è ø è øë û ë û ë û
(25a)

The list (25a) is not closed and can be extended as needed. We assume that a(f, Bm, T) and θ (f,
Bm, T) are homogenous functions in general sense. To simplify considerations, we chose for
illustration the temperature less model (iii), where θ(−) is a constant. For the model of the
function a( f

Bm
α ′ ), we chose the square polynomial:

( )
2

' ' '
1 2' ' Γ Γ  m

m m

f fa B
B B

b
a a

æ ö
= + ç ÷

è ø
(25b)

where α ′, β ′, Γ′
1, Γ′

2 are model constants to be calculated from the measurement data, whereas
the Bm pick of induction is correlated with Xminand Xmax. Formulae (25b), (14) and (15) constitute
frequency- and pick of induction-dependent loop model.

Equivalence classes and partitioning [10]. Transformation formulae (25) enable us to inves‐
tigate algebraic structure of all the transformations which are composed of scaling and gauge
transformation. Therefore, the whole set of p and the multiplication constitute 

group. Moreover, ∀a > 0 and ∀ v
α ≠0, the following expression a (1−p) ν

α  represents an infinite
number of groups being isomorphic to . Gauge transformations χ �ℝ  and the addition
constitute  group. Each of revealed group possesses the own representation space.

 group operates in the spaces generated by X, θ and M0 and  group operates in the space
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spanned by X variable. The considered model of loop reveals a combination of  and  which
operates in space generated by (X, θ) pair. Therefore, total symmetry of the considered model
can be presented in the following matrix representation (26):

(1 )

0 0

0

0 0

0 0 0 .
0 0 0

p

p
X X

a M M
p

n
a

c

q q

-

é ù
¢é ù é ù é ùê ú

ê ú ê ú ê úê ú ¢+ =ê ú ê ú ê úê ú
ê ú ê ú ê ú¢ê ú ë û ë û ë û

ê úë û

(26)

Therefore, the total symmetry of the considered group has got the structure of the following

semi-direct product  where p ′ =a (1−p) ν
α  represents isomorphic mapping

. Let Vh be space of the all hysteresis’ models represented by (14) and (15). Group element
 is automorphism in Vh if  yields . Set of the all automorphisms GA

constitutes automorphism group, where  Let us distinguish the loop v1 =

X1

M01

θ1

∈Vh , and

relate v1 with v2:

1 2 ,v vR (26a)

where ℛ means the binary relation given by (26).

Definition:

Equivalence binary relation on a set V(h) is a relation, which is reflexive, symmetric and
transitive [11]. Due to the group structure of  (26a) satisfies these conditions and ℛ is
equivalence relation.

Let ℛ be an equivalence relation on Vh, then Ev1 ⊂ Vh containing all elements v2∈Vh satisfying
(26a) is called the equivalence class of v1. The sets Evi are pairwise disjoint, that is Evi

∩Evj
=∅  if

vi ≠ vj. Union of the all equivalence classes is the Vh space: ∪vi
Evi

=Vh . What practical use one
may have from equivalence relations and partitioning. Let us assume the following v1 ℛv2

relation, and then there exists a group element which relates both loops means that they are
equivalent. However, in the opposite case, the two loops do not belong to a common class and
then they are relevantly different from the algebra point of view.

3. Losses scaling in soft magnetic materials

Density of the total power losses in magnetic materials under variable magnetic field is due to
eddy currents generated in the material. These may be generated for various scales of dimen‐
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sions: currents caused by Barkhausen jumps, what leads to a dependence Phys∝ (B 1.6 f ) [11],

currents around moving domain walls Pexc∝ (Bf )
3
2  [12] and currents in the whole material

volume Pclas∝ (Bf )2 [11]. All of the aforementioned dependencies obey a power law, however,
with a diverse value of exponents [13]. Therefore, one cannot talk about universality of the
presented above formulae. However, certain universality of the power losses data of soft
magnetic materials has been derived by applying the scaling. The proposed approach has been
based on assumption that the density of the total power loss in soft magnetic materials was
self-similar like intermittency of fully developed turbulent flow [1]. Moreover, using simple
model of hysteresis loop (14), (15) and assuming semi-static conditions, we derive the following
formula for the total power loss [14]:

(26b)

In case of the symmetric extrema of magnetic field Xmin = −Xmax, (26b) gets the following form:

0 0 .4 n
totP f M haq m -= (26c)

where a, n = ν
α (p −1), h = H

X , θ and M0 are the hysteresis loop parameters and μ0 is the permea‐
bility of free space.

According to (26c), the formula for Ptot is monomial which is always self-similar mathematical
expression. This theoretical result confirms experimental observations concerning homoge‐
neity of Ptot in soft magnetic materials.

Let us assume that the density of the total power losses is homogenous function in general
sense (6). Let Ptot (f, Bm) be density of the total power losses, where f and Bmare frequency and
the pick of magnetic induction of flux waveform. Applying (6) for the two independent
variables, we derive the most general form for Ptot:

( ) ( ), ,tot m m mP f B B F B fb a-= (27)

where α and β are scaling exponents and F(⋅) is an arbitrary function. These three unknown
magnitudes have to be determined from experimental data. As the simplest approach to
estimation of F(⋅), we have applied the Maclaurin expansion of (27):

( ) ( ) ( ) ( ) ( )21 2, ( ).tot m m m mP f B B B f B fb a a- -= G + G (28)
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where Γ(k ) = 1
k ! Γ(k )(0). Since the total losses vanish for f = 0 or for Bm= 0, the constant term of

expansion (28) equals zero.

3.1. Measurement data

The measurement of density of total power losses was carried out following the IEC Standards
(60404-2, 60404-6). During measurements, the shape factor of secondary voltage was equal to
1.111± per cent. Extended uncertainty of obtained measurements was equal to about 0.5%. The
measurements covered the three following classes of soft magnetic materials:

• Crystalline materials;

• Amorphous alloys, Co-based and Fe-based; and

• Nanocrystalline alloy.

Density of total power losses was measured as a function of the maximum induction Bm∈ [0.1]
(T), 1.8(T)] at fixed values of f ≤ 400 (Hz). Samples of conventional crystalline materials were
strips, whereas the remaining ones had the shape of cylinder.

3.2. Estimation of expansion parameters (28) from measurement data

Magnetic materials α(−) β(−) Γ (1)(m 2T(α−β) / s 2)  Γ (2)(m 2T(2α−β) / s)
GO—3% Si-Fe −2.16  −1.19  12.78×10−3 37.68×10−6

Co71.5Fe2.5Mn2Mo1Si9B14 −1.55 −0.35 2.88×10−3 1.90×10−6

Fe73.5Cu1Nb3Si13.5B9 −1.81 −0.70 0.17×10−3 0.71×10−6

Table 2. Values of scaling exponents α, β and values of amplitudes Γ(k).

Firstly, the initial values of exponents α, β and amplitudes Γ(k) were assumed and differences
between all measurement values of density of total power losses and values of density of total
power losses obtained from expansion (28) were calculated. Next, the Chi2 function was
optimized. Constraint of normal distribution of error was applied. Results of optimization for
exponents α, β and amplitudes Γ(k) for chosen magnetic materials are given in Table 2.

The results, that is scaled values of the measurement data and the values obtained from the
mathematical model, for the chosen magnetic materials, are shown in Figures 5–7, in the
Ptot

Bm
β , f

Bm
α  coordinates system. Based on the all results concerning the density of total power

losses, the universal relationship between the scaling exponents α and β was stated. This
relation is of the following form [15]:

Magnetic Materials12



1.35 1.75,b a= + (29)

See also Figure 8. The origin of the relationship in (29) will be subject of further relations.

Figure 5. A comparison of measurement data of total density of power losses Ptot (markers) and values obtained from
the scaling theory (solid line) for Co-based amorphous alloy Co71.5F e2.5M n2M o1Si9B14.

Figure 6. A comparison of measurement data of total density of power losses Ptot (markers) and values obtained from
the scaling theory (solid line) for nanocrystalline alloy F e73.5Cu1N b3Si13.5B9.

Scaling in Magnetic Materials
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Figure 7. A comparison of measurement data for total density of power losses Ptot (markers) and values obtained from
the scaling theory (solid line) for grain-oriented silicon steel 3% Si-Fe.

Figure 8. The universal relationship of the scaling exponents α and β. Markers correspond to estimations from experi‐
mental data, and continuous line corresponds to (29).

The three achievements resulting from scaling should be emphasized. The first one is a
satisfactory agreement between the measurement data and the theoretical description. The
second one is relation (29), which establishes the universal linear relationship between the
scaling exponents and decreases the number of free parameters. The third achievement

consists in revealing the data collapse. Figures 5–7 are drawn in 
Ptot

Bm
β , f

Bm
α  coordinates system

and present the continuous sets of the losses characteristics of different values of Bm collapsed

Magnetic Materials14



just to a single curve. This effect is called “a single-sample data collapse” Reversible procedure

(
Ptot

Bm
β , f

Bm
α )→(Ptot , f ) splits the collapsed curves to separate curves for different values of Bm. This

effect will be demonstrated for more complicated case (see Figure 14). Therefore, the scaling
can be also applied as method for a compression of data. All examples in Figures 5–7 present
the single-sample data collapses. Having data for different materials and introducing for each
of them are the following dimensionless magnitudes:

2

(2) (2)

(1) (1)
,tot

tot
m m

P ff
B B

P b a

G G
= =
G G

% % (30)

We obtain the multi-sample data collapse (see Figure 9). These results confirm the assumption
of density of total power losses scaling. Applying these transformations to (28), we derive the
dimensionless low for the density of power losses in soft magnetic materials:

2.totP f f= +% %% (31)

Figure 9. The multi-sample data collapse for total density of power losses P̃ tot(markers) and values obtained from the
scaling theory (solid line).

3.3. An application of the multi-sample data collapse

Mostly, the data collapse is applying as a tool for the detection of self-similarity. Here, we
present a new application which solves problem of comparison measurements taken in
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different laboratories [16]. In 1995, the leading European Laboratories busy with measure‐
ments of the electrical steel magnetic properties were trying to compare the measurement
results of the power loss in electrical sheet steel under the conditions of rotating and alternating
flux [17]. Taking from [17] the idea of the inter-comparison of measurement data of the energy
losses in soft magnetic materials, we perform such an inter-comparison with data taken in two
laboratories [16, 18], however, under the conditions of axial and alternating flux. Self-similarity
of the density power losses enables us to scale off the interference of the sample’s geometry
and the material type from the dependence of power losses versus the pick of induction and
magnetizing frequencies. This property of SMM allows comparing different measurement sets.
Successively, this fact allows introducing an absolute measure of uncertainty characterizing
the given measurement set. Therefore, the way for assessing the uncertainty contributions
would not interfere with the abovementioned data comparison. Formula (30) suits very well
to the mentioned above phenomena and constitute background for solution of the presented
problem.

For inter-comparison, we have selected two sets of power losses data. The first one belongs
to Yuan [18] and consists of the following three sets of data: S1 = F e76M o2Si2P10C7.5B2.5,
S2 = F e79.8M o2.1Si2.1P8C6B2, S3 = F e80M o1Si2P8C6B3. The samples were thin ribbons wound into
toroids. For details concerning measurement methods, we refer readers to [18]. On the basis
of measured data, the parameters’ values of (28) have been estimated (see Table 3, after
[18]).

Sample α(−) β(−) Γ(1)(m2T(α−β)s−2) Γ(2)(m2T(2α−β)s−1)

S1 −1.533 −0.319 6.744×10−3 1.322×10−6

S2 −0.364 1.259 1.412×10−2 1.917×10−6

S3 −0.504 1.069 9.11×10−3 3.389×10−6

P1 −2.945 −1.776 2.90×10−3 4.60×10−6

P2 −1.519 −0.375 2.53×10−3 6.79×10−6

P3 −3.231 −1.365 3.22×10−4 1.95×10−7

*The data for S1, S2 and S3 have been kindly supplied by the authors of Yuan et al. [18].

Table 3. Scaling exponents and coefficients of (28).

The second set contains some of our results [15, 19] for the power losses in the following alloys:
amorphous ribbon P1 = F e7.8Si13B9, Co-based amorphous alloy P2 =Co71.5F e2.5Mn2Mo1Si9B14 and
nanocrystalline alloy P3 = F e73.5Cu1N b3Si15.5B7. The corresponding scaling exponents α, β and
the scaling coefficients Γ(1), Γ(2) are presented in Table 3.

Plotting P̃ tot  versus f̃  for the all considered samples (Figure 10), we confirm that the data
collapse takes place for the selected samples.
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Figure 10. The data collapse for total power losses of compared materials.

Since all the magnitudes in (31) are dimensionless and the formula for P̃ tot  is sample inde‐
pendent, we propose to introduce a measure of uncertainty characterizing the measurement
set by the total distance of all empirical points from the scaling curve (31):

( )2exp
1

1 ( ) ( ) ,N th
tot i tot ii

D fP f
N

P
=

= -å % %% % (32)

where P̃ tot
exp, P̃ tot

th  are the power losses, measured and calculated from formula (31), f̃ i is
dimensionless frequency, where index i is running through the whole series of experimental
data and N denotes length of the measured series. We consider the two sets of experimental
data S and ℙ corresponding to different LABs. Each set consists of the three series which
correspond to different samples. To create effective measure of uncertainty characterizing
measurement set of the given LAB, we calculate average measure Davfor the three samples
belonging to either of two selected sets:

32 2
1

1 2 3

.i
av ii

ND D
N N N=

=
+ +å (33)

Scaling in Magnetic Materials
http://dx.doi.org/10.5772/63285

17



Comparisons of uncertainty measures are presented in Table 4.

Sample Ni Di
2(− ) Dav

2 (− )

S1 48 1.64×10−5 8.11×10−3

S2 40 7.42×10−3

S3 32 1.29×10−4

P1 48 9.23×10−5 6.53×10−3

P2 47 2.05×10−5

P3 49 1.53×10−5

Table 4. Comparisons of uncertainty measures.

Progress in modern technologies depends on the comprehensive knowledge of material
properties under standard and non-standard conditions. However, an agreed standardized
method does not exist, and the reproducibility of the different methods used in different
laboratories is unknown. We are of the opinion that the reason of such situation is lacking of
statistical method enabling the appropriate data’s inter-comparison. In this section, we have
proposed a solution of this problem. As we have shown, the data collapse supplies method
that enables us to introduce universal measure of uncertainty, which compares different
experimental sets even based on different measurement methods. Therefore, the introduced
method also can serve as a tool to compare measurement data obtained in different laborato‐
ries. The measure (33) expresses the total uncertainty characterizing the data set for the chosen
range of dimensionless frequency f̃  . There are four contributions to Davresulting from the
following: (1) uncertainty characterizing the measurement method and construction of the
measurement set, (2) uncertainty of measurements of elementary magnitudes, (3) errors
resulting from the approximation (28) and uncertainty of estimations of α, β, Γ(1) and Γ(2). The
derived method is universal and can be applied to investigations of any phenomenon satisfy‐
ing the self-similarity conditions.

4. Multi-scaling of core losses in soft magnetic materials

The application of soft magnetic materials in electronic devices requires knowledge of the
losses under different excitation conditions: sinusoidal and non-sinusoidal flux waveforms of
different shapes, with and without DC bias. Scaling theory allows the total power losses
density to be derived in the form of a general homogeneous function, which depends on the
peak to peak of the magnetic inductance ΔB, frequency f, DC bias HDC and temperature T:

( , , , ).tot DCP F f B H T= D (34)
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The form of this function has been generated through the Maclaurin expansion with respect
to scaled frequency. The parameters of the model consist of expansion coefficients, scaling
exponents, parameters of DC bias mapping, parameters of temperature factor and tuning
exponents. Values of these model parameters were estimated on the basis of measured data
of total power density losses. However, influence of the DC bias on the self-similarity of
measurement data was very relevant. In order to apply scaling to (34), the right-hand side
has to be a homogeneous function in a general sense. This assumption has to be satisfied
both by the experimental data and by the mathematical model. However, according to the
results given in [20], Eq. (34) and measurement data are not uniform in the required sense
when there is a DC bias. This problem has been solved by using the method invented by
Van den Bossche and Valchev [21]. Their method consists in mapping of magnetic field into
a pseudo-magnetization by using tanh(⋅):

0( , , tanh( · ), ).tot DCP F f B H c T= D (35)

Following Bossche and Valchev, we have applied series of the mappings as expansion
coefficients for modelling F(⋅,⋅,⋅,⋅) function of (35):

0 1 2 3[ , , , ].DCH M M M M® (36)

where M i =tanh(H DCci), where ci are expansion coefficients, to be determined from measure‐
ment data.Therefore, applying definition for the homogeneous function in general sense, we
have formulated the following scaling hypothesis: ∃ {a, b, c, d , g}∈ℝ5 :∀λ∈ℝ+  yields:

Ptot(λ a f , λ b(ΔB), λ c M0, M1, M2, M3 , λ dT )=λ g Ptot( f , ΔB, M0, M1, M2, M3 , T ). Substituting
the following λ = (ΔB)−1/b, we derive the most general form for Ptotwhich satisfies above
hypothesis:

( )
( )

[ ]
( ) ( )

0 1 2 3, , ,
Δ , , .

Δ Δ Δ
tot

M M M Mf TP B F
B B B

b
a g d

æ ö
ç ÷=
ç ÷
è ø

(37)

where α = a
b , β = g

b , γ = c
b , δ = d

b  are effective scaling exponents. F(⋅,⋅,⋅) is an arbitrary function of
the three variables. Both the effective exponents and the F function have to be determined.

General formula (37) enables us to construct mathematical model which maps the four-
dimensional space spanned by f, ΔB, DC bias and T into the one-dimensional Ptotspace. In the
first step, we separate the temperature factor Θ(⋅):
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(38)

Let us assume that Φ(⋅,⋅) consists of two terms which need not be independent. However, the
second one is HDC dependent in contrary to the first one. For both of them, we assume the
Maclaurin expansions with respect to scaled frequency f/(ΔB)α, which is very much suited for
the Bertotti decomposition. Moreover, the first term should describe losses for HDC→ 0, whereas
the second term must vanish for this condition. The resulting expression takes the following
form:

( ) ( ) ( ) ( )
4 3
1 0 5

tanh( )Φ , Σ Γ Σ Γ .
Δ Δ Δ Δ

i i

DC i
DC i i i i

f f f H cH
B B B Ba a a g= = +

æ ö æ ö æ ö ×ç ÷ ç ÷ ç ÷= +
ç ÷ ç ÷ ç ÷
è ø è ø è ø

(39)

Since (39) has been created by the Maclaurin expansion, all series exponents are integers.
However, it may be so that the best error’s minimum is obtained for fractional values of
exponents. For this purposes, we introduce tuning exponents x and y:

( ) ( ) ( ) ( )

(1 ) ( )(1 )

4 3
1 0 5

tanh( )Φ , Σ Γ Σ Γ .
Δ Δ Δ Δ

i x i y x

DC i
DC i i i i

f f f H cH
B B B Ba a a g

- + -

= = +

æ ö æ ö æ ö ×ç ÷ ç ÷ ç ÷= +
ç ÷ ç ÷ ç ÷
è ø è ø è ø

(40)

On the basis of some numerical test simulations, we have selected the following Padé approx‐
imant for Θ(⋅):

1

0 1 2

3 4

( )
1 ( )

z
q q
q q

-
æ ö+ +

Q = ç ÷
+ +è ø

ψ ψ ψ
ψ ψ

(41)

where θ= T + τ
Δ B δ  is gauged and scaled temperature, T is measured temperature in °C, z is tuning

parameter, and ψi are Padé approximant coefficients. After all improvements of F(⋅,⋅,⋅), the
final form is still homogenous function in general sense (6).

In order to perform core loss measurements, the B-H loop measurement has been evaluated
as the most suitable. This technique enables rapid measurement while retaining a good ac‐
curacy. The measurement set works in the following way: two windings are placed around
the core under test. Taking into account the number of secondary winding turns and the ef‐
fective core cross section, the secondary winding voltage V is integrated into the core flux
density B. Next taking into account the number of primary winding turns and the effective
magnetic path length of the core under test, the magnetic field strength H is calculated.
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Then, the total power losses per unit volume is the enclosed area of the B-H loop multiplied
by the frequency f. The test system consists of a power stage, a power supply, an oscillo‐
scope and a heating chamber. It is controlled by a MATLAB program running on a PC com‐
puter under Microsoft Windows. The power stage is capable of a maximum input voltage of
450 V, output current of 25 A and a switching frequency of up to 200 kHz. The B-H loop
measurements have been performed for SIFERRIT. The rectangular voltage shape across the
core and DC bias has been applied, while the duty cycle was 50%.

The tested core data were as follows:

- Material name: EPCOS N87

- Core shape: toroid R42

- Number of primary windings: 10

- Number of secondary windings: 5

- Magnetic path length [mm]: 354

- Cross section [mm2]: 840

The following factors influence the accuracy of measurements:

- Phase shift error of voltage and current <4%

- Equipment accuracy <5.6%

- Capacitive couplings negligible (capacitive currents are relatively lower compared to
inductive currents)

- Temperature <4%.

A β δ Γ1 Γ2 Γ3 Γ4 Γ5

−11.63 −8.64 −0.179 −1.408 739.5 1253.4 4238.5 0.123

Γ6 Γ7 Γ8 c0 c1 c2 c3 γ

−30.97 −51.87 −4201.4 −0.488 −2.44E-02 −0.181 0.165 0.00

T ψ1 ψ2 ψ3 ψ4 ψ5 x y

7.77E-02 −0.899 2.397 14.45 −1.27E-01 0.283 0.526 0.289

z

4.84E-02

Table 5. The set of estimated model’s parameters of (37)–(41).
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T ΔB f HDC Ptot T ΔB f HDC Ptot

[°C] [T] [kHz] [A/m] [Wm−3] [°C] [T] [kHz] [A/m] [Wm−3]

28.1 0.395 1 8.634 4064.3 28.1 0.391 1 20.146 4469.0

28.1 0.374 1 60.634 6332.4 28.3 0.351 1 86.651 6463.6

17.7 0.398 2 7.801 9452.1 17.8 0.398 2 20.555 10663.8

18.9 0.396 2 35.583 12745.8 18.5 0.377 2 89.240 16015.6

26.2 0.400 5 6.570 21131.3 26.4 0.4 5 17.820 23110.0

26.5 0.398 5 33.230 28057.3 27.1 0.386 5 89.400 35209.8

28.4 0.401 10 5.892 41549.0 28.6 0.401 10 17.477 45257.9

28.8 0.400 10 31.820 54650.9 29.7 0.393 10 73.960 63821.6

30.8 0.386 10 105.000 64632.1 28.4 0.49 1 11.694 6611.0

28.4 0.488 1 24.299 7196.0 28.4 0.451 1 78.390 8771.6

19.1 0.497 2 10.120 15234.1 19.2 0.496 2 23.718 16781.0

19.3 0.485 2 54.630 19235.9 19.8 0.475 2 76.860 20100.2

27.7 0.502 5 8.920 34634.8 27.4 0.503 5 15.020 36195.2

27.7 0.501 5 21.500 37496.6 28.6 0.496 5 47.500 41259.7

31.7 0.499 10 20.520 71226.8 32.2 0.494 10 45.040 76876.5

32.6 0.487 10 67.140 80858.2 28.5 0.588 1 14.420 10042.9

28.7 0.561 1 57.970 11239.6 28.7 0.541 1 78.080 11255.7

29.1 0.580 2 12.820 19689.9 28.7 0.576 2 54.360 22043.0

30.1 0.592 5 42.400 52126.7 31.1 0.599 10 10.290 92648.6

31.3 0.595 10 31.230 96446.4 28.9 0.684 1 22.050 14150.5

28.1 0.389 1 33.507 5358.8 28.4 0.346 1 91.066 6376.4

18.2 0.386 2 68.034 15049.1 18.7 0.367 2 110.590 16027.7

26.8 0.394 5 58.800 32614.3 27.5 0.386 5 97.779 35945.6

29.2 0.396 10 61.172 62814.4 30.2 0.387 10 99.190 64410.1

28.3 0.473 1 54.300 8296.5 28.5 0.443 1 85.100 8702.4

19.7 0.480 2 68.360 20073.3 20.2 0.469 2 87.440 20547.5

28.1 0.500 5 31.420 39530.2 31.5 0.499 10 7.570 65879.7

27.3 0.501 5 15.030 36194.3 28.5 0.58 1 36.010 10790.0

28.7 0.586 2 33.490 21002.2 30.2 0.616 5 36.050 54344.9

34.7 0.586 10 61.250 96583.3 29.0 0.669 1 41.330 14417.5

Table 6. Selected 60 records of the measurement data of SIFERRIT N87.
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Figure 11. Projection of the measurement points and the scaling theory points (38)–(41) in (( f
ΔB α )

(1−x)
, Ptot / ΔB β)

plane.

Figure 12. Projection of the measurement points and the scaling theory points (38)–(41) in ((tan h(c1HDC), Ptot / ΔB β)
plane.

Some comments concerning temperature change/stabilization have to be done. For details of
the applied measurement method and the errors of the relevant factors, we refer to [22, 24].
The parameter values of (37)–(41) have been estimated by minimizing χ2 of our experimental
data and using the simplex method of Nelder and Mead [23]. The measurement series consists
of 60 points (see Table 5). The standard deviation per point is equal to 15 Wm−3. Applying the
formulae (37)–(41) and the estimated parameter values (Table 6), we have drawn the three
scatter plots given in Figures 11–13, which compare estimated points those obtained through
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experimentation in the three projections, respectively. Note that in order to ensure numerical
stability during the estimation process, the unit of frequency was set at 1 kHz, while other
magnitudes were expressed in the SI unit system.

Figure 13. Projection of the measurement points and the scaling theory points (38)–(41) in ((T + τ) / ΔB δ, Ptot / ΔB β)
plane.

Scaled variables Ptot/(ΔB)β and f/(ΔB)α are very convenient for the model parameter estimations.
By using these variables, the number of independent variables is reduced. Also the collapsed
form of power losses characteristic is very compact and easy to implement. However, for the
purpose of designing of magnetic circuits, it is necessary to have the split characteristics which
describe the physical magnitude Ptotversus the physical ones: T, f, HDC and ΔB. Note that
formula (37) is suitable just for this task. Let us assume the characteristics family for the

following values of the independent variables: T, f, HDC and T =30°C, H DC =7 A
m ,

ΔB = ∈ {0.4−0.7}T, and f = ∈ {0.0 – 10.0}kHz. Using (37) and applying (38)–(41) as well as Table
6, we derive the characteristics presented in Figure 14.

The efficiency of scaling in solving problems concerning power losses in soft magnetic material
has already been confirmed in recent papers [15, 25]. However, this paper is the first one which
presents an application of scaling in modelling the temperature dependence of the core losses.
The presented method is universal, which means that it works for a wide spectrum of
excitations and different soft magnetic materials. Moreover, the presented model formulae
(37)–(41) are not closed and can be adapted for a current problem by fitting the forms of both
factors Φ and Θ. Ultimately, one must say that the degree of success achieved when applying
the scaling depends on the property of the data. The data must obey the scaling.
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Figure 14. Family of the power losses characteristics Ptot versus frequency f derived for SIFERRIT N87 material for

T =30°C, H DC =7 A
m .

5. Optimization of power losses in soft magnetic composites

Recently, novel concept of technological parameters’ optimization has been applied in soft
magnetic composites (SMCs) by Ślusarek et al. [26]. This concept is based on the assumption
that power losses in SMC obey the scaling law. The efficiency of this approach has been
confirmed in [9]. The scaling is very useful tool due of the three reasons:

• It reduces number of independent variables f and Bm to the effective one f / Bm
α,

• Determines general form of losses of power characteristic in a form of homogenous function
in general sense, and

• Determines general form of losses of power characteristics in a form of different dimensions.

Therefore, applying concept of the homogenous function in general sense, we apply the
following expansion:

( ) ( )( )( )1 2 3 4Γ Γ Γ Γ .m m m
m

m
tot f B f B BP f B f
B

a a a a
b = × + × + × + × (42)

Γn, α and β parameters have been estimated for different values of pressure and temperature
[9]. For the purpose of this paper, we take into account only one family of power losses
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characteristics which are presented in Figures 15 and 16. The corresponding estimated values
of the model parameters are presented in Table 7. For all other details concerning SMC material
and measurement data, we refer to [9]. Now we are ready to formulate the goals of this section.
Main goal is to describe minimization of the power losses in SMC by using model density of
power losses (42) and corresponding values of the model parameters. From the first row of
Table 7, we can see that dimensions of the Γn coefficients depend on the values of α and β
exponents. Therefore, the power losses characteristics presented in Figures 15 and 16 are
different dimensions. So, we have to answer the following question: Are we able to relate them
in the optimization process which has been described in [9, 26]?

Figure 15. Selection of the power losses characteristics Ptot/(Bm)α versus f/(Bm)α calculated according to (42) and Table 1
for Somaloy 500 [26], T = 500°C.

In this section, we show that if the considered characteristics obey the scaling, then the binary
relation between them is invariant with respect to this transformation and comparison of two
magnitudes of different dimensions has mathematical meaning. Reach measurement data of
power losses in Somaloy 500 have been transformed into parameters of (42) versus hardening
temperature and compaction pressure (Table 7) in [26]. Information contained in this table
enables us to infer about topological structure of set of the power losses characteristics and
finally to construct pseudo-state equation for SMC and derive new algorithm for the best
values of technological parameters.

Scaling of binary relations. Let the power losses characteristic has the form determined by
the scaling (27). It is important to remain that α and β are defined by initial exponents a, b and
c (see after formula (27)):

; .a c
b b

a b= = (43)

Let us concentrate our attention at the point on the f
Bm

α  axis of Figures 15 or 16:
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1 2 3 4
1 2 3 4

.
m m m m m

f f f f f
B B B B Ba a a a a= = = = (44)

Figure 16. Selection of the power losses characteristics Ptot/(Bm)α versus f/(Bm)α calculated according to (42) and Table 1
for Somaloy 500 [26].

Let us take into account the two characteristics and let us assume that

1 2
1 2
1 2

.tot tot

m m

P P
B Bb b> (45)

T p α β Γ1 Γ2 Γ3 Γ4

[°C] [MPa] [−] [−] [m2 s−2Tα−β] [m2 s−1T2α−β] [m2T3α−β] [m2 sT4α−β]

500 500 −1.312 −0.011 0.171 3.606 × 10−5 1.953 × 10−8 −2.255 × 10−12

500 600 −1.383 −0.125 0.153 3.328 × 10−5 9.254 × 10−8 −1.177 × 10−12

500 700 −1.735 −0.517 0.156 2.393 × 10−5 2.309 × 10−8 −8.075 × 10−14

500 900 −1.395 −0.082 0.101 6.065 × 10−5 −8.031 × 10−8 7.877 × 10−13

400 800 −1.473 −0.28 0.183 1.347 × 10−5 3.689 × 10−9 1.185 × 10−13

450 800 −1.596 −0.123 0.145 2.482 × 10−5 −1.218 × 10−9 6.120 × 10−14

550 800 −2.034 −1.326 0.106 1.407 × 10−4 −1.066 × 10−8 4.541 × 10−13

600 800 −1.608 −0.232 1.220 8.941 × 10−4 −5.302 × 10−8 1.664 × 10−11

Values of scaling exponents and coefficients of (42) versus compaction pressure and hardening temperature, a
selection from [26].

Table 7. Somaloy 500.
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Therefore, the considered binary relation is the strong inequality and corresponds to natural
order presented in Figures 15 and 16. The most important question of this research is whether
(45) is invariant with respect to scaling:

' '
1 2

' 1 ' 2
1 2

.tot tot

m m

P P
B Bb b> (46)

Let λ > 0 be an arbitrary positive real number. Then, the scaling of (46) goes according to the
following algorithm:

• Let us perform the scaling with respect to λ of all independent magnitudes and the de‐
pendent one:

,; ;i i ia b c
i i mi mi tot totf f B B P Pl l l¢ ¢ ¢= = = (47)

where i = 1, 2 …4 labels the considered characteristics.

• Substituting appropriate relations of (47) to (48), we derive:

1 1 1 2 2 21 2
1 2
1 2

.c b c btot tot

m m

P P
B B

b b
b bl l- -> (48)

• Collecting all powers of λ on the left-hand side of (48) and taking into account (43) we derive
that the resulting power has to be equal zero:

1 1 1 2 2 2 1.c b c bb bl - - + = (49)

Therefore, (45) is invariant with respect to scaling. This binary relation has mathematical
meaning and constitutes the total order in the set of characteristics.

Binary equivalence relations. The result derived in subsection Scaling of binary relations can
be supplemented with the following binary equivalence relation. Let

, ,
,

, ,

,
i i

i j toti j
i j

mi j mi j

f P
X

B Ba b=

æ ö
ç ÷ç ÷
è ø

(50)

be the jth point of the ith characteristic. Two points, j and k, are related if they belong to the
same ith characteristic:

, , .i j i kX XR (51)
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Theorem: R is equivalence relation. (The proof is trivial and can be done by checking out that
the considered relation is reflexive, symmetric and transitive.) Therefore, R constitutes division
of the positive-positive quarter of plane spanned by (50). The characteristics do not intersect
each other except in the origin point which is excluded from the space. The result of this section
implies that the power losses characteristics (27) and (42) are invariant with respect to scaling.
Structure of derived here the set of all characteristics of which some examples are presented
in Figures 15 and 16 enable us to derive a formal pseudo-state equation of SMC. This equation
constitutes a relation of the hardening temperature, the compaction pressure and a parameter
characterizing the power losses characteristics corresponding to the values of these techno‐
logical parameters. Finally, the pseudo-state equation will improve the algorithm for designing
the best values of technological parameters.

Pseudo-equation of state for SMC. Let C is set of all possible power losses characteristics in
considered SMC. Each characteristic is smooth curve in [f/(Bm)α, Ptot/(Bm)β] plane which
corresponds to a point in [T, p] plane. In order to derive the pseudo-state equation, we
transform each power losses characteristic into a number V corresponding to (T, p) point. By
this way, we obtain a function of two variables:

( , ) .T p V® (52)

This function must satisfy the following condition. Let us concentrate our attention at the two
following points:

1 2

1 2

1 2

; .
m m m m

f f f f
B B B Ba aa a= = (53)

Let us consider the two characteristics Ptot1 / (Bm1)
β1 and Ptot2 / (Bm2)

β2 of the two samples
composed in T1, p1 and T2, p2 temperatures and pressures, respectively, while the other
technological parameters such as powder compositions and volume fraction are constant. Let
us assume that for (53), the following relation holds:

1 2
1 2
1 2

tot tot

m m

P P
B Bb b> (54)

It results from the derived structure of  that (54) holds for each value of (53).Therefore, we have
to assume the following condition of sought V(T, p). If the relation (54) holds for given values
of temperature and pressure T1, p1, T2, p2, then the following relation for V(T, p) has to be
satisfied:

( ) ( )1 1 2 2, , .V T p V T p> (55)
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Moreover, V (T, p) has to indicate place of corresponding characteristic in the ordered  set. The
simplest choice satisfying these requirements is the following average:

( )
max min

1, ,
φ

max

min

tot
m

m m

fP
B fV T p d
B B

a
j
j b aj

æ ö
ç ÷ æ öè ø= ò ç ÷

- è ø

(56)

The integration domain is common for all characteristics. We have selected the following
common domain for the data presented in Figures 15 and 16 φmin = 0, φmax = 4000 (s−1T−α).

Using (42), we transform (56) to the working formula for the V we measure:

(57)

T p V

[K] [MPa] [W kg−1T−β]

723.15 800 40.60

773.15 900 43.75

773.15 700 47.25

673.15 800 50.30

773.15 600 57.12

823.15 800 81.50

773.15 500 89.28

742.15 764 492.3

753.15 780 509.2

804.15 764 528.5

711.15 764 547.0

873.15 800 720.0

Table 8. V measure versus hardening temperature and compaction pressure.

where x = f
Bm

α  and Γi are coefficients dependent on T and p (see Table 7). The values of V (T, p)

are tabulated in Table 8. Table 8 enables us to draw pseudo-isotherm. It is presented in Figure
17. However, in order to derive the complete pseudo-state equation, we must create a math‐
ematical model. On the basis of Figure 17, we start from the classical gas state equation as an
initial approximation:
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1.
B

p V
k T
×

=
× (58)

Figure 17. Pseudo-isotherm T = 500°C of the low-losses phase, according to data of Table 8. for Somaloy 500 [1].

where kB is the pseudo-Boltzmann constant.

In order to extend (58) to a realistic equation, we apply again the scaling hypothesis (27):

, .c

c c c

c

T
T p p TV
T p p p

p

g

d

æ ö
ç ÷

æ ö æ ö ç ÷
=ç ÷ ç ÷ ç ÷

æ öè ø è ø ç ÷
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F (59)

where Φ(∙) is an arbitrary function to be determined. Parameters γ, δ and Tc, pcare scaling
exponents and scaling parameters, respectively, to be determined. For our conveniences, we
introduce the following variables:
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In order to extend (58) to a full-state equation, we apply the Padé approximant by analogy to
virial expansion derived by [27]:

( )
( )( )( )
( )( )( )

0 1 2 3 4

1 2 3 4

, ,
1

G X G X G X G XG
V
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gt p p

+ + + +
=

+ + + +
(61)

where G0,…, G4, D1,… D4 are coefficients of the Padé approximant. All parameters have to be
determined from the data presented in Table 8.

Estimation of parameters for pseudo-equation of state. At the beginning, we have to notice
that the data collected in Table 8 reveal sudden change of V between two points: [773, 15; 500,
0] and [742, 15; 764, 0]. This suggests existence of a crossover between two phases: low-losses
phase and high-losses phase. We take this effect into account and we divide the data of Table
8 into two subsets corresponding to these two phases, respectively. Since the crossover consists
in changing of characteristic exponents for the given universality class, it is necessary to
perform estimations of the model parameters for each phase separately. Minimizations of χ2

for both phases have been performed by using MICROSOFT EXCEL 2010, where
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γ δ Tc pc G0 G1 G2

1.2812 0.1715 21.622 37.729 370315315 −47752251 1734952

G3 G4 D1 D2 D3 D4 –

−1.3764 −678.26 170.80 6243.8 386.96 −28.699 –

Values of pseudo-state equation’s parameters and the Padé approximant’s coefficients of (61)

Table 9. Somaloy 500, low-losses phase.
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γ δ Tc pc G0 G1 G2

1.5550 0.1810 22.949 30.197 365210688 −47714207 1762773

G3 G4 D1 D2 D3 D4 –

−1.3763 −683.38 170.77 5739.9 387.81 −22.514 –

Values of pseudo-state equation’s parameters and the Padé approximant’s coefficients of (61)

Table 10. Somaloy 500, high-losses phase.

where N = 7 and N = 5 for the low-losses and high-losses phases, respectively. Tables 9 and 10
present estimated values of the model parameters for the low-losses and high-losses phases,
respectively.

Figure 18. Phase diagram for Somaloy 500.

Optimization of technological parameters. Function V (T, p) serves a power loss measure
versus the hardening temperature and compaction pressure. In order to explain how to
optimize the technological parameters with the pseudo-state Eq. (61), we plot the phase
diagram of considered SMC Figure 17. Note that all losses’ characteristics collapsed to a one
curve for the each phase. Taking into account the low-losses phase, we determine the lowest
losses at τ ⋅ π−δ = 19, 75 (see Figure 18). This gives the following continuous subspace of the
optimal points:
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Formula (63) represents the minimal iso-power loss curve. All points satisfying (63) are
solutions of the optimization problem for technical parameters of SMC. By introducing the
binary relations, we have revealed twofold. The power losses characteristics do not cross each
other which makes the topology’s set of these curves very useful and effectively that we can
perform all calculations in the one-dimensional space spanned by the scaled frequency or here
in the case of pseudo-state equation in the scaled temperature. For general knowledge
concerning such a topology, we refer to the paper [28]. The obtained result is the continuous
set of points satisfying (63). All solutions of these equations are equivalent for the optimization
of the power losses. Therefore, the remaining degree of freedom can be used for optimizing
the magnetic properties of the considered SMC.

6. Scaling conception of losses separation

In this section, we show how to expand losses into polynomial series. The distinction between
different eddy current scales, that is a macroscale, covering the whole bulk material and a
microscale covering the area of moving domain walls, introduced by Bertotti’s theory, has led
to the following relationship of the three terms:

2 2 1.5 1.5
1 2 08 ( ) ,tot m m mP c f B c f B GSV f Bb s s= + + (64)

where σ is conductivity, G is the constant equal to 0.1356; S is sample cross section, whereas
V0 is a parameter dependent on flux density. In general case, (64) is not homogenous expres‐
sion; therefore, this can describe the self-similarity property only for β = 1. However, the Bertotti
interpretation of each term is correct

.tot hys clas excP P P P= + + (65)

where the presented in (65) components are hysteresis, classical and excess losses, respectively.

In this chapter, we have shown how the two-component formula for losses (28) can be
transformed to dimensionless expression (30) and (31). This expression helps us to consider
the data collapse. However, in the case of expansion of (27) over the square term, (31) does not
apply.
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Then, one can consider partial data collapses in the expansions up to necessary degree. Let us
consider, for example, (42):

( )2 3 4
1 2 3 4Γ ·( Γ ·( ) Γ ·( ) Γ ·( ) ,tot

m m m m
m

P f B f B f B f B
B

a a a a
b = + × + +

Formula (42) is the fourth-degree polynomial of the ( f / Bm
α) scaled frequency. Let us span all

possible binomial subspaces:

12 13 14 23, 24, 34},{ , , ,S S S S S S=å

where Si j
= {( f / (Bm

α))i, ( f / (Bm
α)) j}. To consider partial data collapse in S12, we perform the

following transformations:

2 2
1,2 1,22

1 1

Γ Γ, .
Γ Γb a= =tot

tot
m m

P fP f
B B (66)

Substituting (66) to (42), we get

(67)

Note that (67) is dimensionless full formula for the scaled loss. Moreover, expression f12(1 + f12)
is sample independent. The linear and square terms describe the hysteresis and the classical
losses, respectively. The cubic and the fourth-order terms correspond to the excess losses.
Moreover, the square and linear terms describe the partial data collapse in S12 [29]. Using
(67), one can compare losses data of different measurements projected on S12 subspace. The
analogical equations for the S34 subspace read:

(68)

(69)
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Sample α β Γ1 Γ2 Γ3 Γ4

P1 −2.347 −1.407 2.25E-03 7.96E-06 −5.19E-09 1.76E-12

P2 −1.519 −0.375 2.53E-03 6.79E-06 −6.48E-09 2.78E-12

P4 −2.372 −1.295 1.80E-02 2.04E-05 7.68E-09 −1.37E-12

P7 −2.437 −1.401 2.28E-03 1.05E-05 3.08E-07 −8.38E-10

Table 11. Scaling exponents and expansion coefficients.

Applying (68) and (69), one can complete the data comparison by considering partial data
collapse using f 3,4

3 (1 + f 3,4) polynomial which is also sample independent. In the case of
expansion (42), the comparisons performed in S12, S34 spaces are completed. To test the
presented comparison formalism, we present the following measurement data: P1—
amorphous alloy F e78Si13B9, P2—amorphous alloy Co71.5F e2.5Mn2Mo1Si9B14, P4—crystalline
material-oriented electrotechnical steel shits 3% Si-Fe and P7—iron-nickel-alloy 79%Ni-Fe.
Processed measurement data in the form of scaling exponents and expansion coefficients are
presented in Table 11:

Figures 19 and 20 present the completed partial collapses for the considered problem:

Figure 19. Partial data collapse in S12 space.

Magnetic Materials36



Figure 20. Partial data collapse in S34 space.

In order to make a numerical comparison of the measurement qualities taken from different
samples, one can introduce analogically to (32) the measures of uncertainty for the both spaces
S12 and S34. The comparisons must be done and interpreted independently for S12 and S34.
Qualitative analysis on the basis of Figures 19 and 20 shows that the uncertainty measure of
S34 for the sample P4 is significantly high.

7. Summary

We have presented many examples of the measurements of power losses in soft magnetic
materials, including composites. Moreover, working conditions were determined by multidi‐
mensional parameter space: frequency, pick of induction, DC bias and temperature. On the
basis of obtained results of experimental and theoretical considerations, we confirm that the
total power loss in soft magnetic materials is self-similar. This is very important for practices,
since the fundamental parameter used by technologists in the processes aimed at tailoring
properties of magnetic materials as well as in design and work analysis of magnetic circuits is
loss density. However, there is one important detail which has to be discussed at the end. In
order to determine F(⋅) in (27), the Maclaurin expansion has been applied up to the second-
order term. Note that each two-term formula can be reduced to dimensionless form (28).
Therefore, one could conclude that the data collapse is trivial. However, this is not so because
relevance of the data collapse depends on measurement data. If data transformed by (30) get
place on (31), then these data satisfy the axioms of homogeneity, they are invariant with respect
to scaling as well as they are self-similar. What to do if the two-term expansion (28) is not
sufficient? Then, one should extend (28) up to sufficient polynomial order. For an example,
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see (42). In general case, reduction of losses characteristic to dimensionless form is not possible.
However, for comparison of different measurement data, it is possible always to perform
transformation of data to dimensionless magnitudes partially in the two-dimensional subspa‐
ces (67), (69) and obtain full comparison by collecting the all independent comparisons in Sij

subspaces.
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