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1. Introduction  

Based on its analogical link with nature, ant colony optimisation (ACO) aims to determine 
the least cost solution to an optimisation problem via the process of stigmergy 
(Dorigo et al. 2000). That is, the colony of artificial ants repeatedly stochastically constructs 
solutions and utilises the information gained from these solutions to guide the construction 
of future solutions. This process occurs in an attempt to increase the likelihood of the colony 
constructing the optimal solution. Each individual ant operates essentially randomly, but 
through alteration of its environment, a colony learns and assimilates information as a 
collective. 
A conceptualised characteristic of this process is that the colony’s searching behaviour 
changes with time. That is, it undergoes a highly variable, and broad reaching, initial search 
as the colony learns about the solution space, followed by a subsequent intensified searching 
in smaller regions of the solution space that the colony has learned as being promising. As 
such, ACO can be visualised as an initially widely spread colony converging to a point, or 
region, within the solution space.  
Typically algorithms, such as ACO, are assessed only based on their performance in terms 
of the quality of the solutions found, and the computational effort required to find them. In 
addition to these performance based indicators, much can be learned about the different 
algorithms by considering the behaviour of their searching and converging process. 
Algorithm developers qualitatively discuss mechanisms as being exploration encouraging 
or exploitation encouraging (Colorni et al. 1996). The question arises as to the actual 
manifestation of these mechanisms in an algorithm’s searching behaviour in terms of 
measurable quantities.
Within this chapter, two simple statistics for achieving this are implemented. A statistic is 
formulated that describes the topological nature of the spread of solutions through the 
solution space, termed the mean colony distance. Combining this statistic with a measure of 
the quality of the solutions being found, it is shown to give significant insight into the 
behaviour of selected ACO algorithms as the colonies converge.  This chapter presents a 
purely computational analysis. For a theoretical treatment of ACO, the reader is referred to 
other work (e.g. Gutjahr, 2002).  

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria
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In this chapter, a case study based analysis of the convergence behaviour of four ACO 
algorithms applied to the water distribution system problem (WDSP) is presented. Water 
distribution systems are one of the largest and most costly infrastructure in all developed 
societies. As such, the problem of the optimal design of such systems has been a large area 
of active research within the Civil Engineering field since the late 1960s. The WDSP 
represents a difficult, highly constrained combinatorial optimisation problem. 
The four ACO algorithms studied are: ant system (AS), the first and most basic form of ACO 
(Dorigo et al. 1996); the elitist AS (ASelite), a version of AS utilising an elitism strategy 
(Dorigo et al. 1996); the elitist-rank AS (ASrank), similar to ASelite but with a rank based 
prioritisation of information about the solution space obtained by the ants (Bullnheimer et al.
1999); the max-min AS (MMAS), an ACO algorithm that bounds the evolution of the 
artificial pheromone trails (Stützle & Hoos 2000). On a macro level, these algorithms differ 
in their assimilation of new information with previously learned information. By 
considering the comparative convergence behaviour of these algorithms, insight into the 
practical outworking of their different formulations is gained. 
The chapter is structured as follows. Firstly, in section 2 ACO is briefly presented and the 
pheromone updating mechanisms of the four algorithms are outlined.  In section 3, the 
WDSP is explained and defined. Section 4 presents the application of ACO to the WDSP, 
where the issues of unconstrained problem transformation and problem graph structure are 
discussed. In section 5, a topology of the solution space is defined and the topological 
measure used to quantify the spread of the colony’s solutions through the solution space is 
presented. In section 6, a detailed case study based analysis of the convergence behaviour of 
the algorithms is undertaken. Finally, the conclusions are given in section 7. 

2. Ant Colony Optimisation Algorithms 

This section is intended to provide a brief overview of ACO for the purpose of representing 
it in a multi-graph framework, so that its application to the WDSP in section 4 is easier to 
understand. For a detailed discussion of the traditional formulation, the reader is referred to 
Dorigo et al. (1999). 
ACO is an evolutionary algorithmic optimisation process based on the analogy of a colony 
of foraging ants determining the shortest path between a food source and its nest (see 
Dorigo et al. (1996) for examples). The colony is able to optimise the excursions of its ants 
through the process of stigmergy (Dorigo et al. 2000), where stigmergy refers to the indirect 
form of communication between the ants that arises from their deposition of pheromone 
trails. These trails act as sign posts encouraging ants to follow them. Gradually, over time 
increasingly shorter pheromone trails will be reinforced with greater amounts of 
pheromone. This in turn will encourage more ants to follow them, potentially finding small 
improvements, leaving the pheromone on the less frequently used, and longer, paths to 
evaporate into non-existence. 

ACO deals with a combinatorial optimisation problem organised as a graph G(N, L), where N

is the set of nodes and L is the set of edges linking the nodes (the structure of the graph is 

unique for each problem type). A candidate solution S to the problem is constructed by an 

ant selecting a feasible path through G(N, L). The feasibility of the path is ensured by a 

special constraint function , which lists the edges that are available for selection based on 
the previously constructed path of the ant. That is, given an ant has constructed a path S‘, 
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then (S‘) describes the set of edges available for selection. An ant’s tour is complete when 

(S‘) = Ø, at which point, S‘ S, the set of all feasible tours through the graph.  

A probabilistic decision policy is implemented at each sequential node in an ant’s path for 

the selection of a new edge from the set  to add to their partially constructed path S‘. This 
policy is dependent on the pheromone intensity on a particular edge (representative of the 
colony’s learned information) and the desirability of the edge (a measure of the local effect 
that the selection of a particular edge will have on the value of the objective function 

(Dorigo et al. 1996)). More precisely, the probability pj|S‘(t) that edge j (S‘) will be selected 
in iteration t given an ant’s partially constructed tour S‘ is 

'

'|

Sl

ll

jj

Sj
t

t
tp

, (1)

where j(t) is the pheromone concentration associated with edge j at iteration t, j is the 
desirability factor and,  and  are the parameters controlling the relative importance of 
pheromone and desirability, respectively, in the decision process. If  >>  the algorithm 
will make decisions based mainly on the learned information, as represented by the 
pheromone, and if >>  the algorithm will act as a greedy heuristic selecting mainly the 
lowest cost options, disregarding the impact of these decisions on the final solution quality. 
At the end of an iteration, all ants from the colony have constructed feasible paths through 

G(N, L). The edge pheromone values j, j L are updated to include the new information 

gained by the colony from the set of the new paths created by the colony 

(t) = {S1(t), …, Sm(t)}, where Sk(t) S is the path chosen by ant k, and m is the number of ants 

in the colony. The pheromone is updated from one iteration to the next by the transitional 
relationship

tttt jjj ),(1 (2)

where (0, 1) is the pheromone persistence factor that mimics the natural operation of 
pheromone decay, and governs the influence of previously learned information on future 

decisions, and j( (t),t) is the pheromone addition for edge j, which governs the influence 
of the newly acquired information from iteration t, on future decisions. The function 

j( (t),t) can be viewed as the value placed on edge j based on the information contained in 

(t), where value can be interpreted to mean the likelihood that edge j is contained in S*, the 
optimal solution to the problem. Practically, this means that edge j S is considered to have 
more value than j’ S’ if f(S) < f(S’). The information in this set is essentially the resulting 

sample of relationships between the edges of the solutions in (t) and the corresponding 
function values of these solutions. The premise of ACO is that by repeated iteration of this 
process the colony of ants will collectively guide itself to find the optimal path through 

G(N, L).

The main differentiating factor between ACO variants is the formulation of j( (t),t), as this 
describes the manner in which new information is assimilated with existing learned 
information. In the following subsections, the pheromone updating procedures of the four 
ACO variants studied in this chapter are described. All of these algorithms use the decision 
policy from (1). 
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2.1 Ant System (AS) 

Ant System (AS) (Dorigo et al. 1996) is the original and simplest ACO algorithm. For AS, all 

of the ants within the colony add pheromone to their paths, and as such j(t) is a function 
of all the solutions found at iteration t and is given by 

jI
tSf

Q
t tS

m

k k

j k

1

, (3)

where m is the number of ants in the colony (i.e. the number of solutions generated at each 
iteration), Q is the pheromone addition factor, f(· ) is the objective function to be minimised 
and IA{a} is the indicator function (equal to one if a A and zero otherwise). From (3), it is 
clear that better solutions (i.e. solutions with lower objective f values) are rewarded with 
greater pheromone addition. 

2.2 Elitist Ant System (ASelite)

To exploit information about the current global-best solution, Dorigo et al. (1996) proposed 
the use of an algorithm known as Elitist Ant System (ASelite). This algorithm uses elitist ants,
which only reinforce the path of the current global-best solution after every iteration 
(analogous to elitism strategies used in genetic algorithms). Thus, the pheromone addition is 
given by 
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tSf

Q
jI

tSf

Q
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tS
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k k

j gbk

1

(4)

where the first part of (4) corresponds to the pheromone addition from the colony, as 
defined for AS in (3), and the second part corresponds to the pheromone addition from the 
elitist ants, where  is the number of elitist ants and Sgb,(t) is the set of edges comprising the 
global best solution found up until iteration t (i.e. this is equivalent to the addition of 

pheromone from  ants). The updating rule for ASelite allows for exploration, as each of the 
m solutions found by the colony receives a pheromone addition, but also encourages 
exploitation, as the global-best path is reinforced with the greatest amount of pheromone. 

As  increases, so does the emphasis on exploitation. 

2.3 Elitist-Rank Ant System (ASrank)

Proposed by Bullnheimer et al. (1999), the Elitist-Rank Ant System (ASrank) further develops 
the idea of elitism used in ASelite to involve a rank-based updating scheme. In ASrank,  elitist 
ants reinforce the current global-best path, as in ASelite, and the ants that found the top  – 1 
solutions within the iteration add pheromone to their paths with a scaling factor related to 
the rank of their solution. The pheromone update formula for ASrank is given by 
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, (5)

where the first part of (5) corresponds to the addition from the elitist ants, and the second 
part from the ranked ants, where S(k)(t) is the set of edges selected by the kth ranking ant in 
iteration t. The edges that are selected by the kth ranking ant receive pheromone equivalent 
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to the addition from ( k) ants. The potential advantages of this formulation, compared 
with AS and ASelite, are (i) only the top 1 ranked ants are used to lay pheromone (and not 
all m ants), which allows for the retention of only good information, and (ii) greater 
importance is given to the higher ranking ants (i.e. the top ranked solution receives 1
times the normal amount of pheromone and the ( 1)th ranked solution receives only the 
normal pheromone amount), so that better edges receive more pheromone. 

2.4 Max-Min Ant System (MMAS) 

To overcome the problem of premature convergence whilst still allowing for exploitation, 
Stützle and Hoos (2000) developed the Max-Min Ant System (MMAS). The basis of MMAS 
is the provision of dynamically evolving bounds on the pheromone trail intensities such that 
the pheromone intensity on all paths is always within a specified lower bound min(t)  of a 
theoretically asymptotic upper limit max(t), that is min(t)  j(t) max(t) for all edges j. As a 
result of stopping the pheromone trails from decaying to zero, all paths always have a non-
trivial probability of being selected, and thus wider exploration of the search space is 
encouraged. The pheromone bounds at iteration t are given by (Stützle & Hoos 2000) 

n
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where Pbest is the (user selected) probability that the current global-best path, Sgb(t), will be 
selected, given that all non-global best edges have a pheromone level of min(t) and all global-
best edges have a pheromone level of max(t), and NOavg is the average number of edges at 
each decision point. It should be noted that lower values of Pbest indicate tighter bounds. 
As the bounds serve to encourage exploration, MMAS adds pheromone only to the 
iteration-best ant’s path S(1)(t) at the end of an iteration in order to ensure the exploitation of 
good solutions. To further exploit good information, the global-best solution Sgb(t) is 
updated every Tgb iterations. The MMAS pheromone update is given by 

gbtS
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tSj TtIjI
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Q
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1

N

, (7)

where the first part of (7) corresponds to the addition from the iteration best ant, and the 
second part from the global best ant, where N is the set of natural numbers.  
MMAS also utilises another mechanism known as pheromone trail smoothing (PTS). This 
reduces the relative difference between the pheromone intensities, and further encourages 
exploration. The PTS operation is given by 

tttt jjj max
, (8)

where 0  1 is the PTS coefficient. If  = 0, PTS has no effect, whereas if  = 1, all 
pheromone paths are scaled up to max(t). The pheromone updating process of MMAS can be 
summarised as the three step process of: (i) decay and addition by (2) and (7), (ii) bounding 
by (6), and (iii) smoothing by (8). 
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3. The Water Distribution System Optimisation Problem 

Water distribution systems (WDSs) consist of the system of pipes, pumps, valves etc. that 
delivers water from sources to consumers. From an optimisation perspective, the water 
distribution system problem (WDSP) is defined as the selection of the lowest cost 
combination of appropriate component sizes (e.g. pipes) and settings (e.g. valve settings) 
such that the criteria of water demands and other design constraints (e.g. minimum 
pressures) are satisfied. A simple example of this is as follows. Consider two networks, the 
first comprising pipes with small diameters and the second comprising pipes with large 
diameters. The first network has a low cost, but as the pipe diameters are small, the 
frictional pressure loss through the network will be greater, which is likely to result in 
insufficient pressure at the demand points (nodes). The second system is likely to provide 
more than adequate pressure, as the pipe diameters are large, but is also more expensive. 
The optimal design is the least cost combination of pipe sizes that are able to provide 
adequate pressure at each of the nodes. Within the WDSP, the decision variables are 
associated with the pipes within the system where, more specifically, the design options are 
the following, (i) a diameter for a new pipe, (ii) the cleaning of an existing pipe to reduce the 
hydraulic resistance, and (iii) no action. 

As outlined in Zecchin et al. (2005), for the WDSP, a design involves the selection of a series 

of design options for all or some of the pipes within the network. A WDS design 

 = { n} is defined as a set of n decisions where n is the number of pipes to be sized 

and/or rehabilitated, and i is the selected option for pipe i, and is defined as 

i i = { i,1, …, i, iNO }, where i is the set of all NOi options available for pipe i. For each 

option there is an associated cost, c( i), of implementing that option, and one of three 

actions as listed above.
The constraints on a solution are categorized as design constraints and hydraulic 
constraints. A design constraint is an inequality constraint that defines the minimum 
acceptable performance of a design, whereas hydraulic constraints are equality constraints 
that describe the distribution of the flow of water through the WDS (based on the 
fundamental equations for fluid flow within a closed conduit and the governing equations 
for fluid flow within a looped network). The design constraint for the WDSP specifies the 
minimum allowable pressure at each node, and is given as 

patternnodejiji NjNiHH ,..,1,..,1,,
, (9)

where Hi,j is the actual head at node i for demand pattern j Hi,j  is the minimum allowable 
head at node i for demand pattern j, Nnode is the total number of nodes and Npattern is the 
number of demand patterns. 
The hydraulic equations for fluid flow within a WDS are the conservation of mass and the 
pipe headloss equations. As the fluid is assumed to be incompressible, the conservation of 
mass equations dictate that the flow rate into a node is equal to the flow rate out of a node. 
This can be expressed as 

patternnode
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where Qi,j is the demand for node i and demand pattern j (by definition, a positive demand 
is one that draws water from the node), Qk,j is the flow in pipe k for demand pattern j, u,j is 
the set of all pipes for which node i is the upstream node, and d,j is the set of pipes for 
which node i  is the downstream node (note that the sign convention is that positive pipe 
flow occurs from upstream to downstream). 
The headloss equation is written as (Streeter & Wylie 1997) 

patternpipe

a

jijijiji NjNiQQrHH
idu

,..,1 ,..., ,1
1

,,,,
, (11)

where r
i
 is a hydraulic resistance term associated with decision i, a is the flow exponent, 

and Npipe is the number of pipes, including new pipes. The headloss equation used within 

most WDSPs is the Hazen-Williams equation, for which r
i
 is expressed as

, (12)
patternpipei

ba NjNiLDACr
iii

,..,1,..,1

where Li is the length of pipe i, D
i
 is the diameter of pipe i for design , C

i
 is the Hazen-

Williams coefficient for pipe i for design , A is a constant that is dependent on the units 

used, and a and b are regression coefficients. The adopted values of A, a, and b are those 

used in the hydraulic solver software EPANET2 (Rossman 2000). 
The objective is the minimization of the material and installation costs, and so the WDSP can 
be expressed as 

, Subject to (9) – (11)    (13)
n

i

icC
1

min

where C(  is the cost of design  and c( i) is the cost of decision i. As is seen from (13), 
despite the simplicity of the objective function, the complexity of the optimisation problem 
arises from the nonlinear nature of the constraints dependency on the design options i.

4. Application of Ant Colony Optimisation to Water Distribution System 
Optimisation 

4.1 Transformation of constrained problem 

The WDSP is a constrained optimisation problem. ACO is unable to deal directly with 
constrained optimisation problems as, within its solution generation, it cannot adhere to 
constraints that separate feasible regions of a search space from infeasible regions (here 
feasibility refers to constraints (9)-(11) and not the  function). The standard technique to 
convert constrained problems to unconstrained problems is to use a penalty function (Coello 
Coello 2002). ACO algorithms direct their search solely based on information provided by 
the objective function. To guide the search away from the infeasible region and towards the 
feasible region, a penalty function increases the cost of infeasible solutions such that they are 
considered to be poor quality solutions. The unconstrained optimisation problem for the 
WDSP takes the form of minimising the sum of the real cost plus the penalty cost, that is 

PCCNCmin (14)
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where NC( ) is the network cost for design C( ) is the material and installation cost 
given by (13) and PC( ) is the penalty cost incurred by .  When evaluating a potential 
design, the set of heads {Hi,j : i = 1, …, Nnode, j = 1, …, Npattern} is calculated by a hydraulic 
solver. Therefore (10)-(11) are automatically satisfied, and hence, only (9) is required to be 

considered in the penalty cost. Within this study, PC( ) was taken to be proportional to the 
maximum nodal pressure deficit induced by  as in Maier et al. (2003). That is 

otherwise

 if
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where PEN is the penalty factor (user defined) with units of dollars per meter of pressure 
violation.  

4.2 Modification of ACO elements 

As in used in previous studies (Maier et al. 2003; Zecchin et. al. 2005; Zecchin et. al. 2006; 

Zecchin et. al. 2007), but formalised here, the graph G(N, L) of the WDSP can be represented 

as a multi-graph, with the set of nodes N = {1, 2, …, n + 1}. Each node i n is connected to the 

next via a set of directed edges i = {(i, i+1)j : j = 1, 2,  …, NOi}, where (i, i+1)j is the jth edge 
connecting node i to node i + 1, NOi is the number of edges connecting node i to node i + 1 

and the set of all edges is L = {s : s 1 … n}. The edge set i is associated with the set of 

design options i, and the edge (i, i+1)j is associated with option i,j. A solution S, associated 

with design , is a feasible tour through the graph and is an element of the solution space 

S = {S : S = {s1 , …, sn}, si i, i = 1, …, n}, where the constraint function  is given by 

({s1, …, si}) = i for i n.
As the objective is to minimise cost, lower cost options are more desirable. Therefore the 
desirability of an option is taken as the inverse of the cost of implementing that option 
(Maier et al. 2003). In other words   

)(1 ,)1,( jiii c
j

. (16)

As lower cost diameter options are more desirable, a bias in the probability towards the 
selection of lower cost diameters results. For options with zero cost (i.e. the null option), a 
virtual-zero-cost was selected. 

4.3 Parameter Settings 

One of the limitations of ACO is that an extensive calibration phase is required to determine 
appropriate parameter settings. From an extensive analysis of ACO applied to the WDSP, 
Zecchin et al. (2005) determined a series of parameter guidelines relating the five 
fundamental ACO parameters ( , , , Q, 0, and m) to WDSP characteristics (such as the 
number of decision points n, the average number of options per decision NOavg, and the cost 

of key design configurations such as max, the maximum cost design, and *, the optimum, 
or near optimum, design). These are summarised in Table 1. 
Contrary to other problem types (Dorigo & Gambardella 1997), Zecchin et al. (2005) found 
that, for the WDSP, better performance was achieved when the ants gave greater emphasis 

to the learned pheromone values  as opposed to the visibility values , as manifested 
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through > . Better performance was achieved when the pheromone persistence factor 
was relatively high, facilitating slow convergence and long memory times for learned 
information. Zecchin et al. (2005) showed that the ratio of Q to 0 is important (not the actual 
values of each) and empirical guidelines were determined accordingly. The best number of 
ants m was also found to be dependent on the number of options per decision, not just the 
number of decisions, as for other problem types (Dorigo et al. 1996). 

Parameter Heuristic

1.0 

0.5 

 0.98 

Q C( max)

0
*NCnNOQ avg

M avgNOn

Table 1. Parameter guidelines for ACO parameters from Zecchin et al. (2005) 

In addition to the guidelines derived for the ACO parameters, the following semi-
deterministic expression for PEN was derived in Zecchin et al. (2005) 

HCCPEN )()( minmax (17)

where min is the minimum cost network design, and H is a user selected pressure deficit, 
based on the maximum acceptable pressure deficit for a feasible solution as defined by (9). 
The value of PEN ensures that all networks with a pressure violation greater than or equal 
to H (an extremely small value) are made more expensive than the maximum feasible 
network cost C( min).

5. Analysis of Algorithm Convergence Behaviour  

The standard approach to the analysis of optimisation algorithms is to assess their 
performance on a particular problem from statistics based on the lowest cost achieved by 
the algorithm (termed best-cost) and the computational time required for the algorithm to 
find the associated solution (termed search-time). A richer understanding of the performance 
of an algorithm can be achieved by considering statistics from the solutions generated by the 
algorithms during their run-time. A typical approach used by many authors (Simpson et al.,
1994; Cunha & Ribeiro, 2004; Afshar & Marino, 2007) is to track the minimum cost generated 
in each iteration as a means of assessing the algorithm’s convergence behaviour. This 
statistic is important, as it indicates the effectiveness of the search, but acts only as a 
surrogate measure of the actual convergence behaviour of the algorithm.  
This work aims to extend this qualitative performance assessment to include a topologically 
based statistic to describe an algorithm’s convergence behaviour. From the perspective of 
ACO, convergence is defined as the point in time at which all ants select the same path 
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through the problem graph (i.e. the colony’s population of solutions is fixed at a certain 

point in the solution space S) from that point onward. Thus, convergence behaviour is the 

nature of the colony’s solution generation up until the point of convergence. Topologically, 
convergence means that the distance between all solutions generated by the colony is zero. 
Conversely, a non-converged search will have some spread of the solutions throughout the 
solution space. It is the quantification and tracking of this spread that is of interest in 
describing an algorithm’s convergence behaviour.  
The motive behind convergence analysis is to gain a greater understanding of how the 
different explorative and exploitative mechanisms in the ACO algorithms considered 
actually impact the algorithm’s search. Below, the topology of the solution space is first 
defined, and then the adopted convergence metric, the mean colony distance, is presented. 
It is important to note that the use of metrics is widely used in evolutionary algorithm based 
multi-objective optimisation (Deb 2001). However, this is fundamentally different to what is 
considered here. In multi-objective optimisation, the distribution of solutions throughout 
the multi-dimensional objective space is of primary interest, and thus the metrics operate in 
this space. Conversely, this chapter is concerned with the distribution of solutions within the 
solution space, and, as such, the mean colony distance is defined on this space.  

5.1 Topology of the Solution Space 

Fundamental to any topologically based statistic is the notion of distance between points 
(solutions) in the solution space. A measure of distance for all elements within the set S is 

equivalent to defining a metric d : S × S R+ associated with S that defines the distance 

between two elements S, S’ S (Cohen 2003). For sets whose elements have no specific 

numerical relation, the Hamming distance is a natural metric. This has been used by Bose et
al. (1994) and Stützle & Hoos (2000) for the travelling salesperson problem. A generalisation 
that applies to sets whose elements are equal length lists of objects is 

, (18)
n

i

iii ssdSSd
1

',',

where S={s1, …, sn}, S’={s1’, …, sn’}, si, si’ i and di : i  × i R+ is itself a metric for the set 
of all possible ith elements in the list. For the Hamming distance, di(·,·) is either zero or one, 
depending whether si and si’ are equal or not. However, if the elements in the set have some 
other attribute that can be exploited, such as a meaningful ordering based on some property, 
then the metric can be defined so as to include this information. 

Considering (12), it is seen that the selection of an option i is essentially equivalent to 

selecting a resistance parameter r
i
. Therefore, it is meaningful to say that an option is closer 

to one option than another based purely on the relative differences between their associated 

resistance parameter values. The list of options i for pipe i can therefore be meaningfully 

ordered by the magnitude of their associated resistance parameter. That is, consider the 

following ordering of i, based on the resistance parameter i = { i,1, …, i, iNO }, where 

r
1,i

 …  r
iNOi ,
, and the distance di between any two of these options i,j and i,k, is given by 

ikijikijii kjd ,,,, ,,   where . (19)
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In this context, the distance between two options is the number of positions in the ordered 
list i that separates the two options. 

5.2 Mean colony distance 

By ascribing a topology to the search space, the colony of solutions generated within an 
iteration can be considered to be spread, in some manner, over the topology. This spread of 
solutions gives an indication of how widely, or tightly, an algorithm is searching. To use the 
terminology of Colorni et al. (1996), whether the algorithm is exploring broadly through the 
search space or exploiting smaller regions of the search space. In order to quantify this 
spread, the mean of the distances between each of the ants’ solutions has been used in this 
chapter, which is henceforth referred to as the mean colony distance d . Mathematically this 
is given as the summation of the distances of each unique pair of solutions divided by the 

total number of pairs, and is expressed as the map d Sm
R+ where

1

1 1

)(),(
)1(

2 m

k

m

kl

lk tStSd
mm

td  ,  (20)

where m(m – 1)/2 is the number of unique pairs that exist in a colony of m ants. The 
usefulness of d  as a behavioural analysis measure is fully realised when considering its 
variation with time. For example: periods of high exploration when solutions are spread 

broadly throughout the search space correspond to large values of d ; periods during which 
the algorithm converges correspond to a series of decreasing d  values; the point at which 
the algorithm converges is given by d  = 0, as this indicates that all solutions in (t) are 
equal. As such, d  provides a direct measure of an algorithm’s convergence behaviour. 

6. Case Studies 

Experiments were performed on four different case studies, the Two Reservoir Problem 
(TRP), the New York Tunnels Problem (NYTP), the Hanoi Problem (HP) and the Doubled 
New York Tunnels Problem (2-NYTP). The ACO algorithms were coded in FORTRAN 90 
with EPANET2 (Rossman 2000) as the hydraulic solver. Parameter settings from Zecchin et

al. (2005), summarised in Table 1, were used for parameters , , , 0, m, and Q for all 
algorithms with the adjustment that 0 was scaled by  for ASelite and ASrank (in accordance 
with the logic of the derivation of Q in Zecchin et al. (2005)) and for MMAS, 0 was set to an 
arbitrarily high number, as proposed by Stützle & Hoos (2000). For ASelite and ASrank,
required calibration for each case study. For MMAS, fglobal was set to 10, as in Stützle & Hoos 

(2000) and Pbest and  were calibrated for each case study. The best-cost and search-time 
statistics for AS, ASelite, and ASrank and MMAS are as presented in Zecchin et al. (2007). 

6.1 Case Study 1: Two-Reservoirs Problem 

6.1.1 Preliminaries 

The TRP was initially studied by Gessler (1985), and Simpson et al. (1994) introduced the 
metric version. The TRP is a 14-pipe network with two reservoirs (Figure 1). The TRP 
involves three demand cases: a peak hour demand case and two fire loading demand cases. 
There are nine existing pipes, of which three are considered for rehabilitation, duplication 
with one of eight pipe sizes, or to be left alone. There are five new pipes that must be sized 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 430

with one of eight diameters. The reader is referred to Simpson et al. (1994) for case study 
details. The problem, consists of 32,768,000 possible combinations.  

6.1.2 Results 

Based on the heuristics given in Table 1, { 0, m} = {27, 25} and preliminary testing showed 
that a maximum number of iterations of Imax = 400 was sufficient for the algorithms to not 
significantly improve on their solution quality after this point. For each algorithm, a single 
run for the TRP consisted of 10,000 function evaluations. The range of parameters tested 
was: [2, 20] for ASelite; [2, 20] for ASrank; {Pbest, } [1 10-5, 0.99] [0, 0.99] for 

MMAS. ASelite achieved a mean performance within 1% of the known optimum for most of 

the tested values of , with better performances observed using 3  5. Similarly, ASrank

achieved a mean performance within 1% of the known optimum for all tested values of 
 > 2 with lower mean best-cost values occurring for 10  14. ASrank tended to be less 

sensitive to variations in  than ASelite, as it was able to find the optimum in each run for a 
broader range of values for this parameter. MMAS achieved a mean performance within 1% 
of the optimum for values of Pbest  0.001 and  0.001, with the solution quality 
deteriorating for parameter values outside these ranges. The optimal parameter values were 
as follows: for ASelite,  = 4; for ASrank,  = 10; for MMAS, {Pbest, } = {0.5, 10-6}.
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Figure 1. Network layout for the Two-Reservoir Problem 

Table 2 gives a comparison of the results obtained using the ACO algorithms considered 
and those obtained from a selection of other best performing algorithms that have been 
applied to the discrete version of the TRP previously. A detailed statistical analysis of these 
algorithms was given in Zecchin et al. (2007), but it is clear that all algorithms performed 
extremely well (finding the optimum for all 20 runs) and were, comparatively, 
computationally efficient. 
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Plots of the iteration best-costs fmin(t) and the mean colony distance d (t), averaged over 20 
runs, are given in Figure 2 (a) and (b). In addition to this, other run-time properties (to be 
discussed) are given in Figure 2 (c). With regard to fmin(t), three distinct phases are observed. 
The first part of the search, phase-I, is a relatively short phase in which all algorithms find 
relatively poor quality solutions, which is followed by the second phase, phase-II, in which a 
dramatic increase in solution quality (reduction in the minimum cost) takes place, which 
leads into the third phase, phase-III, in which the rate of increase of the solution quality 
plateaus and the algorithms seem to not find any better solutions (or in some cases, the 
optimum is found repeatedly).  

Best-cost ($M) (% deviation from optimum)
Algorithm 

Minimum Mean Maximum

Mean search-time 
(evaluation no.)

AS 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 2,084

ASelite 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 1,842

ASrank 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 1,523

MMAS 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 2,993

PEa 1.834 (4.80) - -    900 

GApropb 1.750 (0.00) 1.759 (0.51) 1.812 (3.54) 23,625

GAtoutc 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 8,700

SAd 1.750 (0.00) NA NA NA

ACOAe 1.750 (0.00) 1.769 (1.09) 1.813 (3.60) 12,455

TSf 1.728i - NA NA ~10,000     

ACOAi-bestg 1.750 (0.00) 1.750 (0.00) 1.750 (0.00) 8,509

ACSh 1.750 (0.00) 1.770 (1.13) 1.904 (8.81) 5,014

a Partial enumeration (Gessler 1985). b GA based on a proportionate selection rule (Simpson et al. 1994).
c Tournament selection GA (Simpson & Goldberg 1994). d Simulated Annealing (Sousa & Cunha 1999).
e An AS variant that subtracts pheromone (Maier et al. 2003). f Tabu Search (Cunha & Ribeiro 2004).
g Iteration-best updating version of ACOA (Maier et al. 2003). h Ant Colony System (Zecchin et. al 2007).
i Not feasible by complete enumeration results (Simpson et al. 1994).

Table 2. Comparison of performance of AS, ASelite, ASrank, MMAS, and other algorithms 
from the literature applied to the Two-Reservoir Problem. Results for AS, ASelite, ASrank, and 
MMAS are based on 20 runs. NA means that the information is not available 

These three phases can also be seen clearly when considering the behaviour of d  in Figure 
2 (b). To make the distinction between the phases clearer, the bar chart in Figure 2 (c) indicates 
when the algorithms are in each of the phases (dark grey for phase-I, light grey for phase-II 

and the remaining white space for phase-III). For d , phase-I corresponds to a brief period of 
extremely broad searching where almost no convergence behaviour is displayed, followed by 
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phase-II, in which relatively rapid convergence is observed, and phase-III, in which the rate of 
convergence either plateaus or decreases gradually to d (t) = 0, the point of convergence.  
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Figure 2. Plots of (a) the minimum cost ($M) found in each iteration fmin(t), (b) the mean 
colony distance d (t), and (c) run-time statistics for AS, ASelite, ASrank, and MMAS applied to 
the Two Reservoir Problem. Plots (a) and (b) are averaged from 20 runs. Plot (c) depicts the 
three convergence phases: phase-I (dark grey); phase-II (light grey); phase-III (remaining 
white space). The line graphs overlaying the bar charts in (c) indicate the search-time 
statistics (based on 20 runs) with the dot indicating the mean search-time, and the left and 
right arrows indicating the mean minus and plus a standard deviation, respectively 

The nature and time spent in each of these three phases is different for each algorithm. As 
seen in Figure 2, AS, ASelite, and ASrank have a relatively short broad searching phase-I, 
followed by a rapid convergence in phase-II. In contrast, MMAS has a relatively long broad 
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searching phase-I, followed eventually by rapid phase-II convergence. The relatively long 
phase-I for MMAS may be attributed to the exploration encouraging mechanisms of 
pheromone bounding and pheromone smoothing. ASelite and ASrank have faster phase-II 
convergence than AS, which can possibly be attributed to the elitist exploitation 
mechanisms in these algorithms driving the search to converge faster. In phase-III, AS and 
ASelite experience a gradually reducing, but steady, convergence, albeit ASelite in a much 
tighter region after phase-II. In contrast to this, ASrank and MMAS plateau in their 
convergence, as seen by d (t) tending to a constant value in phase-III. 
This difference in phase-III behaviour can be explained by a consideration of the pheromone 
adjustment operations of each algorithm. For ACO, convergence cannot only be defined in 
the context of the distribution of solutions throughout the solution space (i.e. the point at 

which d (t) = 0), but also in a pheromone value context. That is, an ACO algorithm has 

converged when the pheromone value on all paths, except for a single path S S, is 

effectively zero (i.e. zero for all computational purposes). At such a point, ants will only 
select edges from path S. For both AS and ASelite, as pheromone values of paths become 
more dominant, the natural positive feedback process of the colony’s path selection will 
dictate that the pheromone value on all edges, other than that of the increasingly dominant 
path, will decay to zero. Thus, these algorithms will converge to the point where d (t) = 0.
However, both ASrank and MMAS contain mechanisms that moderate this positive feedback 
process. Firstly, in the update process for ASrank, in addition to the elitist ants, there are -1 
unique paths that receive a weighted pheromone addition within each iteration. What this 
means for ASrank is that there are always multiple paths for which the pheromone value does 
not decay to zero. Within MMAS, the pheromone bounding ensures that the pheromone 

values on all paths do not go below min(t).

The search-time statistics in Figure 2(c) (the triangle and dot lines plots superimposed over 
the bar charts) indicate the range of iteration numbers in which each algorithm found Sgb,
the global best solution for the run. Interestingly, all four algorithms tended to find their 
global best solutions towards the end of phase-I and the beginning of phase-II, albeit MMAS 
at a later stage than the other three algorithms. ASelite and AS had a greater variation in their 
search-times than ASrank, with MMAS having the greatest variation in its search-times.  

6.2 Case Study 2: New York Tunnels Problem 

6.2.1 Preliminaries 

The New York Tunnels Problem (NYTP) was first considered by Schaake and Lai (1969) 
while Dandy et al. (1996) was the first to apply an evolutionary algorithm to this problem. 
The network is a gravity system fed from a single reservoir, and consists of 20 nodes 
connected via 21 tunnels (Figure 3). There is a single demand case for the problem. Each 
tunnel has a null option, or the option to provide a duplicate tunnel with one of 15 different 
diameter sizes. The reader is referred to Dandy et al. (1996) for the case study details. This 
case study is the second smallest considered in this chapter, and has a search space of 
approximately 1.934 x 1025 possible combinations.  

6.2.2 Results 

Based on the heuristics given in Table 1 { 0, m} = {140, 90} and based on preliminary analyses 
Imax = 500 was found to be sufficient. A single run of the NYTP consisted of 45,000 function 
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evaluations. The range of parameters tested was: [2, 80] for ASelite; [2, 80] for ASrank;
{Pbest, } [1 10-5, 0.99] [0, 0.99] for MMAS. For 2  20 the performance of ASelite

varied less than 1%, but for  > 20 the solution quality was increasingly worse. For ASrank,
the performance varied less than 1% for the entire parameter range, with the better values 
being 8  12. For MMAS, the performance varied less than 1% for 0.005 Pbest  0.99 and 

 0.0005, with the solution quality degrading for lower values of Pbest and higher values of 
. The optimal parameter settings were as follows:  = 8 for ASelite;  = 8 for ASrank;

{Pbest, } = {0.05, 5x10-5} for MMAS. 
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Figure 3. Network layout for New York Tunnels Problem 

Table 3 gives a comparison of the performance of the ACO algorithms considered in this 
paper with that of the current best performing algorithms from the literature for the NYTP. 
A detailed statistical analysis of these algorithms was given in Zecchin et al. (2007), but all 
algorithms performed well, with ASelite, ASrank and MMAS, on average, finding solutions 
within a 1% cost of the known-optimum. 
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Best-cost ($M) (% deviation from optimum)

Algorithm 

Minimum Mean Maximum

Mean search-time 
(evaluation no.)

AS 39.204 (1.47) 39.910 (3.29) 40.922 (5.91) 34,877

ASelite 38.638 (0.00) 38.988 (0.91) 39.511 (2.26) 21,945

ASrank 38.638 (0.00) 38.777 (0.36) 39.221 (1.51) 19,319

MMAS 38.638 (0.00) 38.836 (0.51) 39.415 (2.01) 30,711

PEa 41.800 (8.18) - - NA

GAimpb 38.796 (0.41) NA NA 96,750

GAc 37.13i - NA NA ~1,000,000      

ACOAi-bestd 38.638 (0.00) NA NA 13,928

TSe 37.13i - NA NA ~10,000

ASi-bestf 38.638 (0.00) 38.849 (0.55) 39.492 (2.21) 22,052

ACSg 38.638 (0.00) 39.629 (2.57) 41.992 (8.68) 23,972

GAadapth 38.638 (0.00) 38.770 (0.34) 39.07 (1.12) 15,680

a Partial enumeration (Gessler, 1982). b Improved GA that used a variable exponent in fitness scaling, an
adjacency mutation operator, and Gray code representation (Dandy et al. 1996). c Genetic algorithm
(Savic & Walters, 1997). d Iteration-best updating version of ACO (Maier, et al. 2002). e Tabu search
(Cunha & Ribeiro, 2004). f An improved iteration-best version of AS (Zecchin et al. 2005). g Ant colony
system (Zecchin et al. 2007). h Parameter free, self-adapting, boundary searching genetic algorithm
(Afshar & Marino, 2007). i Not assessed as feasible by EPANET2 (Maier et al., 2002). 

Table 3. Comparison of performance of AS, ACS, ASelite, ASrank, MMAS, and other 
algorithms from the literature applied to the New York Tunnels Problem. Results for AS, 
ASelite, ASrank, and MMAS are based on 20 runs. NA means that the information was not 
available

Plots of the iteration best-costs fmin(t), the mean-colony-distance d (t), and the searching 
phases and search-time statistics for the algorithms applied to the NYTP are given in Figure 
4(a)-(c). Again, the three distinct searching phases observed for the TRP are observed in the 
behaviour of fmin and d . The relative behaviours of the algorithms applied to the NYTP are 
similar to that for the TRP, except for the faster convergence of AS in phase-I than that of 
both ASelite and ASrank. The effectiveness of the additional pheromone adjustment 
mechanisms in ASelite, ASrank and MMAS is made clear in Figure 4(a). This is seen by the fact 
that, for the majority of the phase-III searching, these algorithms have confined the search to 
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the high quality region of the solution space, as indicated by the near optimal fmin. In 
contrast, by the end of the run-time, AS has converged to a smaller region than MMAS, but 
the higher value of fmin indicates that the search is not in a near optimal region. This 
behaviour is also exhibited in the performance statistics of Table 3. 
Figure 4(c) gives a plot of the search-time statistics (the distribution of iteration times taken 
by the algorithms to find their global best run-time cost Sgb) for the NYTP.  In contrast to the 
TRP, the algorithms tended to find their Sgb relatively later in the searching phases. ASelite

and ASrank tended to find their best cost just after the descent in phase-II, whereas AS and 
MMAS found their best cost well into phase-III. This observation is interesting, as even 
though ASelite and ASrank had clearly not converged (as d  > 0), and their search was 
intensified within a near optimal region of the solution space, they were both unable to find 
higher quality solutions in phase-III of their search. The implications of this are that the 
phase-III search for ASelite and ASrank is not an effective phase in their searching behaviour. 

6.3 Case Study 3: Hanoi Problem 

6.3.1 Preliminaries 

The Hanoi Problem (HP), first published by Fujiwara and Khang (1990), has been 
considered by numerous authors in its discrete problem formulation (Savic & Walters 
1997; Cunha & Sousa 1999; Wu et al. 2001). This case study is for a new design that 
consists of 34 pipes and 32 nodes organised in three loops (Figure 5).  The system is 
gravity fed by a single reservoir and has only a single demand case. For each link, there 
are six different new pipe options where a minimum diameter constraint is enforced. For 
case study details, the reader is referred to Cunha & Sousa (1999). This case study is the 
second largest considered in this chapter, having a problem size of approximately 
2.87 x 1026 combinations. 

Based on the heuristics given in Table 1 { 0, m} = {26, 80} and Imax = 1,500 were found to be 
sufficient, implying that a single run for the HP consisted of 120,000 function evaluations. 
The range of parameters tested was: [2, 70] for ASelite; [2, 70] for ASrank,; for MMAS, 
{Pbest, } [1 x 10-5, 0.99]x [0, 0.005]. In general, the performances of ASelite, ASrank, and 
MMAS were much more sensitive to their respective parameter settings for this case study, 
such that only moderate variations from the parameters selected resulted in the inability to 
find feasible solutions for some runs. For ASelite, no feasible solutions were found for  10, 
with the best performance occurring with  = 40. For values of  > 20, no feasible solutions 
were found within a greater number of runs for ASrank. For MMAS, no feasible solutions 

were found for Pbest  0.1 and  0.001, however, there was a less than 1% variation in 
solution quality for 0.5 Pbest  0.65. The selected parameter values were as follows: for 
ASelite,  = 40; for ASrank,  = 20; for MMAS, {Pbest, } = {0.5, 0}. An important point to note is 
that the best parameter settings for this case study vary greatly from those of all the other 
case studies. A common thread is that the optimal parameter settings for this case study 
increased each of the algorithms’ emphasis on exploitation. For example: for ASelite, and to a 
lesser degree ASrank, the number of elitist ants for this case study was far greater than for the 
other case studies; for MMAS, Pbest was higher (indicating looser pheromone bounds) and 
was set to a low value, both of these indicating a reduction in exploration potential. Despite 
this notable sensitivity, the parameter heuristics proposed by Zecchin et al. (2005) resulted in 
extremely good performance for MMAS and ASrank.
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Figure 4. Plots of (a) the minimum cost ($M) found in each iteration fmin(t), (b) the mean 
colony distance d (t), and (c) run-time statistics for AS, ASelite, ASrank, and MMAS applied to 
the  New York Tunnels Problem. Plots (a) and (b) are averaged from 20 runs. Plot (c) depicts 
the three convergence phases: phase-I (dark grey); phase-II (light grey); phase-III (remaining 
white space). The line graphs overlaying the bar charts in (c) indicate the search-time 
statistics (based on 20 runs) with the dot indicating the mean search-time, and the left and 
right arrows indicating the mean minus and plus a standard deviation, respectively 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 438

6.3.2 Results 

Table 4 shows a comparison of the performance of the ACO algorithms with the other best 
performing algorithms in the literature. A detailed statistical analysis of the algorithms was 
given in Zecchin et al. (2007), but as a summary, MMAS, and to a lesser extent ASrank, were 
the only algorithms that performed well on the HP. ASelite was unable to find high quality 
solutions, and AS was not able to find any feasible solutions. Other authors have also noted 
that the HP has a small feasible region (Eusuff & Lansey 2003). 
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Figure 5. Network layout for the Hanoi Problem 
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Best-cost ($M) (% deviation from optimum)

Algorithm 

Minimum Mean Maximum

Mean search-time 
(evaluation no.)

AS NFS NFS NFS -

ASelite 6.827 (11.30) 7.295 (18.93) 8.187 (33.48)    59,917 

ASrank 6.206  (1.17) 6.506  (6.07) 6.788 (10.66)    75,328 

MMAS 6.134  (0.00) 6.394  (4.24) 6.635  (8.17)    85,571 

GAa 6.195  (1.00) NA NA ~1,000,000      

SAb 6.053g - NA NA ~53,000

GAfmc 6.182  (0.78) NA NA 113,626

TSd 6.053g - NA NA ~10,000

ASi-beste 6.367  (3.80) 6.842 (11.54) 7.474 (21.95)   67,136 

ACSf 7.754 (26.41) 8.109 (32.20) 8.462 (37.96)   61,324 

a Genetic algorithm (Savic & Walters, 1997). b Simulated annealing (Cunha & Sousa, 1999). c The fast
messy genetic algorithm (Wu et al., 2001). d Tabu search (Cunha & Ribeiro, 2004). e An iteration-best
pheromone updating version of AS (Zecchin et al. 2005);  f Ant colony system (Zecchin et al. 2007). 
g Infeasible by EPANET2 (Zecchin et al., 2005).

Table 4. Comparison of performance of AS, ACS, ASelite, ASrank, MMAS, and other 
algorithms from the literature applied to the Hanoi Problem. Results for AS, ASelite, ASrank,
and MMAS are based on 20 runs. NFS means no feasible solution was found, NA means 
that the information was not available 

Plots of the iteration best-costs fmin(t), the mean-colony-distance d (t), and the searching 
phases and search-time statistics for the algorithms applied to the HP are given in Figure 
6(a)-(c). Vastly different behaviours were observed for the HP in comparison to the other 
case studies, but the three phases of searching are still distinct. A marked difference though 
is the relative lengths of the phase-I searching, (AS, ASelite, and ASrank all have a far longer 
phase-I search than MMAS) and the distinct hump in the phase-II convergence of MMAS.  
The differences in the trends of fmin and d  for this case study can be explained by the small 
feasible  region.  The  maximum  cost  of  a  feasible  solution  for  the HP, which is also the 
maximum network cost (for which the penalty cost PC from (15) is zero), is 
C( max) = $M 10.96. Therefore, any solutions with costs higher than this are infeasible. With 
this in mind, the appearance of the data points of fmin in Figure 6(a) can be interpreted as the 
iteration times at which each algorithm first found feasible solutions. This is why no plot of 
fmin for AS is seen in Figure 6(a), as AS found no feasible solutions for the HP. 
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Figure 6.  Plots of (a) the minimum cost ($M) found in each iteration fmin(t), (b) the mean 

colony distance d (t), and (c) run-time statistics for AS, ASelite, ASrank, and MMAS applied to 
the  Hanoi Problem. Plots (a) and (b) are averaged from 20 runs. Plot (c) depicts the three 
convergence phases: phase-I (dark grey); phase-II (light grey); phase-III (remaining white 
space). The line graphs overlaying the bar charts in (c) indicate the search-time statistics 
(based on 20 runs) with the dot indicating the mean search-time, and the left and right 
arrows indicating the mean minus and plus a standard deviation, respectively 

This entry into the feasible region for ASelite, ASrank and MMAS occurred well into the 
phase-II search (for MMAS, it is seen to coincide with the hump in the phase-II 
convergence). This means that the phase-I search was entirely within the infeasible region, 
and furthermore, it took the algorithms some time to effectively use the information in the 
infeasible region before they could begin the phase-II convergence to guide the search into 
the feasible region. Interestingly, only the algorithms that contain exploitive mechanisms 
were able to find the feasible region. 
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Considering the search-time statistics in Figure 6(c), it is seen that ASelite and ASrank found their 
best-costs towards the end of the phase-II search, with ASrank consistently finding higher 
quality solutions than ASelite. For MMAS however, the best-cost was found well into the phase-
III search, again illustrating the effectiveness of MMAS’s confined phase-III searching. 

Best-cost ($M) (% deviation from optimum)
Algorithm 

Minimum Mean Maximum

Mean search-time 
(evaluation no.)

AS 80.855 (4.63) 83.572 (8.15) 85.267 (10.34) 131,769

ASelite 77.922 (0.84) 79.806 (3.28) 81.986  (6.10)   90,404 

ASrank 77.434 (0.21) 78.492 (1.58) 79.863  (3.35)   72,276 

MMAS 77.275 (0.00) 78.213 (1.21) 79.353  (2.69) 238,264

ASi-besta 77.275 (0.00) 78.302 (1.33) 79.922  (3.43)    75,760 

ACSb 77.275 (0.00) 80.586 (4.28) 86.682 (12.17) 471,977

a An iteration-best pheromone updating version of AS (Zecchin et al. 2005);  b The ACO algorithm ant
colony system (Zecchin et al. 2007). 

Table 5. Comparison of performance of AS, ASelite, ASrank, MMAS, and other algorithms 
from the literature applied to the Doubled New York Tunnels Problem. Results for AS, 
ASelite, ASrank, and MMAS are based on 20 runs 

6.4 Case Study 4: Doubled New York Tunnels Problem 

6.4.1 Preliminaries 

The Doubled New York Tunnels Problem (2-NYTP), first studied in Zecchin et al. (2005), 
consists of two NYTP networks connected via the single reservoir at node 1 in Figure 3. The 
link and node details are as for the NYTP. This problem has a search space size of 3.741 x
1050 and is the largest case study considered in this chapter.  

6.4.2 Results 

Based on the heuristics given in Table 1, { 0, m} = {200, 170}, and from a preliminary analysis, 
Imax = 3,000, therefore, a single run for the 2-NYTP consisted of 510,000 function evaluations. 
The range of parameters tested was: [1, 160] for ASelite; [2, 160] for ASrank; for 
MMAS, {Pbest, } [1 x 10-6, 0.99] x [0, 0.99].  

ASelite achieved a less than 1% variation in the performance for 1  5, with the solution 
quality deteriorating for higher values of . ASrank’s performance varied less than 5% for the 
entire parameter range of , with the best values occurring for 6  10. For MMAS, the 
performance varied less than 1% for 0.0005 Pbest  0.5 and  0.0001, with the solution 
quality degrading for parameter values outside these ranges. The selected parameter values 
were:  = 3 for ASelite;  = 8 for ASrank; {Pbest, } = {0.001, 0} for MMAS. 
Table 5 shows a comparison of the performance of the ACO algorithms considered for the 
2-NYTP with that obtained using other algorithms from the literature. A detailed statistical 
analysis of these algorithms was given in Zecchin et al. (2007), but as a summary, ASrank and 
MMAS performed consistently well (the former with extremely computationally efficient 
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search times), with ASelite performing only moderately inferior to that the above two, 
algorithms but significantly better than AS. 
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Figure 7.  Plots of (a) the minimum cost ($M) found in each iteration fmin(t), (b) the mean 

colony distance d (t), and (c) run-time statistics for AS, ASelite, ASrank, and MMAS applied to 
the Doubled  New York Tunnels Problem. Plots (a) and (b) are averaged from 20 runs. Plot 
(c) depicts the three convergence phases: phase-I (dark grey); phase-II (light grey); phase-III 
(remaining white space). The line graphs overlaying the bar charts in (c) indicate the search-
time statistics (based on 20 runs) with the dot indicating the mean search-time, and the left 
and right arrows indicating the mean minus and plus a standard deviation, respectively 

Plots of the iteration best-costs fmin(t), the mean-colony-distance d (t), and the searching phases 
and search-time statistics for the algorithms applied to the 2-NYTP are given in Figure 7(a)-(c). 
These figures show behaviour quite similar to that for the NYTP, just on a larger time scale. 
The main difference between the two is the relative size of d  in MMAS’s phase-III search with 
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respect to the other algorithms. In other words, MMAS still seems to be searching a relatively 
broad area of the solution space in phase-III. This explorative behaviour is seen as being 
effective, as the distribution of search-times in Figure 7(c) shows that, as with the other case 
studies, MMAS finds many of its best-cost solutions in this phase of the search. 

6.5 Discussion 

As in a previous study (Zecchin et al. 2007), the additional pheromone adjustment 
mechanisms in ASelite, ASrank and MMAS were shown to improve the performance of ACO, 
in comparison to AS, when applied to the WDSP. ASelite and ASrank were seen to be relatively 
fast algorithms, finding high quality solutions for all case studies except the difficult HP. 
MMAS was observed as a slower algorithm, but able to consistently find high quality 
solutions for all the case studies considered. Below is a discussion of the convergence 
behaviour of each algorithm as observed in the case studies considered. 
AS was observed to converge quickly initially (i.e. typically a short phase-I search), with an 
accompanied increase in solution quality. However, by the end of its (also relatively short) 
phase-II, AS’s search was still typically broad, and it did not seem to be able to focus the 
colony to find solutions that were as good as those found by the other algorithms. AS was 
also not able to find the feasible region at all for the HP. 
Despite ASelite’s emphasis on exploitation, its phase-II convergence was not consistently faster 
than that of AS, implying an initially more explorative phase-I. The exploitative nature of 
ASelite was seen at the end of phase-II, at which point ASelite converged to a comparatively 
small region of high quality solutions. ASelite tended to find its best-cost solutions towards the 
end of phase-II and at the beginning of phase-III. ASelite’s ability to find the feasible region for 
the HP can be directly attributed to the exploitive nature of its elitist ants, which effectively 
used the information in the infeasible region to guide the search into the feasible region. 
However, once in the feasible region, ASelite was not able to find high quality solutions. 
ASrank consistently converged faster than ASelite, and to a tighter searching region (lower d ),
by the end of phase-II. ASrank had a typically lower, and less variable, search-time than the 
other algorithms, with best-cost solutions generally found towards the end of phase-II. 
Given its speed of convergence, and the high quality of the solutions found, ASrank’s
pheromone updating scheme, although highly exploitative, is considered to be very 
effective. However, in situations, such as the small feasible region of the HP or the relatively 
large solution space of the 2-NYTP, ASrank’s inability to conduct an explorative phase-III 
search, means that it does not perform as well as MMAS for these case studies. 
MMAS typically had the longest phase-I search, which can be attributed to its exploration 
encouraging pheromone bounding and pheromone smoothing mechanisms. MMAS 
maintained a relatively broad search after its phase-II convergence, but unlike AS, it was still 
able to find high quality solutions. This aspect of relatively broad phase-III searching, coupled 
with high solution quality, can be attributed to MMAS’s effective management of exploitation, 
by updating only the iteration best path, and exploration, by lower bounding all paths’ 
pheromone values. As such, MMAS tended to find its best cost solutions well into phase-III.  
This lower bounding of the pheromone values also explains MMAS’s ability to effectively 
explore the feasible region of the HP. As the discovery of the higher quality solutions in the 
feasible region raised the lower pheromone bound once MMAS entered the feasible region, 
the pheromone values were all partially replenished, with the information concerning the 
feasible region being retained. From this perspective, the hump observed in Figure 6(b) can 
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be considered as another phase-I period for the MMAS search as it entered the feasible 
region. That is, due to the replenishing nature of the lower pheromone bound, the searching 
phases seemed to start again once the feasible region was found. 

7. Conclusions 

To gain a more complete understanding of ACO algorithms, it is important to not only 
consider their performance with respect to their solution quality and computational 
efficiency, but also the algorithms’ searching behaviour. In this chapter, two statistics of 
searching behaviour have been considered, (i) the minimum cost found within an iteration, 
which is an indication of search quality, and (ii) the mean colony distance, a topological 
measure that describes the spread of solutions through the solution space and thus provides 
an indication of the degree of convergence of an algorithm. 
Four ACO algorithms were considered in this chapter, namely, Ant System (AS), Elitist Ant 
System (ASelite), Elitist-Rank Ant System (ASrank), and Max-Min Ant System (MMAS).  The 
focus of this chapter was a case study based computational analysis of the convergence 
behaviour of these four algorithms. The problem type considered was the water distribution 
system problem, a classical combinatorial optimisation problem in the field of civil 
engineering.  The case studies considered were the Two-Reservoir Problem (TRP), the New 
York Tunnels Problem (NYTP), the Hanoi Problem (HP), and the Doubled New York 
Tunnels Problem (2-NYTP). 
From studying the convergence behaviour as exhibited by the mean colony distance, three 
distinct searching phases were observed for all algorithms. Phase-I was observed to be a 
broad searching phase in which only low quality solutions were found. In phase-II, a rapid 
convergence was observed, where increasingly good solutions were found and the colonies 
search was guided into smaller and higher quality regions of the solution space. Phase-III 
consisted of compact and dense searching in the high quality regions discovered in phase-II, 
where the convergence rate was much reduced. 
Each algorithm exhibited different behaviour in each phase. These differences were 
interpreted from the perspective of the algorithms’ formulations. For example, the 
exploitative algorithms, ASelite and ASrank experienced an extremely short phase-I, followed 
by a rapid convergence in phase-II. In contrast, the exploration encouraging MMAS had a 
significantly longer phase-I search and tended to converge to a much broader region than 
the other algorithms at the end of phase-II. AS tended to converge quickly initially, but its 
lack of exploitative mechanisms meant that, even by the end of phase-II, it was not able to 
focus its search in the high quality regions of the search space. 
Combining this qualitative three phase description with the search-time statistics (the time 
in the search at which the algorithms found their best-cost) leads to a deeper understanding  
of the productive stages in the algorithms’ search. In almost all instances, ASrank’s
search-time occurred near the end of phase-II. What this means is that the phase-III 
searching for ASrank was seen to be unproductive. ASelite performed similarly to ASrank, but 
with slightly longer search-times. The search-times for the explorative MMAS were typically 
much longer than those of the others algorithms, and the best-cost solutions tended to occur 
in the phase-III searching stage. The implications of this are that, even though MMAS 
maintained a relatively broad phase-III search, this longer term exploration was fruitful as 
solutions of higher quality were found. 
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This chapter illustrates how relatively simple run-time statistics can yield significant insight 
into the convergence behaviour of ACO algorithms. The type of analysis presented in this 
chapter shows potential to be useful for the purpose of both research and application. In terms 
of research (and algorithmic development), considering run-time behavioural statistics could 
aid in understanding the behavioural impacts of algorithmic mechanisms, and also provide a 
more informative comparison of different algorithms. In terms of application, run-time 
statistics could aid in understanding the influence of parameter variations, and facilitate the 
determination of appropriate parameter values, both online and offline.  
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